×
27.09.2014
216.012.f943

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ РАДИАЦИОННОГО ИЗМЕРЕНИЯ ПЛОТНОСТИ ТВЕРДЫХ ТЕЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерения плотности изделий с использованием рентгеновского излучения. Способ радиационного измерения плотности твердых тел путем облучения контролируемого объекта проводят потоком широкополосного рентгеновского излучения, регистрируется практически все обратнорассеянное излучение, и определение плотности осуществляется по полученным данным из спектров обратнорассеянного излучения, которое регистрируют одновременно в каждом из двух детекторов, определяют функцию распределения обратнорассеянного излучения в зависимости от энергии для каждого из детекторов, корректируют в соответствии с изменением геометрии при движении, выделяют энергетические диапазоны в спектре обратнорассеянного излучения, получают интегральные характеристики обратнорассеянного рентгеновского излучения в каждом энергетическом диапазоне, на основе которых по математическим моделям зависимости интегральных характеристик от плотности при различных энергиях излучения устанавливают плотность объекта контроля, которая описывается для каждого из каналов (детекторов). В устройстве мобильный рентгеновский плотномер, включающем в себя источник гамма-излучения в радиационной защите и детекторы, используется бесконтактный метод определения плотности, и в качестве источника используют сформированное широкополосное излучение панорамного рентгеновского генератора, а в качестве детекторов - два энергодисперсионных детектора для определения спектрального распределения обратнорассеянного излучения, в устройство дополнительно введены два датчика расстояния для учета влияния изменения геометрии в процессе измерения при движении. Технический результат - повышение быстродействия, повышение точности и производительности измерения. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области измерения плотности изделий с использованием рентгеновского излучения. Сущность заключается в том, что первичное рентгеновское излучение генерируют панорамным рентгеновским генератором, позволяющим получать мощный поток рентгеновского излучения, на несколько порядков превышающий потоки от радиоизотопных источников, которые используются в известных устройствах (Troxler), и, как следствие, сократить время и погрешность измерения, что позволяет проводить измерения в движении. Применение панорамного рентгеновского генератора дает возможность значительно увеличить зону анализа, что особенно важно для контроля дорожных покрытий.

Обратнорассеянное излучение регистрируют одновременно двумя сцинтилляционными детекторами и получают спектры обратно рассеянного излучения в зависимости от энергии, выделяют энергетические диапазоны в спектре обратнорассеянного излучения, получают интегральные характеристики обратнорассеянного рентгеновского излучения в каждом энергетическом диапазоне, на основе которых по математическим моделям зависимости интегральных характеристик от плотности при различных энергиях излучения устанавливают плотность объекта контроля.

Известны способы и устройства, предназначенные для контроля плотности изделий с использованием гамма-излучения, принцип работы которых основан на явлении рассеяния гамма-излучения атомами вещества контролируемого объекта. Рассеяние является главным образом результатом комптоновского взаимодействия фотонов с электронами атомов вещества объекта, причем количественно такое взаимодействие определяется плотностью вещества. Измеряя плотность потока рассеянных фотонов, можно получить прямую зависимость между показаниями прибора и плотностью вещества. Обычно измерения плотности проводят с использованием калибровочного графика.

Недостатками известных способов являются контактность используемых методов измерения, ограничение диапазона измерения за счет низкой чувствительности измерений, а также длительное время измерения. Кроме того, из-за процесса распада изотопа и снижения потока гамма-излучения необходима регулярная экспериментальная коррекция калибровочного графика, что снижает производительность измерения.

За прототип принят способ измерения плотности, при котором с целью расширения диапазона измерений и повышения точности контроль плотности ведут в области максимальной интенсивности обратнорассеянного излучения. Для этого одновременно с регистрацией рассеянного излучения изменяют базовое расстояние до нахождения области максимальной интенсивности излучения, например путем перемещения источника или детектора параллельно поверхности контролируемого объекта.

При этом для регулирования ширины экстремальной области источник и детектор можно коллимировать. Так как положение экстремального значения калибровочного графика при найденном базовом расстоянии для заданной энергии источника не зависит от активности источника, то контроль ведут по положению пика. Положение пика на калибровочной кривой сохраняется при изменении как вещественного состава, так и активности источника излучения [Способ измерения плотности среды или расстояния от прибора до поверхности среды. Авторское свидетельство №247420, G01N 23/06, БИ №22, 1969 г.].

Измерение плотности среды осуществляют по найденному базовому расстоянию. Для этого можно пользоваться калибровочными графиками или градуировкой шкалы прибора в непосредственных единицах плотности. В этом случае оценка плотности контролируемых объектов проводится с учетом поля обратнорассеянного излучения.

