×
27.08.2014
216.012.ed3d

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ОКСИДОВ МЕТАЛЛОВ ИЗ МЕТАЛЛООРГАНИЧЕСКИХ ПРЕКУРСОРОВ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в химической промышленности. Наноразмерные оксиды металлов получают химической реакцией окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, в качестве которого используют импульсный электронный пучок энергией электронов 100÷500 кэВ, длительностью 10÷100 нс и с полным током пучка 1-10 кА. Предложенное изобретение позволяет увеличить производительность и расширить номенклатуру получаемых наноразмерных оксидов на одном и том же оборудовании без изменения режима синтеза. 2 табл., 1 ил.
Основные результаты: Способ получения наноразмерных оксидов металлов из металлоорганических прекурсоров путем проведения химической реакции окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, отличающийся тем, что на смесь воздействуют импульсным электронным пучком с энергией электронов 100÷500 кэВ, длительностью 10÷100 нс и с полным током пучка 1-10 кА.

Изобретение относится к химической и технической физике, металлургии и предназначено для получения наноразмерных порошков оксидов.

Известен способ [Патент RU №2153016, МПК7 C22B 34/00, C01B 33/00, H05B 7/00, опубл. 20.07.2000] получения редких тугоплавких металлов, кремния и их соединений. Способ заключается в восстановлении (или разложении) газообразных соединений металлов и кремния в присутствии реагентов в зоне низкотемпературной термонеравновесной плазмы. В способе используют дополнительное введение в зону реакции горючей смеси (водорода и кислорода) и активировании газообразных реагентов ультрафиолетовым излучением.

Известен способ [Патент RU №2264888, МПК7 B22F 9/28, опубл. 20.07.2005] получения нанодисперсных порошков оксидов. Способ заключается в подаче в реактор галогенида металла и восстановителя в газообразных состояниях. В реактор до обработки смеси газов подают кислород и инициируют цепной химический процесс импульсным энергетическим воздействием с длительностью не более 10-5 секунды.

Известен способ [Патент RU №2230033, МПК7 C01G 23/07, опубл. 10.06.2004] получения диоксида титана. Способ включает генерацию плазмы кислорода (или кислородосодержащего газа) с температурой 1300-3600°C в электродуговом генераторе плазмы. Далее в плазменный поток вводят тетрахлорид титана в жидком состоянии. Проводят окисление тетрахлорида титана при понижении температуры продуктов реакции до 1000-1600°C, охлаждение образовавшихся продуктов реакции и отделение целевого продукта.

Недостатками данных способов является необходимость дополнительного введения в зону реакции горючей смеси (водорода и кислорода); неудобство использования в качестве исходных реагентов галогенидов металлов, реагирующих при нормальных условиях с парами воды, содержащимися в воздухе, с образованием паров хлороводорода.

Известен способ [Hendrik K. Kammler Sotiris E. Pratsinis Scaling-up the Production of Nanosized SiO2-particles in a Double Diffusion Flame Aerosol Reactor // Journal of Nanoparticle Research. - 1999. - vol.1, №4. - pp.467-477] получения наноразмерного диоксида кремния при окислении гексаметилдисилоксана в проточном реакторе. Способ позволяет получать наноразмерный диоксид кремния средним размером частиц от 15 до 170 нм. Производительность установки - 130 г/час. Однако способ является достаточно сложным в аппаратурном оформлении.

Известен способ [Thomas Delclos, Carole Aimé, Emilie Pouget, Aurélie Brizard, Ivan Huc, Marie-Hélène Delville and Reiko Oda. Individualized Silica Nanohelices and Nanotubes: Tuning Inorganic Nanostructures Using Lipidic Self-Assemblies // Nano Lett. - 2008. - N.8. - P.1929-1935] получения наноразмерного диоксида кремния золь-гель методом. Тетраэтоксисилан подвергался гидролизу на поверхности «шаблонного» органического геля. Затем органика удалялась путем отжига при температуре 450°C. В качестве исходных прекурсоров использовали (C2H4-1,2-((CH3)2N+C16H33)2) и тетраэтоксисилан в смеси с бензиламином в качестве катализатора. Недостатками данного способа являются большие энергозатраты, связанные с процессами гидролиза и отжига на отдельных этапах получения конечного продукта в виде наноразмерного порошка диоксида кремния.

