×
27.09.2014
216.012.f803

Результат интеллектуальной деятельности: ЭЛЕКТРОЛИТ ДЛЯ АНОДИРОВАНИЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ ПЕРЕД НАНЕСЕНИЕМ МЕДНЫХ ГАЛЬВАНОПОКРЫТИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники. Электролит содержит ортофосфорную кислоту 15% об., серную кислоту 15% об., фторсодержащее неорганическое вещество, выбранное из группы, включающей бифторид аммония, бифтористую кислоту, фторид натрия 4-15 г/л и воду - остальное. Технический результат - снижение энергетических и материальных затрат, снижение времени технологического процесса при высоком качестве покрытия. 2 табл., 2 ил., 2 пр.
Основные результаты: Электролит для анодирования алюминия и его сплавов перед нанесением медных гальванопокрытий, включающий ортофосфорную кислоту, серную кислоту и воду, отличающийся тем, что он дополнительно содержит фторсодержащее неорганическое вещество из группы: бифторид аммония, бифтористая кислота, фторид натрия при следующем соотношении компонентов:

Изобретение относится к электрохимическому способу нанесения покрытий на изделия из алюминия и его сплавов.

Алюминиевые сплавы являются основным конструкционным материалом в авиации, автомобилестроении, электротехнической промышленности. Сейчас наблюдается тенденция к расширению области применения их в других отраслях промышленности. Этому способствует нанесение на алюминиевые изделия различных гальванических покрытий, которые увеличивают их сопротивление коррозии и механическому износу, повышают поверхностную электропроводность, улучшают паяемость, проявляют декоративные свойства. Но нанесение гальванических покрытий на изделия из данного металла связано с рядом специфических трудностей, например наличием на их поверхности естественной оксидной пленки, препятствующей прочному сцеплению покрытия с основой. Кроме того, высокое электроотрицательное значение потенциала алюминия приводит к контактному вытеснению ионов покрываемого металла до начала прохождения электрического тока через раствор электролита, что тоже нарушает сцепление между покрытием и основой. Преодоление этих трудностей достигается специальными методами подготовки поверхности покрываемых изделий (цинкатная обработка, анодирование, химическое оксидирование).

Применяемая в современном гальваническом производстве обработка в цинкатных растворах имеет ряд недостатков: процесс не является достаточно стабильным и приводит к определенному проценту недоброкачественных покрытий, сцепление при этом способе не является достаточно высоким, гальванические покрытия следует использовать только в легких и средних условиях эксплуатации [1]. Химическое оксидирование - простой и дешевый способ обработки алюминия, который применяется для получения грунта под лакокрасочные покрытия. Пленки, полученные при химическом оксидировании, значительно уступают по защитным и механическим свойствам оксидным пленкам, полученным электрохимическим методом. Поэтому химическое оксидирование алюминия имеет ограниченное применение. К тому же эти электролиты имеют ограниченный ресурс [2].

Анодирование дает возможность получить более надежное сцепление гальванических покрытий с алюминиевой основой по сравнению с другими методами [3]. Полученные в процессе анодирования пленки имеют высокую твердость. Поэтому анодирование во много раз повышает сопротивляемость алюминиевых изделий механическим воздействиям (истиранию, царапанию и т.д.).

Известно, что анодирование алюминия и его сплавов перед нанесением гальванопокрытий проводят в растворе ортофосфорной кислоты, что дает положительные результаты в широком диапазоне концентраций. Однако существенным недостатком этого процесса является его большая чувствительность к малейшим изменениям в составе обрабатываемых сплавов. При анодировании в ортофосфорной кислоте встречается тем больше затруднений, чем чище алюминий. Анодирование в ортофосфорной кислоте не дает должного эффекта при гальваническом покрытии литейных сплавов [4].