Детектором регистрируется лишь незначительная часть фотонов, в связи с чем для измерения плотности указанным способом требуется значительное время и возможность измерения в процессе формования практически исключается, кроме того, это приводит к необходимости для получения заданной точности измерения либо повышать активность источника, либо увеличивать время измерения, либо увеличивать площадь сцинтиллятора.

Однако активность источника ограничена требованиями безопасности, а увеличение площади сцинтиллятора уменьшает разрешающую способность, так как суммарное количество обратнорассеянных фотонов практически не зависит от плотности рассеивающего материала, что не дает возможности использования больших кристаллов для повышения доли обратнорассеянных фотонов.

Технический результат, получаемый при реализации предложенного способа, заключается в бесконтактном методе проведения измерений, в повышении быстродействия, а также в повышении точности и производительности измерения.

Указанный результат получается за счет того, что в способе радиационного измерения плотности твердых тел путем облучения контролируемого объекта облучение проводят потоком широкополосного рентгеновского излучения, регистрируется практически все обратнорассеянное излучение, и определение плотности по полученным данным из спектров обратнорассеянного излучения регистрируют одновременно в каждом из двух детекторов, определяют функцию распределения обратнорассеянного излучения в зависимости от энергии для каждого из детекторов, корректируют в соответствии с изменением геометрии при движении, выделяют энергетические диапазоны в спектре обратнорассеянного излучения, получают интегральные характеристики обратнорассеянного рентгеновского излучения в каждом энергетическом диапазоне, на основе которых по математическим моделям зависимости интегральных характеристик от плотности при различных энергиях излучения устанавливают плотность объекта контроля, которая описывается для каждого из каналов (детекторов) зависимостью:

ρ - плотность объекта контроля,

κ - номер канала (детектора) 1, 2,

i - номер энергетического интервала,

n - число выделенных энергетических интервалов,

a i, bi - эмпирические коэффициенты,

Ni - интенсивность обратнорассеянного излучения в i энергетическом интервале,

R - среднее расстояние до объекта за время измерения.

Значения эмпирических коэффициентов определяют из измерения стандартных образцов. Значение плотности определяют по формуле:

ρ=(ρ12)/2

Плотномеры, работа которых основана на явлениях рассеяния гамма-излучения материалом объекта контроля, известны. Плотномер, выбранный в качестве прототипа устройства [Способ и устройство для радиационного измерения плотности твердых тел. Патент RU 2345353 от 27.01.2009 г.], который включает в себя источник гамма-излучения, радиационный экран-коллиматор, защищающий сцинтилляторы от прямого излучения, заглушка для выпуска и перекрытия потока излучения, устройство перемещения источника, позволяющее менять сферический угол ввода фотонов в объект исследования, кольцевые сцинтилляторы, блоки преобразователей световых импульсов в электрические импульсы (фотоэлектронные умножители или фотодиоды), сумматоры импульсов, счетчики импульсов.

К недостаткам данного устройства относятся использование радиационных источников с невысокой интенсивностью излучения, которая приводит к увеличению времени измерения для получения необходимой точности анализа, и обязательное контактное применение данного устройства в его применении, а также экологическая безопасность использования радиационных источников в процессе проведения измерений в движении, то есть на «улице».

Предлагаемое устройство мобильный рентгеновский плотномер, с помощью которого реализуется предложенный способ, показан на фиг.1.

Устройство, реализующее предлагаемый способ, содержит панорамный рентгеновский генератор /1/, излучение которого формируется с помощью использования фильтров /4/, двух сцинтилляционных детекторов /2/ с коллиматорами /5/ для наиболее эффективного сбора вторичного излучения и двух датчиков расстояния /3/, позволяющих контролировать геометрические параметры системы «источник - образец - детектор».

Плотность вычисляется либо по экспериментально определенной постоянной С (Е), либо на основании самой калибровочной зависимости.

Работа устройства предложенным способом происходит следующим образом. Плотномер с источником рентгеновского излучения, которое генерируется рентгеновским генератором, при включении излучает широкополосное излучение, которое формируют фильтрами и первичными коллиматорами и направляют на объект измерения. Спектры рассеянных веществом объекта фотонов регистрируют двумя коллимированными детекторами. По энергетическим спектрам обратнорассеянного излучения рассчитывают плотность вещества по вышеописанному методу.

По мнению авторов, указанные отличительные признаки являются новыми и в предложенном функциональном единстве необходимы и достаточны для обеспечения заявленного технического результата.


