×
10.09.2014
216.012.f3f3

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА

Вид РИД

Изобретение

№ охранного документа
0002528274
Дата охранного документа
10.09.2014
Аннотация: Изобретение относится к области электроизмерительной техники и может использоваться при измерениях пассивных и активных комплексных электрических величин. Способ состоит в том, что амплитуду А и начальный фазовый сдвиг φ вектора гармонического сигнала S(t) с известным периодом Т, действующего совместно с сигналами субгармонических помех P(t)=Asin(2πt/T+φ), где , значения периодов T которых тоже известны и кратны Т, определяют по соотношениям: A=[(p')+(p”)] и φ=arctg(p'/p”), где p', p” - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения их измеряют путем частотозависимой дискретизации суммарного сигнала суммирования его дискретных отсчетов, производимых с помощью мгновенных импульсов, действующих в моменты времени, образующие соответственно для р' и для р” множества и , где ΔТ=(2k±1)T/4, a k=0,1,2,…, которые формируют согласно условию: или , где t - произвольный начальный момент отсчета времени, Н - наименьшее общее кратное множества чисел {r}, , n=0,1,2,…, а значения проекций р' и р” получают по соотношениям: , , где K=1/H. Технический результат заключается в повышении точности измерения в реальном времени вектора гармонического сигнала с известным периодом, действующего совместно с сигналами субгармонических помех, значения периодов которых тоже известны.
Основные результаты: Способ измерения вектора гармонического сигнала S(t)=Asin(2πt/T+φ) с известным периодом T, действующего совместно с сигналами гармонических помех P(t)=Asin(2πt/T+φ), где , значения периодов T которых тоже известны, согласно которому амплитуду А и начальный фазовый сдвиг φ сигнала S(t) определяют, например, по соотношениям А=[(р')+(р”)] и φ=arctg(p'/р”), где р', р” - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения этих проекций измеряют путем частотозависимой дискретизации суммарного сигнала и суммирования его дискретных отсчетов, производимых с помощью мгновенных импульсов, действующих в моменты времени, образующие соответственно для р' и для р” множества и , где ΔТ=(2k±1)T/4, а k=0,1,2,…, отличающийся тем, что при T, кратных Т, когда T/Т=r, где r=2,3,…, множества и моментов времени и дискретных отсчетов сигнала σ(t) формируют согласно условию: или t, или , где t - произвольный начальный момент отсчета времени, Н - наименьшее общее кратное множества чисел {r}, , n=0,1,2,…, а значения проекций p' и p” получают по соотношениям: , , где К=1/Н.

Изобретение относится к области электроизмерительной техники и может быть использовано в средствах измерений пассивных и активных комплексных электрических величин, например, в мостах и компенсаторах переменного тока или в измерителях (анализаторах) параметров электрических цепей, а также в векторных вольтметрах и спектроанализаторах.

Известен способ измерения параметров двухполюсников со сложными схемами замещения с помощью разветвленной мостовой цепи при воздействии на нее нескольких тестовых гармонических сигналов с разными частотами, разделяемых с помощью аналоговых фильтров (Шеремет Л.П. Принципы построения мостовых измерительных цепей для одновременного уравновешивания на нескольких частотах // Проблемы технической электродинамики, вып.54, Киев: Наукова думка, 1975. - С.14-19).

Данный способ позволяет производить измерения сложных объектов исследования одновременно на нескольких частотах, обеспечивая тем самым возможность получения информации о быстроизменяющихся параметрах таких объектов, а через них и о протекающих в этих объектах физических или химических процессах. Однако применяемые для разделения сигналов с разными частотами аналоговые фильтры имеют низкую избирательность, не позволяющую получить высокие помехоустойчивость и точность измерения, и обладают инерционностью, а также сложностью реализации, возрастающими по мере повышения их избирательности, что является недостатком способа.

Известен также, принятый автором за прототип, способ измерения вектора гармонического сигнала S(t)=Asin(2πt/T+φ0), действующего совместно с другими гармоническими сигналами Sm(t)Amsin(2πt/Tm0m), где , в том числе помехами, имеющими, как и сигнал S(t), известные, но не кратные друг другу значения периодов (Tm и Т), согласно которому проекции р' и р” сигнала S(t) на два ортогональных совпадающих с измеряемым сигналом по частоте вектора опорных сигналов, связанные с А и φ0, например, соотношениями А=[(р')2+(р”)2]l/2и φ0=arctg(p'/р”), измеряют путем выборки и суммирования дискретных отсчетов, или дискрет, суммарного сигнала с помощью мгновенных импульсов, действующих в моменты времени, образующие множества и , а значения проекций р' и р” определяют по соотношениям и , где - нормирующий множитель, причем формируют с помощью пошаговой процедуры, начинающейся с произвольного начального момента t0, выступающего в качестве исходного множества, и получения на первом шаге дополнительного множества путем сдвига исходного на нечетное число полупериодов первого подавляемого сигнала или гармонической помехи, и далее получения на каждом последующем шаге дополнительного множества посредством сдвига полученного на предыдущем шаге множества на нечетное число nm полупериодов m-го подавляемого сигнала до тех пор, пока число шагов не станет равным М-1 (RU №2377577 С1, 27.12.2009).

