×
20.09.2014
216.012.f4fe

СПОСОБ ЭНЕРГЕТИЧЕСКОЙ ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ПОЧВУ РАБОЧИХ ОРГАНОВ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН И ОРУДИЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к сельскохозяйственному машиностроению, в частности к машинам и орудиям для обработки почвы и может найти применение научно-исследовательскими и производственными организациями при проектировании, исследованиях и эксплуатации рабочих органов почвообрабатывающих машин и орудий. Сущность: определяют потенциал деформируемости почв, представляющий собой отношение энергии, затраченной на деформацию и массообменные процессы к единице массы почвы в конкретных условиях ее залегания, по формуле где А, А - механическая работа, затраченная соответственно на деформацию почвы при тестировании твердомером до и после ее обработки, Дж; m, m - соответственно масса деформированной почвы при тестировании твердомером до и после ее обработки, кг; E, Е - свободная энергия Гиббса, характеризующая состояние влаги в почве и тем самым определяющая энергию связей между подвижными почвенными частицами в образце почвы до и после воздействия на нее рабочих органов почвообрабатывающих машин и орудий, Дж; m, m - соответственно масса почвы в образце, взятом на тестируемом участке до и после механической обработки, кг. В указанной формуле противоположные знаки слагаемых E и А, а также Еи А показывают, что энергия связей между подвижными почвенными частицами в образце почвы после воздействия на нее рабочих органов возрастает, а работа, затрачиваемая на механическую деформацию почвы, уменьшается. Измерение входящих в формулу физических величин, таких как усилие на участке прямой пропорциональности диаграммы P=f(h), глубина погружения цилиндрического наконечника твердомера производят твердомером на тестируемом участке до и после механического воздействия на почву рабочих органов. Измерения физических величин, таких как плотность твердой фазы почвы, пористость, удельная свободная, поверхностная энергия на границе раздела вода-воздух, объемная удельная поверхность твердой фазы почвы, объемная влажность и объемная масса почвы производят на одних и тех же образцах почвы ненарушенного сложения, отобранных на тестируемом участке соответственно до и после механической обработки в тех же точках, участок тестировался твердомером. Техническим результатом является повышение точности энергетической оценки механического воздействия обрабатывающих почву рабочих органов машин и орудий. 1 ил., 5 табл.
Основные результаты: Способ энергетической оценки воздействия на почву рабочих органов почвообрабатывающих машин и орудий, включающий измерения твердости почв, определение удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, коэффициента влагопроводности, пористости и потенциала влаги до и после механического воздействия на почву рабочих органов, отличающийся тем, что определяют потенциал деформируемости почв, представляющий собой отношение энергии, затраченной на деформацию и массообменные процессы в единице массы почвы в конкретных условиях ее залегания, по формуле , , , , ,А, А - механическая энергия, затраченная соответственно на деформацию почвы при тестировании твердомером до и после ее обработки, Дж;m, m - соответственно масса деформированной почвы при тестировании твердомером до и после ее обработки, кг;E, Е - свободная энергия Гиббса, определяющая энергию связей между подвижными почвенными частицами в образце почвы до и после воздействия на нее рабочих органов почвообрабатывающих машин и орудий, Дж;m, m - соответственно масса почвы в образце, взятом на тестируемом участке до и после механической обработки в тех же точках, где участок тестируется твердомером, кг;Р, P - соответственно усилия, определяемые на участке OA прямой пропорциональности диаграммы P=f(h) при тестировании участка твердомером до и после механической обработки, Н;h, h - соответственно глубины погружения цилиндрических наконечников твердомера, соответствующая величине P и Р, и определяемая также по диаграмме Р=f(h), м;ρ - плотность твердой фазы почвы, кг/м;П, П - соответственно пористость почвы на тестируемом участке до и после механической обработки, в долях;V, V - соответственно объемы почвы, деформированные цилиндрическими наконечниками твердомера на участке OA прямой пропорциональности диаграммы Р=f(h) и соответствующие значениям Р, Р, h, h, м;σ,σ - соответственно удельные свободные поверхностные энергии на границе раздела вода - воздух в образцах почвы, взятых на тестируемом участке до и после механической обработки, Дж/м;Ω, Ω - соответственно удельные поверхности твердой фазы почвы, определенные на тестируемом участке до и после механической обработки, м/м;W, W - соответственно объемные влажности почвы на тестируемом участке до и после механической обработки, в долях;ρ, ρ соответственно объемные массы почвы на тестируемом участке до и после ее механической обработки, кг/м; - удельная энергия, затрачиваемая на массообменные процессы в образце почвы до механического воздействия на нее рабочих органов почвообрабатывающих машин и орудий, Дж/м; - удельная энергия, затрачиваемая на массообменные процессы на границе раздела атмосфера-почва; объем образца почвы ненарушенного сложения до ее механической обработки, м.
Реферат Свернуть Развернуть