Наиболее близким к предлагаемому способу является способ, выбранный нами за прототип [Motoaki Adachi, Shigeki Tsukui, Kikuo Okuyama Nanoparticle Formation Mechanism in CVD Reactor with Ionization of Source Vapor // Journal of Nanoparticle Research. - 2003. - v.5 (1-2). - pp.31-37]. Он заключается в химическом осаждении из газовой фазы металлоорганического прекурсора (тетраэтоксисилана и кислорода) для получения наночастиц диоксида кремния. Для уменьшения агломеративности частиц используют энергетическое воздействие путем обработки в коронном разряде молекул металлоорганического прекурсора в дополнительной камере. Вследствие этого происходит уменьшение Ван-дер-ваальсовых сил при смешивании в основной камере молекул тетраэтоксислана и кислорода, имеющих однополярный заряд. Способ включает подачу тетраэтоксисилана в предварительную камеру, где его молекулы обрабатываются коронным разрядом (при различном потенциале высоковольтного электрода ионизатора от -10 до +6 кВ) при высоком давлении 0,1-0,3 МПа и перемещаются в реактор. Ионы тетраэтоксисилана реагируют с молекулами кислорода, образовывая частицы диоксида кремния. Поскольку частицы, содержащие тетроэтоксисилан, имеют большое количество этоксигрупп, авторы предлагают поддерживать в реакторе температуру 723-873 К. Если температура реактора меньше данного диапазона, то синтезируются частицы крупного размера. Также на размер частиц в данном методе влияет время сбора конечных продуктов (чем меньше время, тем меньше размер частиц). Исходная концентрации тетраэтоксисилана 3,4×10-5 и 8,60×10-6 моль/л, объем реактора 100 и 200 см3.

Недостатком способа прототипа является сложность аппаратурного обеспечения (дополнительная камера для ионизации молекул металлоорганического соединения), высокая энергоемкость процесса из-за необходимости постоянного обогрева реактора до температуры 723-873 К, низкая производительность процесса вследствие использования малой концентрации тетраэтоксисилана и малого объема реактора, зависимость размера получаемых оксидов от времени сбора конечного продукта и потенциала ионизатора.

Задачей предложенного решения является разработка энергосберегающего способа получения наноразмерных оксидов металлов из металлоорганического прекурсора.

Технический результат заключается в увеличении производительности, расширении номенклатуры получаемых наноразмерных оксидов на одном и том же оборудовании без изменения режима синтеза.

Техническая задача достигается тем, что в способе получения наноразмерных оксидов металлов из металлоорганических прекурсоров путем проведения химической реакции окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, в отличие от прототипа, на смесь воздействуют импульсным электронным пучком с энергией электронов 100÷500 кэВ, длительностью 10÷100 нс и с полным током пучка 1-10 кА.

Способ получения наноразмерных оксидов металлов из металлоорганических прекурсоров основан на объемном возбуждении реакционного газа импульсным электронным пучком и организации процесса протекания реакции во всей области возбуждения. Энергетические затраты пучка значительно ниже энергии выделяемой в химических эндотермических реакциях и при формировании частиц оксидов.

