×
27.09.2014
216.012.f7cc

Результат интеллектуальной деятельности: РАБОЧАЯ ЛОПАТКА ТУРБИНЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: абочая лопатка турбины газотурбинного двигателя содержит верхнюю торцевую бандажную полку, с размещенными на ней зубцами лабиринтного уплотнения. Бандажная полка имеет сквозную полость для охлаждающего воздуха и выполнена в виде параллелограмма, две стороны которого ориентированы в направлении вращения, а две другие имеют противоположно направленные вырезы с контактными поверхностями и охватывающими их компенсаторами напряжений. Бандажная полка снабжена подпорным и управляющим ребрами. Подпорное ребро выполнено между компенсаторами напряжений длиной (0,7…0,9)H и на расстоянии (0,1…0,9)L от вершины выреза. Управляющее ребро выполнено по боковой кромке бандажной полки со стороны выпуклой поверхности профильной части между компенсатором напряжения и зубцом лабиринтного уплотнения высотой (0,7…0,85)h высоты зубца уплотнения. Высота компенсаторов напряжения и подпорного ребра соответственно составляет (1…2)d и (1,5…3)d, где H - расстояние между компенсаторами напряжений; L - расстояние от вершины выреза до задней стороны бандажной полки, ориентированной в направлении вращения; h - высота зубца уплотнения; d - толщина бандажной полки. Увеличивается ресурс работы лопатки турбины двигателя при сохранении потребного расхода воздуха через систему охлаждения рабочей лопатки и несущественном увеличении массы. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области газотурбинных двигателей, а именно к рабочим лопаткам турбины.

Известны полочные лопатки турбины, контактирующие между собой по боковой поверхности верхних полок.

Известна рабочая лопатка турбины газотурбинного двигателя, содержащая профильную часть, ограниченную выпуклой и вогнутой поверхностями, замок, нижнюю полку и верхнюю торцевую бандажную полку с размещенным на ней, по меньшей мере, одним зубцом лабиринтного уплотнения и имеющая сквозную полость для охлаждающего воздуха, бандажная полка выполнена в виде параллелограмма, две стороны которого ориентированы в направлении вращения, а две другие имеют противоположно направленные вырезы с контактными поверхностями и охватывающими их компенсаторами напряжений. См. А.А. Иноземцев, М.А. Нихамкин, В.Л. Сандрацкий. Газотурбинные двигатели. Пермь, ОАО «Авиадвигатель», 2007, с.470-473.

В известной рабочей лопатке расход охлаждающего воздуха через лопатку определяется радиальным зазором между вершинами второго и третьего зубцов лабиринта. Поэтому нельзя увеличить расход воздуха с целью улучшения охлаждения пера лопатки без увеличения радиального зазора. При увеличении радиального зазора его гидравлическое сопротивление уменьшается и становится меньше, чем гидравлическое сопротивление зазора между боковыми зигзагообразными поверхностями бандажной полки. Из-за этого уменьшается расход охлаждающего воздуха через боковые зазоры и возможен подсос горячих газов основного потока, что приведет к перегреву бандажной полки и особенно контактных площадок. Тем самым снизится надежность работы контактных площадок и при увеличенном радиальном зазоре снизится герметичность трехзубого лабиринтного уплотнения до эффективности однозубого лабиринтного уплотнения.

Наличие дополнительных гребней приводит к увеличению нагрузки в корневых сечениях лопатки, что приводит к увеличению массы лопатки и диска. При выполнении маневров летательным аппаратом на лопатку будут действовать дополнительные инерционные нагрузки, что приводит к деформациям ротора. Для предотвращения касаний ротора о статор необходимо в первую очередь увеличить радиальные зазоры над рабочими лопатками либо увеличить жесткость ротора путем увеличения толщин, а следовательно, массы. При увеличении радиального зазора эффективность трех зубцов лабиринтного уплотнения на бандажной полке снижается до эффективности однозубого лабиринтного уплотнения.

Таким образом, применение одного зубца лабиринтного уплотнения с приемлемым гидравлическим сопротивлением является обоснованным при увеличении интенсивности охлаждения самой лопатки и уменьшении ее массы с целью уменьшения деформации всего ротор, что актуально для высоконагруженных газотурбинных двигателей маневренных летательных аппаратов. Однако применение одного зубца лабиринтного уплотнения негативно сказывается на охлаждении контактных поверхностей бандажной полки и, как следствие, уменьшается ресурс работы рабочей лопатки, что требует снятие двигателя с самолета и его переборку.

Задачей изобретения является повышение межремонтного срока службы двигателя.