Изобретение относится к сельскохозяйственному машиностроению, в частности к машинам и орудиям для обработки почвы.

Известен способ энергетической оценки рабочих органов почвообрабатывающих машин и орудий по исходным данным измерения твердости почв, например, твердомерами Ревякина [1], осуществляемый до и после механического воздействия на почву рабочих органов.

Однако данный способ характеризуется неточностью вследствие воздействия определения твердости по диаграмме P=f(h) по его среднему значению на заданной глубине hc обработки (фиг.1). Это вызвано тем, что вторая фаза (участок АВ) характеризуется нелинейной зависимостью P=f(h) - формированием впереди основания цилиндрического наконечника твердомера конусообразного нароста из «сильно» уплотненной почвы (уплотненное ядро), а третья фаза (участок ВС) отличается тем, что сформировавшееся под цилиндрическим наконечником твердомера уплотненное ядро воздействует на нижние слои почвы, вызывая ее деформацию без существенного увеличения сопротивления Р. Кроме того, этим способом не учитываются массообменные процессы, происходящие в почве при механическом воздействии на нее, т.е. изменение взаимодействия системы «почвенные частицы - почвенный воздух - почвенная влага».

Известен способ оценки механического воздействия обрабатывающих почву рабочих органов машин и орудий по измерениям энергетического состояния почвенной влаги до и после механического воздействия на нее [2], основанный на определении таких основных гидрофизических характеристик почвы [3] как удельная поверхность твердой фазы, удельная поверхность конденсированной фазы, коэффициент влагопроводности, потенциал влаги пористых материалов.

Однако, известный способ характеризуется тем, что отражает относительное изменение энергии, происходящей в почве в результате механического воздействия, т.е. учитывает относительное влияние массообменных процессов в почве до и после механического воздействия на ее. Причем работа, расходуемая на деформацию и перемещение массы обрабатываемой почвы (разрушение, переориентация почвенных комков и т.д.) не учитывается. Кроме того, поскольку измерение основных гидрофизических характеристик осуществляется на образце почвы, взятом в механически обрабатываемом слое, то на границе раздела атмосфера - почва изменение энергии равно нулю, а в самом слое почвы имеет вполне конкретное значение. Отсюда следует, что изменение энергии при механическом воздействии будет в среднем два раза меньше, чем предложено в известном способе [2].

Цель изобретения - повышение точности энергетической оценки механического воздействия обрабатывающих почву рабочих органов машин и орудий.

Поставленная цель достигается тем, что в известном способе энергетической оценки механического воздействия обрабатывающих почву рабочих органов машин и орудий, включающем измерение твердости почвы, определение удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, коэффициента влагопроводности, пористости и потенциала влаги для пористых материалов до и после механического воздействия на почву рабочих органов, согласно изобретению определяют потенциал деформируемости почв, представляющий собой отношение энергии, затраченной на деформацию и массообменные процессы в единице массы почвы в конкретных условиях ее залегания. Потенциал деформируемости почв при механическом воздействии на нее рабочих органов рассчитывают по выражению

где A1, A2 - механическая энергия, затраченная соответственно на деформацию почвы при тестировании твердомером до и после ее обработки, Дж;

mn1, mn2 - соответственно масса деформированной почвы при тестировании твердомером до и после ее обработки, кг;

E1, Е2 - свободная энергия Гиббса, характеризующая состояние влаги в почве и тем самым определяющая энергию связей между подвижными почвенными частицами в образце почвы до и после воздействия на нее рабочих органов почвообрабатывающих машин и орудий, Дж;

mn3, mn4 - соответственно масса почвы в образце, взятом на тестируемом участке до и после механической обработки в тех же точках, где участок тестируется твердомером, кг.

