×
10.09.2014
216.012.f364

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СВОЙСТВА ДИЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА

Вид РИД

Изобретение

№ охранного документа
0002528130
Дата охранного документа
10.09.2014
Аннотация: Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение точности измерения. Устройство для измерения свойства диэлектрического материала содержит генератор электромагнитных колебаний, первый развязывающий элемент, соединенный выходом со входом фазовращателя, передающую и приемную антенны, детектор, подключенный выходом к блоку обработки информации, и аттенюатор. Для достижения технического результата введены первый и второй волноводные тройники и второй развязывающий элемент, причем выход генератора электромагнитных колебаний соединен с первым плечом первого волноводного тройника, второе плечо которого подключено к входу первого развязывающего элемента, выход фазовращателя через аттенюатор соединен с первым плечом второго волноводного тройника, второе плечо которого подключено к приемной антенне, третье плечо второго волноводного тройника соединено со входом детектора, третье плечо первого волноводного тройника через второй развязывающий элемент соединен с передающей антенной. 1 ил.
Основные результаты: Устройство для измерения свойства диэлектрического материала, содержащее генератор электромагнитных колебаний, первый развязывающий элемент, соединенный выходом со входом фазовращателя, передающую и приемную антенны, детектор, подключенный выходом к блоку обработки информации и аттенюатор, отличающееся тем, что в него введены первый и второй волноводные тройники и второй развязывающий элемент, причем выход генератора электромагнитных колебаний соединен с первым плечом первого волноводного тройника, второе плечо которого подключено к входу первого развязывающего элемента, выход фазовращателя через аттенюатор соединен с первым плечом второго волноводного тройника, второе плечо которого подключено к приемной антенне, третье плечо второго волноводного тройника соединено со входом детектора, третье плечо первого волноводного тройника через второй развязывающий элемент соединено с передающей антенной.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известно устройство, реализующее радиометрический контроль состава и свойств диэлектрических материалов по уровню их радиотеплового электромагнитного излучения (Куценко В.П. и др. «Радиометрический контроль состава и свойств диэлектрических материалов», Международная Крымская микроволновая конференция (КрыМиКо' 2006) «СВЧ-техника и телекоммуникационные технологии», материалы конф., Т.2, секция 7/1: Измерение параметров материалов. - Ст.7.11. - С.762-764). В устройстве, содержащем приемную антенну, ее электрический эквивалент, аттенюатор, СВЧ переключатель, избирательный приемник, генератор, АЦП, микроэвм, цифровой индикатор и регистрирующий прибор, измерением мощности (энергетического спектра) на основе алгоритма обработки информации определяют искомый параметр.

Недостатком этого известного устройства является сложность процедуры приема мощности слабых радиоизлучений и создания алгоритма обработки информативного сигнала.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип амплитудно-фазовый измеритель свойства материала, работающий по схеме «на прохождение» (С.В. Мищенко, Н.А. Малков. Проектирование радиоволновых (СВЧ) приборов неразрушающего контроля. Учеб. пособие. Тамбов: Изд-во ТГТУ, 2003, с.12-13). Работа этого известного радиоволного прибора контроля состоит в том, что энергия СВЧ от клистронного генератора подается через вентиль в волновод и аттенюатор к излучающему рупору. Энергия проходит через образец, принимается приемной антенной и через измерительный аттенюатор поступает на детектор, после чего сигнал усиливается и подается на индикаторный прибор. Такая схема позволяет проводить контроль свойств материалов по величине затухания (ослабление мощности) энергии СВЧ в образце, отсчитываемого по шкале аттенюатора, с помощью которого величина сигнала индикаторного прибора поддерживается на постоянном уровне.

Недостатком этого бесконтактного измерителя свойства материала следует считать невысокую точность измерения из-за нестабильности работы клистронного генератора по мощности.

Техническим результатом заявляемого решения является повышение точности измерения.

Технический результат достигается тем, что в устройство для измерения свойства диэлектрического материала, содержащее генератор электромагнитных колебаний, первый развязывающий элемент, соединенный выходом со входом фазовращателя, передающую и приемную антенны, детектор, подключенный выходом к блоку обработки информации и аттенюатор, введены первый и второй волноводные тройники и второй развязывающий элемент, причем выход генератор электромагнитных колебаний соединен с первым плечом первого волноводного тройника, второе плечо которого подключено ко входу первого развязывающего элемента, выход фазовращателя через аттенюатор соединен с первым плечом второго волноводного тройника, второе плечо которого подключено к приемной антенне, третье плечо второго волноводного тройника соединено со входом детектора, третье плечо первого волноводного тройника через второй развязывающий элемент соединен с передающей рупорной антенной.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что изменение разности фаз двух сигналов, обусловленное изменением свойства материала, дает возможность измерять свойство контролируемого объекта.

Наличие в заявляемом устройстве совокупности перечисленных существующих признаков, позволяет решить поставленную задачу измерения свойства материала на основе использования фазового сдвига между двумя электромагнитными сигналами с желаемым техническим результатом, т.е. повышением точности измерения.