Универсальным для анодирования алюминия и его сплавов в этом отношении является электролит, содержащий 15% (об.) H2SO4 и 15% (об.) H3PO4 [5]. Авторами показано, что пленка, полученная при анодировании в смеси кислот (фиг.2а), получается достаточно плотная (пористость составляет всего 7,3%). Это приводит при меднении при высоких плотностях тока (1-2 А/дм2) к непрокрытию поверхности сплава. В этом случае для нанесения качественного гальванического покрытия необходимо снижать катодную плотность тока (до 0,5-0,8 А/дм2), что в значительной мере увеличивает время технологического процесса нанесения гальванопокрытия.

Известен способ [6] нанесения медного гальванического покрытия на деталь из алюминия и его сплавов, анодированную в растворе, содержащем смесь кислот (серную и ортофосфорную), с последующем нанесением подслоя меди из раствора следующего состава:

CuSO4·5H2O 200÷250 г/л
H2SO4 50÷70 г/л
HF 10÷15 г/л
Вода остальное

при катодной плотности тока jk - 1÷2 А/дм2 в течение 2÷3 мин и комнатной температуре.

Затем после промывки медное покрытие наращивается до необходимой толщины из стандартного сернокислого электролита:

CuSO4·5H2O 200÷250 г/л
H2SO4 50÷70 г/л
C2H5OH 7÷10 мл/л
Вода остальное

при катодной плотности тока jk - 1÷2 А/дм2 в течение 2÷3мин и комнатной температуре.

Но при этом способе получения качественного гальванопокрытия необходимы дополнительные материальные (нанесение подслоя и расход воды на промывки) и энергетические затраты. Эти недостатки устраняются предлагаемым решением.

Поставлена задача - повышение технологичности способа.

Технический результат - снижение энергетических и материальных затрат, снижение времени технологического процесса при высоком качестве покрытия.

Технический результат достигается тем, что в электролит анодирования, содержащий ортофосфорную и серную кислоты, дополнительно вводят фторсодержащее неорганическое вещество из группы: бифторид аммония, борфтористая кислота, фторид натрия:

Ортофосфорная кислота 15% об.
Серная кислота 15% об.
Фторсодержащее неорганическое
вещество 4-15 г/л
Вода остальное

Электрокристаллизация осаждаемого металла покрытия начинается, прежде всего, в порах оксидной пленки, которые заполняются металлом, вследствие чего и обеспечиваются условия для прочного сцепления осадка с основой. Поэтому для нанесения гальванопокрытий с высокой степенью адгезии необходимо получить в процессе анодирования на поверхности алюминиевого сплава более пористую пленку, прочно сцепленную с основой [4]. С этой целью дополнительно в электролит анодирования были введены вещества, содержащие в своем составе F--ионы, способные повысить пористость оксидной пленки, образующейся на поверхности алюминия в процессе анодирования (фиг. 2б).

Положительное воздействие плавиковой кислоты на процесс получения пористого оксида на поверхности деталей любой формы, изготовленных из сплава титан-алюминий, было отмечено в работе [7]. Однако, учитывая высокую токсичность плавиковой кислоты и повышенный расход ее в процессе анодирования, приводящий при меднении к ухудшению качества медного покрытия, для исследований также были выбраны другие фторсодержащие неорганические вещества: фторид натрия NaF, бифторид аммония NH4HF2, борфтористо-водородная кислота HBF4. Полученные результаты представлены в табл.1.

Уменьшение энергозатрат происходит за счет снижения напряжения на ванне (примерно в 2÷4 раза), а материальных - за счет исключения ванны нанесения подслоя меди (по прототипу) и снижения расхода воды на промывки. При этом качество покрытия остается высоким, особенно для сложнопрофильных деталей. К тому же исключается возможность непрокрытия в труднодоступных местах.

Способ осуществляют следующим образом. Покрытию подвергали сложнопрофилированные детали, изготовленные из алюминиевых сплавов следующих марок АМц, АД0, АД1, АД31, АК4, АК9ч, АЛ2. Эскиз этих деталей представлен на фиг.1. Предварительно детали обезжиривали, осветляли в растворе HNO3:HF=3:1. Далее деталь анодируют в растворе 15% H2SO4 + 15% H3PO4 + фторсодержащее неорганическое вещество при растворе 15% H2SO4 + 15% H3PO4 + фторсодержащее неорганическое вещество при комнатной температуре и анодной плотности тока 2 А/дм2. После анодирования и тщательной промывки на деталь наносилось медное покрытие из стандартного сернокислого электролита. Толщина медного покрытия составляет 9 мкм.