В формуле (1) противоположные знаки слагаемых E1 и А1, а также Е2 и А2 показывают, что энергия связей между подвижными почвенными частицами в образце почвы после воздействия на нее рабочих органов возрастает, а работа, затрачиваемая на механическую деформацию почвы, уменьшается.

Первое слагаемое в выражении (1), представляющем собой механическую энергию, затраченную на деформацию единицы массы почвы при тестировании твердомером до ее механической обработки, определяют из соотношения

где Pa1 - усилие, определяемое на участке OA прямой пропорциональности диагаммы P=f(h) (см. фиг.1), Н;

ha1 - глубина погружения цилиндрического наконечника твердомера, соответствующая величине Pa1 и определяемая также по диаграмме P=f(h), м;

mn1v1·V1s(1-П1)V1 - масса почвы, деформированная цилиндрическим наконечником твердомера до ее механической обработки, кг;

ρv1s(1-П1) - объемная масса почвы (в естественных условиях величина переменная и зависящая от исходной влажности, набухания, усадки почвы и т.д.), выраженная через пористость П1 и плотность ρs твердой фазы почвы, кг/м3;

V1 - объем почвы, деформированной цилиндрическим наконечником твердомера на участке прямой пропорциональности диаграммы Р=f(h) и соответствующий значениям Pa1 и ha1, м3.

Плотность твердой фазы ρs представляет собой отношение массы твердой фазы к единице объема той же фазы почвы. Она зависит от состава твердой фазы, включающей в себя минеральную, органическую и органно-минеральную части, а также вторичные глинистые минералы, и остается инвариантной до, во время и после механического воздействия рабочих органов почвообрабатывающих машин и орудий. Поэтому при механическом воздействии на почву рабочих органов изменяется пористость П1 почвы и ее объемная масса ρv1.

В основу способа определения пористости П1 почвы положено изотермическое расширение воздуха, содержащегося в порах в вакуум в образцах почвы ненарушенного сложения, взятых на тестируемом участке до ее механической обработки. Пористость П1 почвы до ее механической обработки определяют по выражению

где Vcoc2 - объем герметического сосуда без образца почвы, м3;

P2 - разрежение воздуха в герметическом сосуде без образца почвы, создаваемое вакуумным насосом, Па;

Р′′ - давление в системе (герметический сосуд с образцом почвы - герметический сосуд без образца почвы) после соединении сосудов при помощи соединительных шлангов и краны между собой, Па;

Р′ - давление в системе (герметический сосуд с непористым материалом - герметический сосуд без образца почвы) после соединении сосудов при помощи тех же соединительных шлангов и краны между собой (тем самым определяется паразитный объем, включающий в себя объем соединительных шлангов и внутренний объем вакуумметра, Па;

γ - коэффициент Пуассона для воздуха, равный 1,4;

Vводы1 - объем влаги, содержащейся в почве (определяется методом сушки образца почвы), м3;

Vоб1 - объем образца почвы ненарушенного сложения, помещаемого в герметический сосуд, м3.

Объемную массу ρv1 почвы определяют по выражению

где mn3 - масса образца почвы ненарушенного сложения, взятого на тестируемом участке до механической обработки, и определяемая путем взвешивания на весах, кг.

Затем по известным значениям pvl и П1 определяют плотность ps твердой фазы почвы

Следует отметить, что зона распространения деформаций вглубь почвы при воздействии на нее цилиндрическим наконечником твердомера ограничена плоскостью, образующей с поверхностью почвы угол 60° (так называемый способ 60°, см. например Синеоков Г.Н., Панов И.М. Теория и расчет почвообрабатывающих машин и орудий М.: Машиностроение, 1977, с.43). Поэтому объем V1 почвы, деформированной цилиндрическим наконечником твердомеpa на участке прямой пропорциональности диаграммы P=f(h) (см. фиг.1), определяется по выражению

где d1 - диаметр цилиндрического наконечника твердомера, м;

ha1 - глубина погружения цилиндрического наконечника твердомера, определяемая по экспериментальной диаграмме Р=f(h) на тестируемом участке, м.

Подставив полученные из эксперимента значения Ра1, hal, ρs, П1 и V1 в выражение (2), определяют механическую энергию, затраченную на деформацию единицы массы почвы при тестировании твердомером до ее механической обработки. Примеры реализации способа определения φ1 приведены в табл.1.