Ожидаемым техническим результатом является повышение ресурса работы вращающейся лопатки за счет эффективности охлаждения ее бандажной полки.

Ожидаемый технический результат достигается тем, что известная рабочая лопатка турбины газотурбинного двигателя, содержащая профильную часть, ограниченную выпуклой и вогнутой поверхностями, замок, нижнюю полку и верхнюю торцевую бандажную полку с размещенным на ней, по меньшей мере, одним зубцом лабиринтного уплотнения, имеющая сквозную полость для охлаждающего воздуха, бандажная полка выполнена в виде параллелограмма, две стороны которого ориентированы в направлении вращения, а две другие имеют противоположно направленные вырезы с контактными поверхностями и охватывающими их компенсаторами напряжений, по предложению бандажная полка снабжена подпорным и управляющим ребрами, подпорное ребро выполнено между компенсаторами напряжений длиной (0,7…0,9)H и на расстоянии (0,1…0,9)L от вершины выреза, а управляющее ребро выполнено по боковой кромке бандажной полки со стороны выпуклой поверхности профильной части между компенсатором напряжения и зубцом лабиринтного уплотнения высотой (0,7…0,85)h высоты зубца уплотнения, при этом высота компенсаторов напряжения и подпорного ребра соответственно составляет (1…2)d и (1,5…3)d, где H - расстояние между компенсаторами напряжений; L - расстояние от вершины выреза до задней стороны бандажной полки, ориентированной в направлении вращения; h - высота зубца уплотнения; d - толщина бандажной полки.

С целью уменьшения массы рабочей лопатки по углам верхней торцевой бандажной полки могут быть выполнены скосы.

Для улучшения истечения охлаждающего воздуха через зазор между соседними бандажными полками направляющее ребро выполняется наклонным от радиального направления ротора турбины на угол α не более, чем 30° в сторону выпуклой поверхности лопатки.

Наличие подпорного ребра между компенсаторами напряжений позволяет сформировать потоки охлаждающего воздуха, выходящего из внутренней сквозной полости лопатки, таким образом, чтобы поток омывал компенсаторы напряжений и тем самым охлаждал их. Для этого подпорное ребро выполняется длиной 0,7…0,9 расстояния между компенсаторами напряжений, тем самым образует проемы между подпорным ребром и компенсатором. В данные проемы и направляется охлаждающий воздух. При этом если увеличить ширину проемов, т.е. сократить длину ребра до размеров меньше 0,7H, то скорость потока, омывающего компенсаторы с внешней стороны, будет недостаточно высокой, что скажется на уменьшении коэффициента теплоотдачи и эффективности охлаждения компенсаторов. При увеличении длины подпорного ребра свыше 0,9H проемы уменьшаются и возрастают их гидравлическое сопротивление и потери энергии потока, при этом большая часть охлаждающего воздуха перетекает через ребро и не участвует в охлаждении компенсаторов. Высота подпорного ребра также влияет на поток воздуха, омывающего компенсаторы напряжений: при выполнении ребра высотой ниже 1,5 толщины d бандажной полки гидравлическое сопротивление над ребром будет незначительным и воздух пойдет в этом направлении. При увеличении высоты подпорного ребра выше 3d возможны касания ребром статора турбины, приводящие к разрушению лопатки, масса ребра возрастает при незначительном росте охлаждения компенсаторов напряжений. Также увеличение высоты подпорного ребра приведет к росту гидравлического сопротивления и уменьшению расхода охлаждающего воздуха через лопатку, что приведет к ее перегреву. Расстояние от вершины выреза до подпорного ребра выбрано таким образом, чтобы направление потока воздуха максимально повторяло кривизну поверхности компенсаторов напряжений и при этом скорость этого потока возле омываемых поверхностей была неизменной, что гарантирует равномерность охлаждения и отсутствие термических напряжений в конструкции. При размещении ребра на расстоянии, меньшем чем 0,1L, омываемая поверхность компенсаторов напряжений будет недостаточно большой для охлаждения. Также расположение проема, образованного подпорным ребром и компенсатором напряжений, выполненным со стороны выпуклой поверхности профиля лопатки, не обеспечит затекание охлаждающего воздуха в него со стороны задней кромки бандажной полки. А при увеличении расстояния более 0,9L потоки вдоль поверхностей компенсаторов напряжений не формируются.