Недостатком данного способа является пониженная точность измерения в тех случаях, когда вместе с измеряемым гармоническим сигналом S(t) действуют субгармонические помехи - гармонические сигналы с периодом, кратным периоду S(t), подавление которых этим способом в общем случае не обеспечивается, в чем легко убедиться уже на примере совместного действия сигнала S(t) и одной нечетной субгармонической помехи, т.е. гармонического сигнала, частота которого в нечетное число раз меньше частоты сигнала S(t).

Техническим результатом изобретения является повышение точности измерения в реальном времени вектора гармонического сигнала S(t)=Asin(2πt/Т+φ0) с известным периодом Т, действующего совместно с сигналами субгармонических помех Pm(t)=Amsin(2πt/Tm0m), где , периоды Tm которых тоже известны и кратны Т.

Технический результат достигается тем, что в предлагаемом способе измерения вектора гармонического сигнала S(t)=Asin(2πt/T+φ0) с известным периодом Т, действующего совместно с сигналами гармонических помех Pm(t)=Amsin(2πt/Tm0m), где , значения периодов Tm которых тоже известны, согласно которому амплитуду А и начальный фазовый сдвиг φ0 сигнала S(t) определяют, например, по соотношениям A=[(p')2+(p”)2]1/2 и φ0=arctg(p'/p”), где p', p” - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения этих проекций измеряют путем частотозависимой дискретизации суммарного сигнала и суммирования его дискретных отсчетов, производимых с помощью мгновенных импульсов, действующих в моменты времени, образующие соответственно для р' и для р” множества и , где ΔТ=(2k±1)T/4, а k=0,1,2,…, при Tm, кратных T, когда Tm/T=rm, где rm=2,3,…, множества моментов времени и дискретных отсчетов сигнала σ(t) формируют согласно условию: или , или , где t0 - произвольный начальный момент отсчета времени, Н - наименьшее общее кратное множества чисел {rm}, , ni=0,1,2,…, а значения проекций р' и р” получают по соотношениям: , , где K=1/Н.

Сущность изобретения состоит в том, что примененная в нем процедура формирования множества моментов времени выборки дискретных отсчетов суммарного сигнала σ(t), позволяет точно и быстро (в реальном времени) измерять проекции p' и р” гармонического сигнала S(t) инвариантно по отношению к действующим вместе с ним М гармоническим помехам Pm(t) при условии, что периоды этих помех кратны периоду измеряемого сигнала S(t), т.е. исключить или минимизировать в зависимости от точности информации о периодах сигналов Pm(t) и S(t) влияние таких помех на точность измерения р' и р”, а значит, и на точность измерения А и φ0 сигнала S(t).

Поясним математически механизм подавления сигналов Pm(t), сопутствующих измеряемому, и выведем фигурирующие в формуле изобретения соотношения.

Рассмотрим сначала простейший случай, когда вместе с сигналом S(t) действует лишь одна субгармоническая помеха Pm(t). Суть механизма подавления помех заключается в том, что при кратном отношении периода Pm(t) к периоду S(t) в зависимости от точности информации о значениях периодов S(t) и помехи Pm(t) подавление последней осуществляют путем формирования множества моментов выборки дискретных отсчетов суммарного сигнала σ(t) согласно известному тригонометрическому соотношению:

где n=2,3,… - число дискретных отсчетов синусоиды, а AS и φ0,S - произвольные значения амплитуды и угла начального фазового сдвига синусоиды (или косинусоиды).

Соотношение (1) означает, что операция суммирования n дискретных отсчетов синусоиды ASsin[2π(i-1)/n+φ0,S], взятых через фазовые интервалы Δφd, составляющие n-ые доли ее периода, равного (в радианах) 2π, т.е. при Δφdii-1=2π/n, где φi=2π(i-1)/n, позволяет «обнулить» синусоиду инвариантно по отношению к AS и φ0S. При этом нужно отметить, что с учетом свойства периодичности синусоиды значения φi приобретают выражение общего вида: φi=2π[(i-1)/n±k], где , a k=0,1,2,….