Второе слагаемое в выражении (1), представляющее собой энергию, затрачиваемую на массообменные процессы в единице массы почвы в образце до воздействия рабочих органов почвообрабатывающих машин и орудий, определяют из соотношения

где - удельная энергия, затрачиваемая на массообменные процессы в образце почвы до механического воздействия на нее рабочих органов почвообрабатывающих машин и орудий, определяемая по формуле В.В.Сироткина и В.М.Сироткина [2,3], Дж/м3;

- удельная энергия, затрачиваемая на массообменные процессы на границе раздела атмосфера-почва; с точностью для практических расчетов можно принять, что ; если образцы почвы на тестируемом участке отбираются на разных глубинах, например при ярусной обработке, то величина имеет вполне конкретное значение и отличается от нуля;

σlg1 - удельная свободная поверхностная энергия на границе раздела вода - воздух, Дж/м2;

Ωo1 - объемная удельная поверхность твердой фазы почвы, м2/м;

W1 - объемная влажность почвы, в долях;

П1 - пористость почвы, в долях;

mn3 - масса почвы в образце, взятом на тестируемом участке до механической обработки, кг;

Vоб1 _ объем образца почвы ненарушенного сложения до ее механической обработки, м3;

ρv1 - объемная масса почвы до ее механической обработки, кг/м3.

Экспериментальное определение величин σlg1, Ωo1, W1, П1 и ρV1, входящих в соотношение (7), осуществляется на образце почвы ненарушенного сложения до ее механической обработки по методике, изложенной в [2, 3].

Подставив полученные из эксперимента значения σlg1, Ωo1, W1, П1, ρV1 в выражение (7), определяют энергию, затрачиваемую на массообменные процессы в единице массы почвы в образце до воздействия рабочих органов почвообрабатывающих машин и орудий. Примеры реализации способа определения φ2 приведены в табл.2.

Третье слагаемое в выражении (1), представляющее собой механическую энергию, затраченную на деформацию единицы массы почвы при тестировании твердомером после ее механической обработки, определяют из соотношения

где Ра2 - усилие, определяемое на участке OA прямой пропорциональности диаграммы P=f(h) (см. фиг.1), полученной при тестировании твердомером после механической обработки почвы, Н;

ha2 - глубина погружения цилиндрического наконечника твердомера, соответствующая величине Ра2 и определяемая также по диаграмме P=f(h), м;

mn2v2·V2s(1-П2)V2 - масса почвы, деформированная цилиндрическим наконечником твердомера после ее механической обработки, кг;

ρv2s(1-П2) - объемная масса почвы, выраженная через пористость П2 и плотность ps твердой фазы почвы, кг/м3;

V2 - объем почвы, деформированная цилиндрическим наконечником твердомера на участке прямой пропорциональности диаграммы P=f(h) и соответствующая значениям Рa2 и ha2, м3.

Пористость П2 почвы после ее механической обработки определяют по выражению, аналогичному формуле (3)

где Vcoc2 - объем герметического сосуда без образца почвы, м3;

Р2 - разрежение воздуха в герметическом сосуде без образца почвы, создаваемое вакуумным насосом, Па;

Р′′ - давление в системе (герметический сосуд с образцом почвы после ее механической обработки - герметический сосуд без образца почвы) после соединении сосудов при помощи тех же соединительных шлангов и крана между собой (примененных при исследовании почвенного образца до ее механической обработки), Па;

Р′ - давление в системе (герметический сосуд с непористым материалом - герметический сосуд без образца почвы) после соединении сосудов при помощи тех же соединительных шлангов и крана между собой, Па;

γ - коэффициент Пуассона для воздуха, равный 1,4;

Vводы2 - объем влаги, содержащейся в почве после ее механической обработки (определяется методом сушки образца почвы), м3;

Vоб2 - объем образца почвы (после ее механической обработки), помещаемого в герметический сосуд, м3.

Объемную массу ρv2 почвы после ее механической обработки определяют по выражению

где mn4 - масса образца почвы ненарушенного сложения, взятого на тестируемом участке после ее механической обработки и определяемая взвешиванием на весах, кг.