Целесообразно в качестве энергетического воздействия использовать импульсный электронный пучок, энергия электронов которого составляет 100÷500 кэВ. Использование импульсного электронного пучка такой энергии позволяет увеличить объем реакционной камеры до 8 л. Использовать пучок электронов энергией меньше 100 кэВ нецелесообразно вследствие того, что вывод электронного пучка в реакционную камеру со смесью газов осуществляется через выводное окно, представляющее собой алюминиевую фольгу (толщиной 140 мкм), поэтому электроны с более низкой энергией будут задерживаться в выводном окне. Использование пучка электронов с энергией более 500 кэВ возможно, тем самым можно увеличить производительность установки, однако такие установки требуют дополнительной защиты от тормозного рентгеновского излучения и обязательной регистрации их в СЭС.

Целесообразно использовать ток пучка 1-10 кА. В случае когда ток пучка меньше 1 кА - меньше количество и первичных электронов, значит, происходит меньшее количество актов ионизации, в результате чего уменьшается количество зародышей реакции процесса синтеза. Использование пучка электронов с током больше указанного диапазона возможно, однако это увеличивает экономические затраты на создание подобной установки.

Целесообразно использовать электронный пучок длительностью 10÷100 нс. Использование пучка длительностью больше 100 нс нецелесообразно, так как в этом случае время жизни активных частиц будет меньше, чем время энергетического воздействия на исходные вещества. Использования пучка электронов длительностью менее 10 нс требует более сложного аппаратурного оформления, что экономически нецелесообразно.

На фигуре приведена схема установки для получения наноразмерных оксидов металлов из металлоорганических прекурсоров.

Установка состоит из реактора 2 с патрубком 1 для подачи металлоорганического соединения, патрубком 3 для подачи кислорода, окном 4 для осуществления импульсного энергетического воздействия, окном 5 для сбора порошка, патрубком 6 для вывода побочных продуктов и 7 источника импульсного энергетического воздействия - импульсного электронного ускорителя.

Способ осуществляют следующим образом, металлоорганическое соединение через патрубок 1 подают в объем реактора 2, где нагревают его до температуры кипения (от 350 до 450 К), либо плавления (от 400 до 500 К) при использовании твердого металлоорганического прекурсора. Через патрубок 3 в объем реактора 2 подают кислород. Через окно 4 на смесь газов в реакторе 2 производят энергетическое воздействие импульсным электронным пучком от источника 7. Продукты реакции в виде наноразмерного порошка собираются на дне реактора 2 и удаляются через окно 5. Побочные продукты реакции в газообразном состоянии (CO2, H2O) удаляются через патрубок 6.

Заявляемый способ позволяет совместить камеру для ионизации металлоорганического прекурсора и реакционную камеру, что позволяет повысить эффективность передаваемой энергии реактивам.

Пример 1. Реактор 2, изготовленный из кварцевого стекла, диаметром 140 мм, объемом 6 л, оснащен манометром, вакуумметром, малоинерционным датчиком давления для регистрации быстропротекающих процессов, запорно-регулирующей арматурой для напуска исходной реагентной смеси и откачки газа. Реактор 2 перед напуском смеси газов откачивали до давления ~7 торр, далее нагревают до температуры кипения (442 К) Si(C2H5O)4. После в реактор 2 вводят тетраэтоксисилан, а затем кислород. Концентрация исходных реагентов: 2,2 ммоль металлоорганического соединения Si(C2H5O)4 и 26,87 моль кислорода. При воздействии импульсного сильноточного электронного пучка с параметрами: энергия электронов 450-500 кэВ, ток пучка 1-10 кА, длительность импульса 60 нс, на смесь металлоорганического соединения Si(C2H5O)4 и кислорода протекают реакции окисления металлоорганического соединения Si(C2H5O)4 инициированные электронным ударом:

Полная конверсия Si(C2H5O)4 происходила за один импульс электронного пучка. После инжекции электронного пучка в смесь в реакторе образовывался наноразмерный порошок.

В таблице 1 приведены Примеры 2 и 3 получения наноразмерных порошков оксидов титана и меди при одинаковых условиях синтеза и при однократном воздействии импульсного электронного пучка на смесь исходных реагентов.