Управляющее ребро служит для организации охлаждения поверхностей, образующих зазор между соседними бандажными полками, путем создания необходимого гидравлического сопротивления в зазоре, образованном самим ребром и статором турбины, а также дополнительным сжатием охлаждающего воздуха в районе зазора, образованного соседними бандажными полками. Дополнительное сжатие уменьшает перепад давления газов между полостью над бандажной полкой и под ней - в основном тракте турбины. Управляющее ребро выполняется высотой 0,7…0,85 от высоты h зубца уплотнения. При выполнении управляющего ребра больше указанного диапазона значительно возрастает сопротивление потоку над бандажной полкой, что приводит к снижению КПД турбины. При этом возможно касание ребром статора турбины, а так как ребро расположено вдоль оси вращения, то касание будет происходить по всей длине ребра, что будет сопровождаться суммарной ударной нагрузкой, приводящей к поломке всей бандажной полки и выходе из строя лопатки с последующей поломкой всего двигателя. При выполнении управляющего ребра ниже 0,7h гидравлическое сопротивление над ребром будет ниже, чем гидравлическое сопротивление зазора между соседними бандажными полками, и противодавления основного потока в межлопаточном канале, вследствие чего охлаждающий воздух пойдет над ребром и не будет проникать в зазор.

Наклон управляющего ребра в сторону выпуклой поверхности лопатки позволяет повысить плавность затекания охлаждающего воздуха в зазор между соседними бандажными полками, что уменьшает потери энергии охлаждающего воздуха. Увеличение наклона на угол более 30° приводит к значительному увеличению протяженности боковой поверхности со стороны выпуклой поверхности лопатки, что приведет к уменьшению локальной прочности зубца уплотнения и сколу участка зубца.

Изобретение поясняется графически:

Фиг.1 Схема рабочей лопатки с бандажной полкой.

Фиг.2 Бандажная полка. Вид сбоку.

Фиг.3 Расположение рабочих лопаток в венце. Вид сверху на бандажную полку.

Фиг.4 Вариант исполнения бандажной полки. Вид сверху.

Фиг.5 Схема течений в надбандажной полости.

Рабочая лопатка турбины состоит из профильной части 1, образованной выпуклой 2 и вогнутой 3 поверхностями, замка 4, нижней полки 5, верхней торцевой бандажной полки 6. Рабочая лопатка внутри себя имеет каналы и полости, проходящие насквозь через профильную часть, вход в которые располагается на замке лопатки, а, по крайней мере, один выход 7 располагается на внешней поверхности бандажной полки. Боковые поверхности 8 бандажной полки имеют z-образную форму, образованную вырезами с размещенными в них контактными поверхностями 9. В местах контактных поверхностей бандажная полка имеет утолщения - компенсаторы напряжений 10. На бандажной полке вдоль направления вращения лопатки размещен зубец 11 лабиринтного уплотнения. Между компенсаторами напряжений располагается подпорное ребро 12, а между зубцом лабиринтного уплотнения и компенсатором напряжения со стороны выпуклой поверхности профильной части лопатки располагается управляющее ребро 13. Бандажная полка может иметь скосы 14 на передней и задней части.

При работе турбины профильную часть 1 рабочей лопатки, ее нижнюю полку 5 и внутреннюю поверхность верхней торцевой бандажной полки 6 омывает поток высокотемпературных газов 15. По внутренним полостям лопатки течет охлаждающий воздух 16, который выдувается через выход 7 в надбандажную полость, образованную наружной поверхностью бандажной полки, зубцом 11 лабиринтного уплотнения и корпусом турбины 17. С учетом вращения рабочей лопатки и трения о корпус турбины выдуваемый охлаждающий воздух в надбандажной полости течет против вращения относительно рабочей лопатки. Подпорное ребро 12 препятствует выходу охлаждающего воздуха из надбандажной полости вдоль оси вращения. Часть охлаждающего воздуха устремляется в проем, образованный подпорным ребром и компенсатором напряжений 10, расположенным со стороны вогнутой поверхности 3 рабочей лопатки, и охлаждает его. Часть этого воздуха уходит в проточную часть турбины, а часть попадает в проем, образованный подпорным ребром и компенсатором напряжений, расположенным со стороны выпуклой поверхности 2 рабочей лопатки, охлаждая его. Часть охлаждающего воздуха, выдуваемого из выхода 7 полости охлаждения лопатки, течет вдоль зубца 11 лабиринтного уплотнения. За счет гидравлического сопротивления зазора между корпусом турбины и управляющим ребром 13, а также за счет локального увеличения давления воздуха перед управляющим ребром часть охлаждающего воздуха устремляется в зазор, образованный боковыми поверхностями 8 бандажных полок соседних лопаток. Этот воздух охлаждает омываемые боковые поверхности 8 и образует тепловую завесу на внутренней поверхности бандажной полки, тем самым препятствует подводу тепла от высокотемпературных газов к контактным поверхностям 9.