Далее по известным значениям ρv2 и П2 определяют плотность ρs твердой фазы почвы

Объем V2 почвы, деформированной цилиндрическим наконечником твердомера на участке прямой пропорциональности диаграммы З=f(h) (см. фиг.1), полученной при тестировании твердомером после механической обработки почвы, определяется по выражению

где d2 - диаметр цилиндрического наконечника твердомера, м;

ha2 - глубина погружения цилиндрического наконечника твердомера, определяемая по экспериментальной диаграмме P=f(h), полученной на тестируемом участке после его механической обработки, м.

Подставив полученные из эксперимента значения Pa2, ha2, ρs, П2 и V2 в выражение (8), определяют механическую энергию, затраченную на деформацию единицы массы почвы при тестировании твердомером после ее механической обработки. Примеры реализации способа определения φ3 приведены в табл.3.

Четвертое слагаемое в выражении (1), представляющее собой энергию, затрачиваемую на массообменные процессы в единице массы почвы в образце после механического воздействия рабочих органов почвообрабатывающих машин и орудий, определяют из соотношения

где - удельная энергия, затрачиваемая на массообменные процессы в образце почвы после механического воздействия на нее рабочих органов почвообрабатывающих машин и орудий, Дж/м,

- удельная энергия, затрачиваемая на массообменные процессы на границе раздела атмосфера-почва, принимаемая ;

σlg2 - удельная свободная поверхностная энергия на границе раздела вода - воздух, Дж/м2;

Ωo2 - объемная удельная поверхность твердой фазы почвы, м23;

W2 - объемная влажность почвы, в долях;

П2 - пористость почвы, в долях;

mn4 - масса почвы в образце, взятом на тестируемом участке после механической обработки, кг;

Vоб2 - объем образца почвы «ненарушенного сложения» после ее механической обработки, м3;

ρV2 - объемная масса почвы после ее механической обработки, кг/м3.

Экспериментальное определение величин alg2, Ω02, W2, П2 и ρV2, входящих в соотношение (13), осуществляется на образце почвы «ненарушенного сложения» после ее механической обработки.

Подставив полученные из эксперимента значения alg2, Ω02, W2, П2, ρV2, в выражение (13), определяют энергию, затрачиваемую на массообменные процессы в единице массы почвы в образце после механического воздействия рабочих органов почвообрабатывающих машин и орудий. Примеры реализации способа определения φ4 приведены в табл.4.

Технико-экономическое преимущество предложенного способа заключается в повышении точности энергетической оценки механического воздействия обрабатывающих почву рабочих органов, позволяющее оценить энергоемкость механической обработки почвы по значениям (φ21) и эффективность применения тех или иных рабочих органов почвообрабатывающих машин и орудий как при их рекогносцировочных испытаниях, так при эксплуатации в производственных условиях по значениям

φ=-(φ21)+(φ43).

Способ может быть использован научно-исследовательскими и производственными организациями при проектировании, исследовании и эксплуатации рабочих органов почвообрабатывающих машин и орудий.

Примеры реализации способа приведены в сводной табл.5.

Источники, принятые во внимание в заявке

1. Кленин Н.И., Сакун В.А. Сельскохозяйственные и мелиоративные машины. - М.: Колос, 1994, С.13-17.

2. Сироткин В.В., Сироткин В.М. Прикладная гидрофизика почв. - Чебоксары, 2001, 252 с.

3. Патент РФ №2230308, G01N 15/08 Аэродинамический способ определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, коэффициента влагопроводности, потенциала влаги для однородных пористых материалов и устройство для его реализации. В.В.Сироткин, В.М.Сироткин Опубл. 10.06.2004, Бюл. №16.