В таблице 2 показано влияние последующих воздействий электронного пучка на синтезированные частицы оксидов металлов при концентрации исходных реагентов, указанной в таблице 1.

Процесс получения порошков оксидов можно осуществлять как в цикличном режиме (напуск газа→облучение→откачка побочных продуктов реакции в газообразном состоянии), так и в непрерывном (проточном режиме).

Полученные наноразмерные частицы из металлоорганического прекурсора имеют средний размер 40-100 нм.

Предложенный способ применим для получения наноразмерных порошков оксидов различных металлов из металлоорганических прекурсоров. Способ позволяет повысить производительность процесса получения оксидов за счет увеличения объема плазмохимического реактора и концентрации исходных реагентов. В предложенном способе нагрев реакционной камеры производится только до температуры кипения металлоорганического прекурсора, что позволяет не только снизить энергозатраты, но и повысить чистоту конечного продукта, за счет исключения технологических загрязнений, вызванных нагревом реактора до температур, требуемых для протекания химических реакций.

Таблица 1
Полученный оксид металла Исходные реагенты (металлоорганический прекурсор + газ) Основные физико-химические свойства металлоорганического прекурсора Концентрация исходных компонентов Средний размер, получаемых оксидов
SiO2 Тетраэтоксисилан Si(C2H5O)4 Si(C2H5O)4=2,2 ммоль 40-80 нм
Кислород Tкип=442 К O2=26,87 моль
TiO2 Тетраэтоксититан Ti(C2H5O)4 Ti(C2H5O)4=2,2 ммоль 50-100 нм
Кислород Tкип=423 К O2=26,87 моль
CuO Салицилальимин меди C14H12O2N2Cu C14H12O2N2Cu=2,2 ммоль 60-80 нм
Кислород Tплавления=490 К O2=26,87 моль

Таблица 2
Полученный оксид металла Концентрация исходных компонентов 1 импульс 5 импульсов 10 импульсов
Средний размер получаемых оксидов
SiO2 Si(C2H5O)4=2,2 ммоль 40-80 нм 60-100 нм 120-180 нм
O2=26,87 моль
TiO2 Ti(C2H5O)4=2,2 ммоль 50-100 нм 70-120 нм 150-200 нм
O2=26,87 моль
CuO C14H12O2N2Cu=2,2 ммоль 60-80 нм 80-100 нм 150-180 нм
O2=26,87 моль

Способ получения наноразмерных оксидов металлов из металлоорганических прекурсоров путем проведения химической реакции окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, отличающийся тем, что на смесь воздействуют импульсным электронным пучком с энергией электронов 100÷500 кэВ, длительностью 10÷100 нс и с полным током пучка 1-10 кА.
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ОКСИДОВ МЕТАЛЛОВ ИЗ МЕТАЛЛООРГАНИЧЕСКИХ ПРЕКУРСОРОВ
Источник поступления информации: Роспатент

Showing 41-50 of 144 items.
20.08.2014
№216.012.ea88

Система зажигания

Изобретение относится к области транспорта и может быть использовано для выработки импульсов высокого напряжения, образующих искру между электродами свечей зажигания и распределения высоковольтных импульсов по цилиндрам двигателя в необходимой последовательности. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002525848
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ee4a

Способ количественного определения молочной кислоты методом вольтамперометрии на стеклоуглеродном электроде

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения молочной кислоты, используемой во многих областях пищевой промышленности, ветеринарии, косметологии и играющей огромную роль в физиологическом процессе человека. Задачей заявляемого...
Тип: Изобретение
Номер охранного документа: 0002526821
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.eec8

Способ разрушения многокомпонентных изделий

Изобретение относится к области переработки и утилизации вторичного сырья. Способ разрушения многокомпонентных изделий, состоящих из металлических элементов с прикрепленными к ним изоляционными элементами, включающий создание в них поля механических напряжений, превышающих предел их...
Тип: Изобретение
Номер охранного документа: 0002526947
Дата охранного документа: 27.08.2014
20.09.2014
№216.012.f51f