После покрытия детали нагревались в вакуумной печи при температуре 200-230°C в течение 1 часа (стандартный прием). Прочность сцепления покрытия с основой определялась по методу сеток, методом кварцевания медными щетками и по контролю отслоений гальванопокрытий после отжига. Опытные образцы прошли все испытания. Отслоения покрытий не наблюдалось.

Примеры

Пример 1. Деталь из сплава марки АД1 анодно оксидировалась в электролите 15% H2SO4 + 15% H3PO4, вода - остальное (по прототипу) при комнатной температуре и плотности тока 2 А/дм2 в течение 5-6 минут. Напряжение на ванне при этом составило 19-21 В. Далее наносилось медное покрытие из стандартного сернокислого электролита следующего состава:

CuSO4·5H2O 200÷250 г/л
H2SO4 50÷70 г/л
C2H5OH 7÷10 мл/л
Вода остальное

при катодной плотности тока 14-2 А/дм2. При визуальном осмотре покрытия наблюдались непрокрытия по всей поверхности деталей.

Пример 2. Деталь из сплава марки АД1 анодно оксидировалась в электролите 15% H2SO4 + 15% H3PO4 + 4÷6 г/л бифторида аммония, вода - остальное при комнатной температуре и плотности тока 2 А/дм2 в течение 5-6 минут. Напряжение на ванне при этом составило 6÷9 В. Далее наносилось медное покрытие из стандартного сернокислого электролита следующего состава:

CuSO4·5H2O 200÷250 г/л
H2SO4 50÷70 г/л
C2H5OH 7÷10 мл/л
Вода остальное

при катодной плотности тока 1÷2 А/дм2. При визуальном осмотре поверхность детали покрыта полностью. Покрытие получилось мелкокристаллическим, полублестящим, беспористым.

При снижении концентрации бифторида аммония в электролите анодирования до 1-2 г/л высокое качество покрытия сохраняется. Однако при этом наблюдается значительное повышение напряжения на ванне анодирования до 11-12 В. Увеличение концентрации указанной добавки до 10-15 г/л приводит к снижению напряжения на ванне до 1-3 В. При этом качество медного покрытия остается прежним. Дальнейшее повышение концентрации добавки к существенному снижению напряжения не приводит.

Аналогично примеру 2 испытывались в качестве добавок в электролит анодирования борфтористо-водородная кислота и фторид натрия. Результаты испытаний представлены в табл.2. Из табл.2 видно, что наиболее оптимальной добавкой является бифторид аммония. Активирующая обработка в смеси кислот с добавкой бифторида аммония позволяет наносить медное покрытие на любые алюминиевые сплавы типа деформируемых сплавов АМц, АД0, АД1, АД31, АК4, силумина АК9ч, а также и литейного сплава АЛ2. Применение предложенного электролита анодирования позволяет в значительной мере снизить материальные, энергетические и временные затраты.

На фиг.1 приведен эскиз используемых алюминиевых деталей для нанесения гальванопокрытий.

На фиг.2а - структура оксидной пленки, полученной при анодировании в базовом электролите.

На фиг.2б - структура оксидной пленки, полученной при анодировании в базовом электролите с добавкой бифторида аммония.

Источники информации

1. Мамаев В.И. О причинах брака матового никелевого покрытия на алюминии // Гальванотехника и обработка поверхности. - 2012. - №3. - С.22-25.

2. Денкер И.И., Кулешова И.Д. Защита алюминия и его сплавов лакокрасочными покрытиями. 2-е изд., перераб. и доп.М.: Химия. - 1985. - С.23-27.

3. Худяков В.Л. Опыт применения анодных окисных пленок при хромировании алюминия // В кн.: Анодная защита металлов: Докл. 1-й межвуз. конф. / под ред. Богоявленского А.Ф. М.: Машиностроение, 1964. - С.292-309.