Способ энергетической оценки воздействия на почву рабочих органов почвообрабатывающих машин и орудий, включающий измерения твердости почв, определение удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, коэффициента влагопроводности, пористости и потенциала влаги до и после механического воздействия на почву рабочих органов, отличающийся тем, что определяют потенциал деформируемости почв, представляющий собой отношение энергии, затраченной на деформацию и массообменные процессы в единице массы почвы в конкретных условиях ее залегания, по формуле , , , , ,А, А - механическая энергия, затраченная соответственно на деформацию почвы при тестировании твердомером до и после ее обработки, Дж;m, m - соответственно масса деформированной почвы при тестировании твердомером до и после ее обработки, кг;E, Е - свободная энергия Гиббса, определяющая энергию связей между подвижными почвенными частицами в образце почвы до и после воздействия на нее рабочих органов почвообрабатывающих машин и орудий, Дж;m, m - соответственно масса почвы в образце, взятом на тестируемом участке до и после механической обработки в тех же точках, где участок тестируется твердомером, кг;Р, P - соответственно усилия, определяемые на участке OA прямой пропорциональности диаграммы P=f(h) при тестировании участка твердомером до и после механической обработки, Н;h, h - соответственно глубины погружения цилиндрических наконечников твердомера, соответствующая величине P и Р, и определяемая также по диаграмме Р=f(h), м;ρ - плотность твердой фазы почвы, кг/м;П, П - соответственно пористость почвы на тестируемом участке до и после механической обработки, в долях;V, V - соответственно объемы почвы, деформированные цилиндрическими наконечниками твердомера на участке OA прямой пропорциональности диаграммы Р=f(h) и соответствующие значениям Р, Р, h, h, м;σ,σ - соответственно удельные свободные поверхностные энергии на границе раздела вода - воздух в образцах почвы, взятых на тестируемом участке до и после механической обработки, Дж/м;Ω, Ω - соответственно удельные поверхности твердой фазы почвы, определенные на тестируемом участке до и после механической обработки, м/м;W, W - соответственно объемные влажности почвы на тестируемом участке до и после механической обработки, в долях;ρ, ρ соответственно объемные массы почвы на тестируемом участке до и после ее механической обработки, кг/м; - удельная энергия, затрачиваемая на массообменные процессы в образце почвы до механического воздействия на нее рабочих органов почвообрабатывающих машин и орудий, Дж/м; - удельная энергия, затрачиваемая на массообменные процессы на границе раздела атмосфера-почва; объем образца почвы ненарушенного сложения до ее механической обработки, м.
СПОСОБ ЭНЕРГЕТИЧЕСКОЙ ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ПОЧВУ РАБОЧИХ ОРГАНОВ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН И ОРУДИЙ
СПОСОБ ЭНЕРГЕТИЧЕСКОЙ ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ПОЧВУ РАБОЧИХ ОРГАНОВ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН И ОРУДИЙ
СПОСОБ ЭНЕРГЕТИЧЕСКОЙ ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ПОЧВУ РАБОЧИХ ОРГАНОВ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН И ОРУДИЙ
СПОСОБ ЭНЕРГЕТИЧЕСКОЙ ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ПОЧВУ РАБОЧИХ ОРГАНОВ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН И ОРУДИЙ
СПОСОБ ЭНЕРГЕТИЧЕСКОЙ ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ПОЧВУ РАБОЧИХ ОРГАНОВ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН И ОРУДИЙ
СПОСОБ ЭНЕРГЕТИЧЕСКОЙ ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ПОЧВУ РАБОЧИХ ОРГАНОВ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН И ОРУДИЙ
СПОСОБ ЭНЕРГЕТИЧЕСКОЙ ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ПОЧВУ РАБОЧИХ ОРГАНОВ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН И ОРУДИЙ
СПОСОБ ЭНЕРГЕТИЧЕСКОЙ ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ПОЧВУ РАБОЧИХ ОРГАНОВ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН И ОРУДИЙ
СПОСОБ ЭНЕРГЕТИЧЕСКОЙ ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ПОЧВУ РАБОЧИХ ОРГАНОВ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН И ОРУДИЙ
Источник поступления информации: Роспатент

Showing 1-10 of 13 items.
20.02.2013
№216.012.250e

Почвообрабатывающий рабочий орган

Изобретение относится к сельскохозяйственному машиностроению. Техническим результатом изобретения является повышение качества обработки почвы. Почвообрабатывающий рабочий орган содержит стойку с плоскорежущей лапой. На плоскорежущую лапу шарнирно установлено передней частью основание со...
Тип: Изобретение
Номер охранного документа: 0002475006
Дата охранного документа: 20.02.2013
10.10.2013
№216.012.7102

Полевая доска-рыхлитель

Изобретение относится к области сельскохозяйственного машиностроения, в частности к почвообрабатывающим органам для рыхления подпахотного слоя при проведении основной обработки почвы. Устройство содержит полевую доску корпуса плуга, коромысло, диск. Полевая доска выполнена в форме рыхлителя...
Тип: Изобретение
Номер охранного документа: 0002494587
Дата охранного документа: 10.10.2013
10.04.2014
№216.012.b637