Таким образом, представленная конструкция бандажной полки рабочей лопатки турбины газотурбинного двигателя за счет наличия и расположения ребер на внешней поверхности бандажной полки позволяет организовать необходимое охлаждение контактных поверхностей и компенсаторов напряжений, что увеличивает ресурс работы лопатки турбины двигателя при сохранении потребного расхода воздуха через систему охлаждения рабочей лопатки и несущественном увеличении массы как бандажной полки, так и рабочей лопатки в целом.


РАБОЧАЯ ЛОПАТКА ТУРБИНЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
РАБОЧАЯ ЛОПАТКА ТУРБИНЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
РАБОЧАЯ ЛОПАТКА ТУРБИНЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
РАБОЧАЯ ЛОПАТКА ТУРБИНЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
РАБОЧАЯ ЛОПАТКА ТУРБИНЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 131-140 of 141 items.
25.08.2017
№217.015.b727

Система управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя

Система управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя (ДТРД) относится к авиационному двигателестроению. В системе каждый клапан выполнен однопоршневым, его вход размещен со стороны надпоршневой полости, выход - со стороны боковой поверхности...
Тип: Изобретение
Номер охранного документа: 0002614460
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b77b

Радиально-торцевое контактное уплотнение ротора турбомашины

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных картеров опор роторов турбомашин. Радиально-торцевое контактное уплотнение ротора турбомашины содержит два упругих графитовых кольца с поперечным разрезом, установленных между двумя контактными...
Тип: Изобретение
Номер охранного документа: 0002614904
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b79d

Охлаждаемая турбина высокого давления

Изобретение относится к энергетике. Охлаждаемая турбина высокого давления содержит сопловой аппарат турбины с аппаратом закрутки, вход которого соединен с источником охлаждающего воздуха, а выходные каналы сообщены с безлопаточным диффузором, диск с охлаждаемыми рабочими лопатками, каналы...
Тип: Изобретение
Номер охранного документа: 0002614909
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b7ac

Регулируемое сверхзвуковое сопло газотурбинного двигателя

Изобретение может быть использовано в области авиационного двигателестроения. Регулируемое сверхзвуковое сопло газотурбинного двигателя содержит корпус, шарнирно закрепленные на нем дозвуковые и внешние створки, соединенные со сверхзвуковыми створками. Каждая внешняя створка выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002614903
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b7b8

Способ вибрационной диагностики подшипниковых опор в составе газотурбинных двигателей по изменению размаха амплитуды роторных частот

Изобретение относится к определению технического состояния авиационных газотурбинных двигателей всех типов. Способ диагностики технического состояния подшипниковых опор газотурбинного двигателя включает установку датчиков вибрации в диагностируемом сечении на корпусе двигателя, измерение...
Тип: Изобретение
Номер охранного документа: 0002614908
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.c736

Двухконтурный турбореактивный двигатель

Двухконтурный турбореактивный двигатель содержит компрессор с думисной полостью, камеру сгорания, турбину, аппарат закрутки турбины, сообщенный и с транзитными полостями лопаток соплового аппарата турбины, и с каналами подвода воздуха высокого давления, вращающийся направляющий аппарат и каналы...
Тип: Изобретение
Номер охранного документа: 0002618993
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c740

Сопловой аппарат турбины высокого давления

Сопловой аппарат турбины высокого давления содержит перо лопатки, ограниченное входной и выходной кромками, наружную и внутреннюю полки, внутреннее кольцо и наружное кольцо, установленные на внутренней полке с образованием между ними кольцевой щели нижней воздушной завесы. Сопловой аппарат...
Тип: Изобретение
Номер охранного документа: 0002618990
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.ce88

Устройство для определения параметров поперечного сечения полых корпусов турбомашины при стендовых испытаниях

Изобретение относится к устройствам для определения параметров поперечного сечения полых тел, в частности полых корпусов турбомашины при стендовых испытаниях. Устройство содержит средство для крепления и перемещения, по меньшей мере, одного измерительного элемента, имеющего возможность...
Тип: Изобретение
Номер охранного документа: 0002620764
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce99

Способ организации рабочего процесса в турбореактивном двигателе с непрерывно-детонационной камерой сгорания и устройство для его осуществления

Способ организации рабочего процесса в непрерывно-детонационной камере сгорания турбореактивного двигателя включает двухступенчатое преобразование химической энергии топлива в полезную механическую работу и в кинетическую энергию реактивной струи. При осуществлении способа инициируют одну или...
Тип: Изобретение
Номер охранного документа: 0002620736
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce9f