Применительно к форме записи помехи Pm(t), соотношение (1) имеет вид:

где - значения моментов времени дискретизации сигнала σ(t), а n=rm.

В том, что соотношение (2) выполняется и помеха Pm(t) подавляется («обнуляется») при любых значениях Am и φ0m, легко убедиться, приняв во внимание, что здесь Tm=nT=rmT, т.е. n=rm. После этого остается лишь убедиться в том, что сам измеряемый сигнал S(t) при этом не подавляется, для чего, с учетом эффекта подавления Pm(t), достаточно просуммировать при указанных значениях дискретные отсчеты (только) S(t), так как подвергающийся дискретизации σ(t) является суммой S(t) и «обнуляемого» Pm(t):

.

Из этого выражения следует, что в данном случае р'=KrmAsinφ0, т.е. значение проекции р' сигнала S(t) на опорный сигнал, в отличие от помехи Pm(t), не равно тождественно нулю и при этом усилено в rm раз, что имеет место благодаря тому, что интервалы между моментами выборки дискретных отсчетов S(t) кратны его периоду: , где l - целое число.

Перейдем теперь к рассмотрению общего случая. Для того чтобы имело место подавление М помех при отсутствии подавления S(t), необходимо, чтобы соотношение (2) выполнялось одновременно для всех помех Pm(t), т.е. при . Осуществить это возможно, если число N дискретных отсчетов σ(t), а значит, и S(t), сделать равным произведению М чисел при условии: , где l - целое число.

С геометрической точки зрения это означает, что если имеется отрезок, длина L которого кратна Т:L=TN, то на нем можно уложить целые числа , любого из (одинаковых) отрезков длиной Lj=rjT. Однако в общем случае это условие является слишком сильным, а необходимым и достаточным, согласно теории чисел, будет условие: N=Н, где Н - наименьшее общее кратное (множества) чисел rm.

Что касается значения нормирующего множителя K=1/Н, то оно следует из соотношения , а также условий: N=H и .

Итак, все соотношения, входящие в формулу изобретения, математически обоснованы.

Способ измерения вектора гармонического сигнала S(t)=Asin(2πt/T+φ) с известным периодом T, действующего совместно с сигналами гармонических помех P(t)=Asin(2πt/T+φ), где , значения периодов T которых тоже известны, согласно которому амплитуду А и начальный фазовый сдвиг φ сигнала S(t) определяют, например, по соотношениям А=[(р')+(р”)] и φ=arctg(p'/р”), где р', р” - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения этих проекций измеряют путем частотозависимой дискретизации суммарного сигнала и суммирования его дискретных отсчетов, производимых с помощью мгновенных импульсов, действующих в моменты времени, образующие соответственно для р' и для р” множества и , где ΔТ=(2k±1)T/4, а k=0,1,2,…, отличающийся тем, что при T, кратных Т, когда T/Т=r, где r=2,3,…, множества и моментов времени и дискретных отсчетов сигнала σ(t) формируют согласно условию: или t, или , где t - произвольный начальный момент отсчета времени, Н - наименьшее общее кратное множества чисел {r}, , n=0,1,2,…, а значения проекций p' и p” получают по соотношениям: , , где К=1/Н.
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
Источник поступления информации: Роспатент

Showing 251-260 of 276 items.
18.12.2019
№219.017.ee63

Привязной коптер

Изобретение относится к области авиации, в частности к авиационным системам передачи информации с помощью летательных аппаратов. Привязной коптер содержит каркас с размещенными на нем электродвигателями с автоматами перекоса винтов, системой управления с гироскопом и радиоэлектронной...
Тип: Изобретение
Номер охранного документа: 0002709083
Дата охранного документа: 13.12.2019
21.01.2020
№220.017.f789

Устройство для электропитания привязного летательного аппарата

Устройство для электропитания привязного летательного аппарата содержит источник электроэнергии и наземный преобразователь, размещенные на наземном объекте, размещенные на борту летательного аппарата бортовой преобразователь и резервную аккумуляторную батарею, кабель-трос. Наземный...
Тип: Изобретение
Номер охранного документа: 0002711325
Дата охранного документа: 16.01.2020
08.02.2020
№220.018.006c

Автономный необитаемый подводный аппарат-амфибия

Изобретение относится к области подводной робототехники, в частности к автономным необитаемым подводным аппаратам (АНПА), и может быть применено в разного рода операциях и исследованиях под водой, на водной поверхности и на суше. Автономный необитаемый подводный аппарат-амфибия содержит корпус...
Тип: Изобретение
Номер охранного документа: 0002713494
Дата охранного документа: 06.02.2020
02.03.2020
№220.018.07b7