Почвообрабатывающий рабочий орган

Рабочий орган содержит стойку с плоскорежущей лапой, поводки, игольчатые диски. Поводки шарнирно установлены на плоскорежущей лапе по ширине захвата с возможностью колебания их в продольно-вертикальной плоскости. На поводках в поперечно-вертикальной плоскости жестко закреплены перекрещивающиеся...
Тип: Изобретение
Номер охранного документа: 0002512371
Дата охранного документа: 10.04.2014
10.01.2015
№216.013.18b2

Аэродинамический способ определения удельной поверхности конденсированной фазы, удельной поверхности твердой фазы и потенциала влаги пористых материалов

Изобретение относится к контрольно-измерительной технике и может найти применение в почвоведении, мелиорации, гидрологии, грунтоведении, строительном деле и других областях науки и производства, связанных с исследованием свойств пористых материалов. Способ заключается в том, что измерение...
Тип: Изобретение
Номер охранного документа: 0002537750
Дата охранного документа: 10.01.2015
10.03.2015
№216.013.3039

Устройство для профилирования поверхности почвы и определения направления стока атмосферных осадков в полевых условиях

Изобретение относится к области сельскохозяйственного машиностроения, в частности к устройствам для изучения водной эрозии, и может быть использовано в почвоведении, мелиорации и гидрологии. Устройство для измерения профиля поверхности почвы и определения направления стока атмосферных осадков в...
Тип: Изобретение
Номер охранного документа: 0002543813
Дата охранного документа: 10.03.2015
20.04.2015
№216.013.4269

Машина для маркировки на дне цельнотянутых или сборных с донышком металлических корпусов консервных банок

Машина содержит станину 1, горизонтальную 20 и наклонную 21 направляющие с шириной, допускающей перемещение маркируемых корпусов банок 18, маркировочное 2 устройство с клиноременным 12 приводом, расположенное под углом α к горизонтали и перпендикулярно дну фиксирующего 3 корпус банки...
Тип: Изобретение
Номер охранного документа: 0002548499
Дата охранного документа: 20.04.2015
20.08.2015
№216.013.71fe

Способ определения среднего уклона элементарной площадки в полевых условиях и профилограф для его осуществления

Изобретение относится к сельскому хозяйству, в частности к устройствам для изучения водной эрозии, и может быть использовано в почвоведении, мелиорации и гидрологии. Техническим результатом изобретения является упрощение способа и повышение точности определения среднего уклона элементарной...
Тип: Изобретение
Номер охранного документа: 0002560752
Дата охранного документа: 20.08.2015
20.11.2015
№216.013.9158

Снайперский патрон

Изобретение относится к боеприпасам, в частности к снайперским патронам. Снайперский патрон содержит стальную моноблочную пулю, латунную гильзу с капсюлем-воспламенителем и метательный пороховой заряд. Пуля патрона выполнена с соотношением длины к ее диаметру по ведущим пояскам, составляющим...
Тип: Изобретение
Номер охранного документа: 0002568824
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9abe

Способ определения скорости коррозии стали в свинцовом теплоносителе

Изобретение относится к измерению физико-химических характеристик в системе теплоноситель - конструкционный материал. Способ включает определение скорости коррозии оксидированной стали для термодинамической активности кислорода в свинце в интервале 10÷1,0, температуры свинца в интервале 450°С...
Тип: Изобретение
Номер охранного документа: 0002571239
Дата охранного документа: 20.12.2015
10.05.2016
№216.015.3bee

Ручное орудие для обработки почвы

Ручное орудие для обработки почвы относится к сельскому хозяйству и может быть использовано в приусадебном хозяйстве, на дачном участке и везде, где необходимо проводить глубинную обработку почвы. Ручное орудие содержит зубья, расположенные на поперечине, патрон и черенок. Для глубинной...
Тип: Изобретение
Номер охранного документа: 0002583072
Дата охранного документа: 10.05.2016
Showing 1-10 of 13 items.
10.01.2015
№216.013.18b2

Аэродинамический способ определения удельной поверхности конденсированной фазы, удельной поверхности твердой фазы и потенциала влаги пористых материалов

Изобретение относится к контрольно-измерительной технике и может найти применение в почвоведении, мелиорации, гидрологии, грунтоведении, строительном деле и других областях науки и производства, связанных с исследованием свойств пористых материалов. Способ заключается в том, что измерение...
Тип: Изобретение
Номер охранного документа: 0002537750
Дата охранного документа: 10.01.2015
10.03.2015
№216.013.3039