Устройство для замера параметров трубопровода

Изобретение относится к области метрологии и может быть использовано для измерения параметров трубопроводов, в частности определения собственных частот колебаний трубопровода при пинг-тесте. Устройство содержит закрепляемый на трубопроводе держатель, на котором установлен датчик, при этом...
Тип: Изобретение
Номер охранного документа: 0002620769
Дата охранного документа: 29.05.2017
Showing 131-140 of 153 items.
25.08.2017
№217.015.b727

Система управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя

Система управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя (ДТРД) относится к авиационному двигателестроению. В системе каждый клапан выполнен однопоршневым, его вход размещен со стороны надпоршневой полости, выход - со стороны боковой поверхности...
Тип: Изобретение
Номер охранного документа: 0002614460
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b77b

Радиально-торцевое контактное уплотнение ротора турбомашины

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных картеров опор роторов турбомашин. Радиально-торцевое контактное уплотнение ротора турбомашины содержит два упругих графитовых кольца с поперечным разрезом, установленных между двумя контактными...
Тип: Изобретение
Номер охранного документа: 0002614904
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b79d

Охлаждаемая турбина высокого давления

Изобретение относится к энергетике. Охлаждаемая турбина высокого давления содержит сопловой аппарат турбины с аппаратом закрутки, вход которого соединен с источником охлаждающего воздуха, а выходные каналы сообщены с безлопаточным диффузором, диск с охлаждаемыми рабочими лопатками, каналы...
Тип: Изобретение
Номер охранного документа: 0002614909
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b7ac

Регулируемое сверхзвуковое сопло газотурбинного двигателя

Изобретение может быть использовано в области авиационного двигателестроения. Регулируемое сверхзвуковое сопло газотурбинного двигателя содержит корпус, шарнирно закрепленные на нем дозвуковые и внешние створки, соединенные со сверхзвуковыми створками. Каждая внешняя створка выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002614903
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b7b8

Способ вибрационной диагностики подшипниковых опор в составе газотурбинных двигателей по изменению размаха амплитуды роторных частот

Изобретение относится к определению технического состояния авиационных газотурбинных двигателей всех типов. Способ диагностики технического состояния подшипниковых опор газотурбинного двигателя включает установку датчиков вибрации в диагностируемом сечении на корпусе двигателя, измерение...
Тип: Изобретение
Номер охранного документа: 0002614908
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.c736

Двухконтурный турбореактивный двигатель

Двухконтурный турбореактивный двигатель содержит компрессор с думисной полостью, камеру сгорания, турбину, аппарат закрутки турбины, сообщенный и с транзитными полостями лопаток соплового аппарата турбины, и с каналами подвода воздуха высокого давления, вращающийся направляющий аппарат и каналы...
Тип: Изобретение
Номер охранного документа: 0002618993
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c740

Сопловой аппарат турбины высокого давления

Сопловой аппарат турбины высокого давления содержит перо лопатки, ограниченное входной и выходной кромками, наружную и внутреннюю полки, внутреннее кольцо и наружное кольцо, установленные на внутренней полке с образованием между ними кольцевой щели нижней воздушной завесы. Сопловой аппарат...
Тип: Изобретение
Номер охранного документа: 0002618990
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.ce88

Устройство для определения параметров поперечного сечения полых корпусов турбомашины при стендовых испытаниях

Изобретение относится к устройствам для определения параметров поперечного сечения полых тел, в частности полых корпусов турбомашины при стендовых испытаниях. Устройство содержит средство для крепления и перемещения, по меньшей мере, одного измерительного элемента, имеющего возможность...
Тип: Изобретение
Номер охранного документа: 0002620764
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce99

Способ организации рабочего процесса в турбореактивном двигателе с непрерывно-детонационной камерой сгорания и устройство для его осуществления

Способ организации рабочего процесса в непрерывно-детонационной камере сгорания турбореактивного двигателя включает двухступенчатое преобразование химической энергии топлива в полезную механическую работу и в кинетическую энергию реактивной струи. При осуществлении способа инициируют одну или...
Тип: Изобретение
Номер охранного документа: 0002620736
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce9f

Устройство для замера параметров трубопровода

Изобретение относится к области метрологии и может быть использовано для измерения параметров трубопроводов, в частности определения собственных частот колебаний трубопровода при пинг-тесте. Устройство содержит закрепляемый на трубопроводе держатель, на котором установлен датчик, при этом...
Тип: Изобретение
Номер охранного документа: 0002620769
Дата охранного документа: 29.05.2017
+ добавить свой РИД