СПОСОБ И УСТРОЙСТВО ДЛЯ РАДИАЦИОННОГО ИЗМЕРЕНИЯ ПЛОТНОСТИ ТВЕРДЫХ ТЕЛ
Источник поступления информации: Роспатент

Showing 541-550 of 557 items.
20.04.2023
№223.018.4e7a

Источник пара для плазменного разделения веществ

Изобретение относится к плавильным устройствам, работающим с использованием метода индукционной плавки в холодном тигле, предназначенным для плавки веществ, например, таких как оксиды и их сплавы, и может быть использовано для плавки, испарения и ионизации радиоактивных отходов для их...
Тип: Изобретение
Номер охранного документа: 0002793102
Дата охранного документа: 29.03.2023
21.04.2023
№223.018.4f1c

Автономная термозапорная клапанная система

Изобретение относится к трубопроводной арматуре, а конкретно к автономным дистанционно управляемым клапанным системам на основе сильфонных клапанов, и предназначено для использования в качестве автономной дистанционно управляемой запорной арматуры на трубопроводах различного назначения в...
Тип: Изобретение
Номер охранного документа: 0002794019
Дата охранного документа: 11.04.2023
15.05.2023
№223.018.5a35

Устройство для разъемного соединения трубопроводов

Изобретение относится к ядерной технике, а более конкретно к соединениям вакуумных трубопроводов диагностических систем термоядерных установок. Устройство для разъемного соединения трубопроводов включает опорный корпус (1), содержащий соединительную систему (2) для прикрепления опорного корпуса...
Тип: Изобретение
Номер охранного документа: 0002769292
Дата охранного документа: 30.03.2022
15.05.2023
№223.018.5a36

Устройство для разъемного соединения трубопроводов

Изобретение относится к ядерной технике, а более конкретно к соединениям вакуумных трубопроводов диагностических систем термоядерных установок. Устройство для разъемного соединения трубопроводов включает опорный корпус (1), содержащий соединительную систему (2) для прикрепления опорного корпуса...
Тип: Изобретение
Номер охранного документа: 0002769292
Дата охранного документа: 30.03.2022
15.05.2023
№223.018.5ae5

Способ изготовления таблетированного ядерного топлива

Изобретение относится к области атомной энергетики и может быть использовано для получения таблеток ядерного топлива на основе СНУП (керамический тип ядерного топлива, представляющий собой смесь нитрида урана и плутония (U, Pu)N). Способ изготовления таблетированного ядерного топлива включает...
Тип: Изобретение
Номер охранного документа: 0002765863
Дата охранного документа: 03.02.2022
15.05.2023
№223.018.5af2

Способ разделения нептуния и плутония в азотнокислых растворах (варианты)

Изобретение относится к радиохимической технологии, в частности к способам разделения нептуния и плутония экстракционными методами при переработке отработавшего ядерного топлива. Способ включает обработку исходного раствора, содержащего плутоний, нептуний реагентом-восстановителем, который...
Тип: Изобретение
Номер охранного документа: 0002765790
Дата охранного документа: 03.02.2022
16.05.2023
№223.018.60f3

Устройство диагностики измерительного преобразователя

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям с частотной формой выходных сигналов. Технический результат заключается в обеспечении возможности проверки в импульсном режиме работоспособности частотозадающих элементов измерительного...
Тип: Изобретение
Номер охранного документа: 0002743481
Дата охранного документа: 19.02.2021
20.05.2023
№223.018.655a

Массообменный аппарат

Изобретение относится к аппаратам для проведения процессов взаимодействия неподвижной твердой фазы с жидкой или газовой фазами при повышенных температурах и может быть использовано для реализации процессов сорбции/адсорбции, каталитического окисления элементов в фармацевтической, химической,...
Тип: Изобретение
Номер охранного документа: 0002743760
Дата охранного документа: 25.02.2021
21.05.2023
№223.018.6894

Способ испытания объекта широкополосной случайной вибрацией

Изобретение относится к испытательной технике и может быть использовано для испытаний в лабораторно-стендовых условиях конструкций авиационной техники на прочность от действия вибрационных нагрузок. Способ заключается в формировании широкополосной случайной вибрации, которую передают к объекту...
Тип: Изобретение
Номер охранного документа: 0002794419
Дата охранного документа: 17.04.2023
21.05.2023
№223.018.696e

Зонд для проникания в многослойную преграду

Использование: для исследования процесса высокоскоростного проникания в преграду. Сущность изобретения заключается в том, что зонд для проникания в многослойную преграду содержит корпус с носовой частью, контейнер с полезной нагрузкой, размещенный во внутренней полости зонда с заданными...
Тип: Изобретение
Номер охранного документа: 0002794416
Дата охранного документа: 17.04.2023
Showing 411-411 of 411 items.
29.03.2019
№219.016.f47e

Многослойное композиционное покрытие с нанокристаллической структурой на режущем инструменте и способ его получения

Изобретение относится к многослойным покрытиям для режущего инструмента и способам их получения и может быть использовано в машиностроительном производстве. Покрытие содержит адгезионный, переходный и износостойкий слои тугоплавких соединений. При этом адгезионный слой содержит, по крайней...
Тип: Изобретение
Номер охранного документа: 0002413790
Дата охранного документа: 10.03.2011
+ добавить свой РИД