Устройство для профилирования поверхности почвы и определения направления стока атмосферных осадков в полевых условиях

Изобретение относится к области сельскохозяйственного машиностроения, в частности к устройствам для изучения водной эрозии, и может быть использовано в почвоведении, мелиорации и гидрологии. Устройство для измерения профиля поверхности почвы и определения направления стока атмосферных осадков в...
Тип: Изобретение
Номер охранного документа: 0002543813
Дата охранного документа: 10.03.2015
20.08.2015
№216.013.71fe

Способ определения среднего уклона элементарной площадки в полевых условиях и профилограф для его осуществления

Изобретение относится к сельскому хозяйству, в частности к устройствам для изучения водной эрозии, и может быть использовано в почвоведении, мелиорации и гидрологии. Техническим результатом изобретения является упрощение способа и повышение точности определения среднего уклона элементарной...
Тип: Изобретение
Номер охранного документа: 0002560752
Дата охранного документа: 20.08.2015
20.11.2015
№216.013.9158

Снайперский патрон

Изобретение относится к боеприпасам, в частности к снайперским патронам. Снайперский патрон содержит стальную моноблочную пулю, латунную гильзу с капсюлем-воспламенителем и метательный пороховой заряд. Пуля патрона выполнена с соотношением длины к ее диаметру по ведущим пояскам, составляющим...
Тип: Изобретение
Номер охранного документа: 0002568824
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9abe

Способ определения скорости коррозии стали в свинцовом теплоносителе

Изобретение относится к измерению физико-химических характеристик в системе теплоноситель - конструкционный материал. Способ включает определение скорости коррозии оксидированной стали для термодинамической активности кислорода в свинце в интервале 10÷1,0, температуры свинца в интервале 450°С...
Тип: Изобретение
Номер охранного документа: 0002571239
Дата охранного документа: 20.12.2015
20.01.2018
№218.016.1c6a

Корпус плуга

Изобретение относится к области сельскохозяйственного машиностроения, в частности к почвообрабатывающим орудиям. Корпус плуга содержит башмак, лемех, отвал и полевую доску. Полевая доска выполнена в виде двух плоских игольчатых дисков с прямыми иглами, установленных шарнирно на жестко...
Тип: Изобретение
Номер охранного документа: 0002640424
Дата охранного документа: 09.01.2018
16.11.2018
№218.016.9dee

Корпус плуга

Изобретение относится к области сельскохозяйственного машиностроения, в частности к орудиям для обработки почвы. Корпус плуга содержит отвал, поверхность которого выполнена из четырех вертикально расположенных ступеней, первую из которых составляет ступень с полевым обрезом. Длины проекций...
Тип: Изобретение
Номер охранного документа: 0002672494
Дата охранного документа: 15.11.2018
20.02.2019
№219.016.c16b

Способ получения кремния

Изобретение может быть использовано в химической промышленности. Тетрафторид кремния и фторид натрия выделяют термической диссоциацией кремнефторида натрия при температуре выше 923 К, затем восстанавливают кремний из тетрафторида кремния при контакте с натрием. Выделение и восстановление...
Тип: Изобретение
Номер охранного документа: 0002415809
Дата охранного документа: 10.04.2011
11.03.2019
№219.016.dc87

Моноблочная пуля

Изобретение относится к боеприпасам стрелкового оружия и может быть использовано при разработке патронов для снайперских винтовок. Моноблочная пуля содержит головную, ведущую и хвостовую части. Она выполнена из стали с более низкими механическими характеристиками по пределу прочности, ударной...
Тип: Изобретение
Номер охранного документа: 0002403532
Дата охранного документа: 10.11.2010
19.04.2019
№219.017.1ce5

Устройство для распыла жидких мелиорантов

Изобретение относится к сельскохозяйственному машиностроению. Предложено устройство для распыла жидких мелиорантов, содержащее воздушный канал, рабочую трубу, шнек-распределитель, жидкостную и воздушную крыльчатки, воздушный канал, неподвижно закрепленный на рабочей трубе, внутри которой с...
Тип: Изобретение
Номер охранного документа: 0002685181
Дата охранного документа: 16.04.2019
+ добавить свой РИД