Способ непрерывной высотной телекоммутационной связи

Изобретение относится к области передачи информации с помощью высотной телекоммутационной связи. Технический результат состоит в обеспечении непрерывной высотной телекоммутационной связи без ограничения высоты подъема воздушной высотной платформы. Для этого способ формирования беспроводных...
Тип: Изобретение
Номер охранного документа: 0002715420
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.07d1

Свч - мостовой измеритель температуры

Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники. Заявлен СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, введены первый СВЧ-генератор с варакторной перестройкой частоты,...
Тип: Изобретение
Номер охранного документа: 0002715496
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0827

Инвертирующий масштабный усилитель с регулируемой степенью

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования инвертирующего усилителя на операционных усилителях с ограниченными частотными свойствами за счет...
Тип: Изобретение
Номер охранного документа: 0002715471
Дата охранного документа: 28.02.2020
04.03.2020
№220.018.085f

Устройство для внутрипластового горения

Изобретение относится к устройствам для извлечения смеси углеводородов, в частности смеси тяжелых углеводородов, из подземного пласта путем внутрипластового горения. Устройство для внутрипластового горения содержит измельчитель алюминиевой стружки, сепаратор и датчик температуры, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002715572
Дата охранного документа: 02.03.2020
14.05.2020
№220.018.1c54

Способ организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного р-ичного гиперкуба

Изобретение относится к способу организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного p-ичного гиперкуба для многопроцессорных систем с сотнями абонентов-процессоров. Техническим результатом изобретения является повышение отказоустойчивости системной сети,...
Тип: Изобретение
Номер охранного документа: 0002720553
Дата охранного документа: 12.05.2020
15.07.2020
№220.018.3249

Способ определения покомпонентного расхода газожидкостной среды

Изобретение относится к измерительной технике и может использоваться для контроля расхода и определения массы компонента газожидкостной среды (ГЖС), извлекаемой, например, из буровой скважины. Способ определения покомпонентного расхода газожидкостной среды характеризуется тем, что периодически...
Тип: Изобретение
Номер охранного документа: 0002726304
Дата охранного документа: 13.07.2020
15.07.2020
№220.018.3295

Устройство для диагностики состояния высоковольтных изоляторов

Изобретение относится к области электроизмерительной техники и может быть использовано для дистанционного контроля рабочего состояния высоковольтных изоляторов. Технический результат: упрощение процесса диагностики. Сущность: устройство для диагностики состояния высоковольтных изоляторов...
Тип: Изобретение
Номер охранного документа: 0002726305
Дата охранного документа: 13.07.2020
Showing 161-169 of 169 items.
04.04.2018
№218.016.2f8a

Спецпроцессор для задачи выполнимости булевых формул

Изобретение относится к средствам для решения задач о выполнении булевых функций. Технический результат заключается в решения задачи о выполнимости булевых функций, заданных в конъюнктивной нормальной форме, имеющих N переменных и до М=2 дизъюнктов. При этом упрощение структуры спецпроцессора...
Тип: Изобретение
Номер охранного документа: 0002644505
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.2fde

Перистальтический насос на пьезоэлектрических элементах

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. Устройство для перекачивания текучих сред содержит пьезомодули, установленные в...
Тип: Изобретение
Номер охранного документа: 0002644643
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.3263

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки в электропроводке и электрооборудовании. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной обмотки дифференциального...
Тип: Изобретение
Номер охранного документа: 0002645434
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.351d

Устройство преобразования механической энергии движения водной среды в электрическую энергию

Изобретение относится к области энергетики и может быть использовано для преобразования механической энергии движения водной среды в электрическую энергию. Устройство для преобразования энергии движения водной среды 1 в электрическую энергию содержит опору 2, герметизированное гибкое полотнище...
Тип: Изобретение
Номер охранного документа: 0002645842
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
11.03.2019
№219.016.d99a

Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники. Способ может быть применен в средствах измерений пассивных и активных комплексных величин переменного тока, например в мостах переменного тока для измерения параметров многоэлементных двухполюсников, путем уравновешивания...
Тип: Изобретение
Номер охранного документа: 0002377577
Дата охранного документа: 27.12.2009
09.05.2019
№219.017.5084

Способ измерения вектора гармонического сигнала

Способ может быть применен в средствах измерений пассивных и активных комплексных величин, например, в мостах и компенсаторах переменного тока или в измерителях параметров электрических цепей, а также в векторных вольтметрах, путем измерения вектора гармонического сигнала в случае действия...
Тип: Изобретение
Номер охранного документа: 0002466413
Дата охранного документа: 10.11.2012
+ добавить свой РИД