На чертеже схематично представлено предложенное устройство.

Устройство содержит генератор электромагнитных колебаний 1, соединенный выходом с первым плечом первого волноводного тройника 2, первый развязывающий элемент 3, фазовращатель 4, подключенный выходом через аттенюатор 5 к первому плечу второго волноводного тройника 6, детектор 7, соединенный выходом со входом блока обработки информации 8, приемную антенну 9, второй развязывающий элемент 10, подключенный выходом к передающей антенне 11. На чертеже цифрой 12 обозначен объект контроля.

Устройство работает следующим образом. С выхода генератора электромагнитных колебаний 1 сигнал поступает в первое плечо первого волноводного тройника 2, после чего сигнал поровну разделяется между вторым и третьим плечами этого тройника. Далее сигналы со второго и третьего плеч поступают на входы первого и второго развязывающих элементов (вентили) 3 и 10 соответственно. Здесь вентили используются для прохождения электромагнитной волны в одну сторону (от первого тройника к передающее антенне и фазовращателю). Сигнал с выхода первого развязывающего элемента подводится на вход фазовращателя 4 и далее поступает на вход аттенюатора 5. После этого выходной сигнал последнего поступает на первое плечо второго волноводного тройника 6. Одновременно с этим выходной сигнал второго развязывающего элемента поступает в передающую антенну 11. Излучающим сигналом передающей антенны зондируют контролируемый материал 12. В данном случае воздействие электромагнитного сигнала на объект приводит к тому, что часть сигнала отражается от раздела двух сред воздух - поверхность материала, а часть - проходит через материал. Прошедший через материал сигнал улавливается приемной рупорной антенной 9 и далее он поступает на второе плечо второго волноводного тройника 6.

Суть принципа действия предлагаемого устройства состоит в использовании преломления электромагнитной волны в диэлектрических материалах (немагнитные среды). Как известно, при преломлении волны в диэлектрической среде волна, прошедшая через нее, может иметь фазовый сдвиг (закон Снеллиуса) по отношению падающей на поверхность среды волны (угол преломления волны зависит от угла падения падающей волны и диэлектрической проницаемости среды при нулевом значении диэлектрической проницаемости воздуха). В силу этого если сравнить прошедшую через контролируемый материал волну с падающей на поверхность материал волной (здесь допускается сходство падающего на поверхность материала и поступающего на первое плечо второго волноводного тройника сигналов из-за генерации их одним генератором), то между ними должна быть разность фаз. В предлагаемом устройстве для сравнения указанных выше волн используется второй волноводный тройник. Согласно принципу действия волноводного тройника (см. И.В. Лебедев. Техника и приборы СВЧ. М., «Высш. Школа», 1970, с.165) при совпадении фаз сигналов на первом и втором плечах тройника 6 на третьем его плече должен быть нулевой сигнал. В рассматриваемом случае, так как излучаемый сигнал передающей антенной 11 проходит (часть сигнала) через контролируемый диэлектрический материал, то принимаемый сигнал приемной антенной 9 и далее передаваемый во второе плечо второго волноводного тройника должен быть сдвинут по фазе по отношению сигнала, поступающего в первое плечо второго волноводного тройника. Следовательно, с третьего плеча второго волноводного тройника можно снимать сигнал, соответствующий разности фаз двух подаваемых на первое и второе плечи второго тройника электромагнитных сигналов. В данном случае для отображения информации о свойстве материала сигнал сначала с третьего плеча второго волноводного тройника подается на вход детектора 7, а затем - на вход блока обработки информации 8. Здесь по показаниям последнего можно судить о свойстве контролируемого материала. При этом калибровка нуля блока обработки информации (отсутствие в зоне излучения диэлектрического материала и другие несоответствия сигналов на первом и втором плечах тройника 6) можно произвести с помощью фазовращателя 4. Кроме того, для исключения влияния толщины плоского, например, материала, на результат измерения, необходимым является постоянство толщины материала при его зондировании с различными диэлектрическими проницаемостями и угла падения волны на поверхность материала, а также амплитуд сигналов на первом и втором плечах второго волноводного тройника (в нашем случае для выполнения последнего условия применяется аттенюатор 5). Принимая во внимание то, что разные материалы имеют разные диэлектрические проницаемости, измерением сигнала на выходе детектора посредством блока обработки информации при наличии в зоне излучения между антеннами разных материалов, можно обеспечить определение свойства контролируемого материала.

При практической реализации рассматриваемого устройства в качестве источника электромагнитных колебаний может быть использован генератор ГЛПД-1 с частотой и мощностью излучения соответственно 9,6 ГГц и 10 мВт.

Таким образом, в предлагаемом техническом решении, использующем взаимодействие электромагнитных волн с диэлектрическим материалом, на основе фазового сравнения прошедшей через материал волны, с волной, эквивалентной падающей на поверхность материала, можно обеспечить повышение точности измерения свойства материала.