4. Лайнер В.И. Гальванические покрытия легких сплавов. М.: Металлургиздат, 1959 г. - С.21.

5. Девяткина Т.И., Большакова О.А., Рогожин В.В., Михаленко М.Г. Нанесение медного гальванического покрытия на детали из алюминия и его сплавов // Сборник материалов XI Международной молодежной научно-технической конференции "Будущее технической науки". 2012. - С.297.

6. Девяткина Т.И., Рогожин В.В., Большакова О.А., Думитраш О.В., Михаленко М.Г. Способ нанесения медного гальванического покрытия на детали из алюминия и его сплавов // Патент РФ №2471020, C25D 5/44, C25D 11/20, опубл. 27.12.2012.

7. Кокатев А.Н., Ханина Е.Я., Чупахина Е.А., Яковлев А.Н., Яковлева Н.М. Способ формирования пористого оксида на сплаве титан-алюминий // Заявка №2011114311/02. Заявлено 12.04.2011; опубл. 20.10.2012.

Таблица 1
Параметры оксидных пленок, полученных при анодировании в электролитах с различными добавками. Режим анодирования: jа=2 А/дм2, t=18÷20°C, τ=5÷6 мин.
Электролит анодирования δ, мкм Пористость, % Напряжение на ванне анодирования, В
15% H2SO4+15% H3PO4 2,14 7,3 19÷21
15% H2SO4+15% H3PO4+NaF 1,62 19 12÷13
15% H2SO4+15% H3PO4+HBF4 1,24 16 9÷11
15% H2SO4+15% H3PO4+NH4HF2 1,242 20 6÷9

Таблица 2
Визуальная оценка качества медного покрытия. Режим анодирования: ja=2 A/дм2, t=18÷20°C, τ=5÷6 мин. Электролит меднения: стандартный сернокислый. Режим меднения: jk=1,5А/дм2, t=18÷20°C, τ=27 мин.
Электролит анодирования Качество покрытия
15% H2SO4 + 15% H3PO4 Не прокрылось по всей площади детали
15% H2SO4 + 15% H3PO4 + NaF Полублестящее мелкокристаллическое покрытие, непрокрытий нет. При 500-кратном увеличении наблюдается незначительное количество пор на 1 мм2 поверхности на сплавах марок АК9ч и АЛ2.
15% H2SO4 + 15% H3PO4 + HBF4 Полублестящее мелкокристаллическое покрытие, непрокрытий нет. При 500-кратном увеличении наблюдается незначительное количество пор на 1 мм2 поверхности на сплавах марок АК4, АЛ2 и АД.
15% H2SO + 15% H3PO4 + NH4HF2 Полублестящее мелкокристаллическое покрытие, непрокрытий нет. Покрытие беспористое на всех сплавах.

Электролит для анодирования алюминия и его сплавов перед нанесением медных гальванопокрытий, включающий ортофосфорную кислоту, серную кислоту и воду, отличающийся тем, что он дополнительно содержит фторсодержащее неорганическое вещество из группы: бифторид аммония, бифтористая кислота, фторид натрия при следующем соотношении компонентов:
ЭЛЕКТРОЛИТ ДЛЯ АНОДИРОВАНИЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ ПЕРЕД НАНЕСЕНИЕМ МЕДНЫХ ГАЛЬВАНОПОКРЫТИЙ
ЭЛЕКТРОЛИТ ДЛЯ АНОДИРОВАНИЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ ПЕРЕД НАНЕСЕНИЕМ МЕДНЫХ ГАЛЬВАНОПОКРЫТИЙ
Источник поступления информации: Роспатент

Showing 1-10 of 30 items.
20.01.2013
№216.012.1cd2

Гальванопластический способ изготовления сложно-рельефных элементов антенно-фидерных устройств

Изобретение относится к гальванопластике и может быть использовано для изготовления элементов антенно-фидерных устройств повышенной сложности. Гальванопластический способ включает использование форм из алюминия или его сплавов и гальваническое нанесение на формы никеля с последующим их...
Тип: Изобретение
Номер охранного документа: 0002472872
Дата охранного документа: 20.01.2013
27.08.2014
№216.012.eeda

Способ контроля за процессом обводнения газовой скважины

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений. Техническим результатом предлагаемого изобретения является уточнение даты изменения коэффициентов фильтрационного сопротивления призабойной зоны за счет учета основных...
Тип: Изобретение
Номер охранного документа: 0002526965
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f77f

Способ получения хлоридов 2,3-дигидро [1,3] теллуразоло [3,2-α] пиримидиния

Изобретение относится к способу получения хлоридов 2,3-дигидро[1,3]теллуразоло[3,2-α]пиримидиния общей формулы где R - алкил или фенил; R - алкил, фенил или водород; R+R - циклоалкил. Способ включает взаимодействие соответствующего олефина с гидрохлоридом...
Тип: Изобретение
Номер охранного документа: 0002529196
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fcf5

Способ изготовления горячекатаного проката под холодную объемную штамповку крепежных изделий

Изобретение относится к термомеханической обработке горячекатаного проката. Способ изготовления горячекатаного проката под холодную объемную штамповку крепежных изделий включает двукратный отжиг проката индукционным нагревом ТВЧ при t=760-780°C в мотках и трехкратное волочение на волочильном...
Тип: Изобретение
Номер охранного документа: 0002530603
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe68

Охладитель расплава жидкометаллического теплоносителя

Изобретение относится к области теплотехники тяжелых жидкометаллических теплоносителей и может быть использовано в исследовательских, испытательных стендах и установках атомной техники с реакторами на быстрых нейтронах. В охладителе перед патрубком подвода охлаждающей воды установлен регулятор...
Тип: Изобретение
Номер охранного документа: 0002530984
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.035c

Способ обнаружения широкополосных параметрических рассеивателей

Изобретение относится к способам обнаружения широкополосных параметрических рассеивателей, являющихся вторичными источниками электромагнитного излучения. Достигаемый технический результат - повышение чувствительности приемного устройства системы обнаружения широкополосных параметрических...
Тип: Изобретение
Номер охранного документа: 0002532258
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04f1

Способ получения цетаноповышающих присадок к дизельному топливу

Изобретение относится к способу получения цетаноповышающих присадок к дизельному топливу, включающему нитрование вторичных спиртов, где в качестве спиртов используют фракцию вторичных спиртов C-C, полученных методом жидкофазного окисления фракции н-алканов C-C водным раствором пероксида...
Тип: Изобретение
Номер охранного документа: 0002532663
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0548

Способ изготовления отливок по выплавляемым моделям

Изобретение относится к литейному производству. На блок выплавляемых моделей послойно наносят огнеупорную суспензию. В состав суспензии первого слоя вводят мелкодисперсный модификатор - абразивную пыль полировально-шлифовальной обработки изделий из сплавов черных металлов в количестве 1-2 мас.%...
Тип: Изобретение
Номер охранного документа: 0002532750
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.054b

Способ изготовления многослойных оболочковых литейных форм по выплавляемым моделям

Изобретение относится к литейному производству. Способ включает послойное нанесение на блок выплавляемых моделей огнеупорной суспензии, обсыпку зернистым материалом, вытопку моделей, сушку и прокаливание. Начиная со второго слоя оболочки, используют огнеупорную суспензию с кислородсодержащим...
Тип: Изобретение
Номер охранного документа: 0002532753
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0556

Способ изготовления многослойных оболочковых литейных форм по выплавляемым моделям

Изобретение относится к литейному производству. На блок выплавляемых моделей наносят огнеупорную суспензию. Обсыпают его зернистым материалом. В первый слой оболочки, в состав зернистого материала для обсыпки, вводят порошок алюминия в количестве 5-10 мас.%, а начиная со второго слоя оболочки,...
Тип: Изобретение
Номер охранного документа: 0002532764
Дата охранного документа: 10.11.2014
Showing 1-10 of 38 items.
20.01.2013
№216.012.1cd2

Гальванопластический способ изготовления сложно-рельефных элементов антенно-фидерных устройств