Устройство для измерения свойства диэлектрического материала, содержащее генератор электромагнитных колебаний, первый развязывающий элемент, соединенный выходом со входом фазовращателя, передающую и приемную антенны, детектор, подключенный выходом к блоку обработки информации и аттенюатор, отличающееся тем, что в него введены первый и второй волноводные тройники и второй развязывающий элемент, причем выход генератора электромагнитных колебаний соединен с первым плечом первого волноводного тройника, второе плечо которого подключено к входу первого развязывающего элемента, выход фазовращателя через аттенюатор соединен с первым плечом второго волноводного тройника, второе плечо которого подключено к приемной антенне, третье плечо второго волноводного тройника соединено со входом детектора, третье плечо первого волноводного тройника через второй развязывающий элемент соединено с передающей антенной.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СВОЙСТВА ДИЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Showing 251-260 of 282 items.
18.10.2019
№219.017.d7e6

Измеритель вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - увеличение точности измерения достигается тем, что устройство измерения перемещения...
Тип: Изобретение
Номер охранного документа: 0002703281
Дата охранного документа: 16.10.2019
21.11.2019
№219.017.e413

Автоподстроечный способ измерения малого значения уровня вещества

Изобретение относится к области информационно-измерительной техники. Техническим результатом предлагаемого способа является упрощение процедуры измерения уровня вещества. Технический результат достигается тем, что в автоподстроечном способе измерения малого значения уровня вещества, включающем...
Тип: Изобретение
Номер охранного документа: 0002706453
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e432

Способ измерения положения границы раздела двух веществ в резервуаре

Изобретение может быть использовано для измерения положения границы раздела двух веществ, находящихся в резервуаре одно над другим и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обоих веществ....
Тип: Изобретение
Номер охранного документа: 0002706455
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e47d

Устройство для определения содержания воды в потоке нефтепродукта

Изобретение относится к области информационно-измерительной техники. Предложено устройство для определения содержания воды в потоке нефтепродукта, включающее отрезок трубы, усилитель и первичный преобразователь. Также введены источник переменного тока, регистратор и термопара, контактирующая с...
Тип: Изобретение
Номер охранного документа: 0002706451
Дата охранного документа: 19.11.2019
14.12.2019
№219.017.edc3

Устройство для измерения высоких давлений газообразных сред

Изобретение относится к области измерительной техники и может быть использовано для измерения высоких давлений газообразных и жидких сред в трубопроводах. Сущность заявленного решения заключается в том, что устройство для измерения высоких давлений газообразных сред содержит чувствительный...
Тип: Изобретение
Номер охранного документа: 0002708938
Дата охранного документа: 12.12.2019
18.12.2019
№219.017.ee10

Способ определения расходной характеристики гидравлического тракта для области перехода от турбулентного к ламинарному режиму истечения

Изобретение относится к области измерительной техники и может быть использовано для расчета пропускной способности проектируемых гидравлических трактов транспортных и дозирующих систем в химической, нефтехимической, авиационной, текстильной, лакокрасочной и других отраслях промышленности, в...
Тип: Изобретение
Номер охранного документа: 0002709034
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee63

Привязной коптер

Изобретение относится к области авиации, в частности к авиационным системам передачи информации с помощью летательных аппаратов. Привязной коптер содержит каркас с размещенными на нем электродвигателями с автоматами перекоса винтов, системой управления с гироскопом и радиоэлектронной...
Тип: Изобретение
Номер охранного документа: 0002709083
Дата охранного документа: 13.12.2019
21.01.2020
№220.017.f789

Устройство для электропитания привязного летательного аппарата

Устройство для электропитания привязного летательного аппарата содержит источник электроэнергии и наземный преобразователь, размещенные на наземном объекте, размещенные на борту летательного аппарата бортовой преобразователь и резервную аккумуляторную батарею, кабель-трос. Наземный...
Тип: Изобретение
Номер охранного документа: 0002711325
Дата охранного документа: 16.01.2020
08.02.2020
№220.018.006c

Автономный необитаемый подводный аппарат-амфибия

Изобретение относится к области подводной робототехники, в частности к автономным необитаемым подводным аппаратам (АНПА), и может быть применено в разного рода операциях и исследованиях под водой, на водной поверхности и на суше. Автономный необитаемый подводный аппарат-амфибия содержит корпус...
Тип: Изобретение
Номер охранного документа: 0002713494
Дата охранного документа: 06.02.2020
02.03.2020
№220.018.07b7

Способ непрерывной высотной телекоммутационной связи

Изобретение относится к области передачи информации с помощью высотной телекоммутационной связи. Технический результат состоит в обеспечении непрерывной высотной телекоммутационной связи без ограничения высоты подъема воздушной высотной платформы. Для этого способ формирования беспроводных...
Тип: Изобретение
Номер охранного документа: 0002715420
Дата охранного документа: 28.02.2020
Showing 191-191 of 191 items.
09.05.2019
№219.017.4faf

Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя...
Тип: Изобретение
Номер охранного документа: 0002433393
Дата охранного документа: 10.11.2011
+ добавить свой РИД