Изобретение относится к гальванопластике и может быть использовано для изготовления элементов антенно-фидерных устройств повышенной сложности. Гальванопластический способ включает использование форм из алюминия или его сплавов и гальваническое нанесение на формы никеля с последующим их...
Тип: Изобретение
Номер охранного документа: 0002472872
Дата охранного документа: 20.01.2013
27.08.2014
№216.012.eeda

Способ контроля за процессом обводнения газовой скважины

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений. Техническим результатом предлагаемого изобретения является уточнение даты изменения коэффициентов фильтрационного сопротивления призабойной зоны за счет учета основных...
Тип: Изобретение
Номер охранного документа: 0002526965
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f77f

Способ получения хлоридов 2,3-дигидро [1,3] теллуразоло [3,2-α] пиримидиния

Изобретение относится к способу получения хлоридов 2,3-дигидро[1,3]теллуразоло[3,2-α]пиримидиния общей формулы где R - алкил или фенил; R - алкил, фенил или водород; R+R - циклоалкил. Способ включает взаимодействие соответствующего олефина с гидрохлоридом...
Тип: Изобретение
Номер охранного документа: 0002529196
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fcf5

Способ изготовления горячекатаного проката под холодную объемную штамповку крепежных изделий

Изобретение относится к термомеханической обработке горячекатаного проката. Способ изготовления горячекатаного проката под холодную объемную штамповку крепежных изделий включает двукратный отжиг проката индукционным нагревом ТВЧ при t=760-780°C в мотках и трехкратное волочение на волочильном...
Тип: Изобретение
Номер охранного документа: 0002530603
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe68

Охладитель расплава жидкометаллического теплоносителя

Изобретение относится к области теплотехники тяжелых жидкометаллических теплоносителей и может быть использовано в исследовательских, испытательных стендах и установках атомной техники с реакторами на быстрых нейтронах. В охладителе перед патрубком подвода охлаждающей воды установлен регулятор...
Тип: Изобретение
Номер охранного документа: 0002530984
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.035c

Способ обнаружения широкополосных параметрических рассеивателей

Изобретение относится к способам обнаружения широкополосных параметрических рассеивателей, являющихся вторичными источниками электромагнитного излучения. Достигаемый технический результат - повышение чувствительности приемного устройства системы обнаружения широкополосных параметрических...
Тип: Изобретение
Номер охранного документа: 0002532258
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04f1

Способ получения цетаноповышающих присадок к дизельному топливу

Изобретение относится к способу получения цетаноповышающих присадок к дизельному топливу, включающему нитрование вторичных спиртов, где в качестве спиртов используют фракцию вторичных спиртов C-C, полученных методом жидкофазного окисления фракции н-алканов C-C водным раствором пероксида...
Тип: Изобретение
Номер охранного документа: 0002532663
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0548

Способ изготовления отливок по выплавляемым моделям

Изобретение относится к литейному производству. На блок выплавляемых моделей послойно наносят огнеупорную суспензию. В состав суспензии первого слоя вводят мелкодисперсный модификатор - абразивную пыль полировально-шлифовальной обработки изделий из сплавов черных металлов в количестве 1-2 мас.%...
Тип: Изобретение
Номер охранного документа: 0002532750
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.054b

Способ изготовления многослойных оболочковых литейных форм по выплавляемым моделям

Изобретение относится к литейному производству. Способ включает послойное нанесение на блок выплавляемых моделей огнеупорной суспензии, обсыпку зернистым материалом, вытопку моделей, сушку и прокаливание. Начиная со второго слоя оболочки, используют огнеупорную суспензию с кислородсодержащим...
Тип: Изобретение
Номер охранного документа: 0002532753
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0556

Способ изготовления многослойных оболочковых литейных форм по выплавляемым моделям

Изобретение относится к литейному производству. На блок выплавляемых моделей наносят огнеупорную суспензию. Обсыпают его зернистым материалом. В первый слой оболочки, в состав зернистого материала для обсыпки, вводят порошок алюминия в количестве 5-10 мас.%, а начиная со второго слоя оболочки,...
Тип: Изобретение
Номер охранного документа: 0002532764
Дата охранного документа: 10.11.2014
+ добавить свой РИД