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модицифированном коллоидными частицами золота

Изобретение относится к электроаналитической химии, направлено на определение глутатиона и может быть использовано в анализе модельных водных растворов методом циклической вольтамперометрии по высоте анодного максимума на анодной кривой. Способ определения глутатиона заключается в определении...
Тип: Изобретение
Номер охранного документа: 0002528584
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f523

Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство содержит источник импульсного тока, в котором к первому выводу вторичной...
Тип: Изобретение
Номер охранного документа: 0002528588
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fcb9

Устройство для защиты двух параллельных линий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты двух параллельных линий. Технический результат заключается в повышении надежности устройства. Для этого заявленное устройство содержит с первого по третье реле тока, подключенные к...
Тип: Изобретение
Номер охранного документа: 0002530543
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fcbc

Способ улавливания и локализации летучих форм радиоактивного йода из газообразных выбросов

Изобретение относится к атомной энергетике и экологии и может быть использовано при авариях на АЭУ, сопровождающихся нарушением целостности защитной оболочки и самого реактора, когда в окружающее воздушное пространство происходит выброс радионуклидов, продуктов деления ядерного топлива, когда...
Тип: Изобретение
Номер охранного документа: 0002530546
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd79

Способ генерации ускоренных позитронов

Изобретение относится к области ускорительной техники и предназначено для генерации позитронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и др. Способ генерации ускоренных позитронов включает...
Тип: Изобретение
Номер охранного документа: 0002530735
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.0411

Комплекс для проверки скважинных инклинометров на месторождении

Изобретение относится к области исследования и испытания инклинометров в полевых условиях. Техническим результатом является повышение точности и оперативности проверки магнитных и гироскопических скважинных инклинометров в полевых условиях. Предложен комплекс для проверки скважинных...
Тип: Изобретение
Номер охранного документа: 0002532439
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0453

Способ определения равновесности химического состава болотных вод от их гидродинамических условий

Изобретение относится к гидродинамическим и гидрохимическим исследованиям вод торфяных почв. Техническим результатом является определение изменения химического состава болотных вод по глубине торфяной залежи в условиях их гидродинамического режима во времени. В способе определяют закономерность...
Тип: Изобретение
Номер охранного документа: 0002532505
Дата охранного документа: 10.11.2014
Showing 41-50 of 238 items.
20.09.2013
№216.012.6bf7

Способ изготовления контактов вакуумных дугогасительных камер

Изобретение относится к области электротехники, а именно к технологии изготовления контактов вакуумных дугогасительных камер. Порошковую смесь и заготовку из материала с высокой электропроводностью помещают в вакуумную камеру, где порошковую смесь наносят в виде покрытия на заготовку методом...
Тип: Изобретение
Номер охранного документа: 0002493290
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6e63

Цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола. Описан катализатор, содержащий, мас.%: высококремнеземный...
Тип: Изобретение
Номер охранного документа: 0002493910
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6f30

Способ получения поливинилацетатной дисперсии

Изобретение относится к способу получения поливинилацетатной дисперсии и может быть использовано в химической промышленности. Способ получения поливинилацетатной дисперсии (ПВАД) включает эмульсионную полимеризацию винилацетата, полимеризацию проводят в присутствии водорастворимого радикального...
Тип: Изобретение
Номер охранного документа: 0002494115
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.703d

Способ определения платины в водных растворах методом хронопотенциометрии

Изобретение направлено на определение платины в водных растворах методом хронопотенциометрии и может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения ионов металлов включает определение...
Тип: Изобретение
Номер охранного документа: 0002494384
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.703e

Способ определения золота в водных растворах методом хронопотенциометрии

Изобретение направлено на определение золота в водных растворах методом хронопотенциометрии и может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения ионов металлов включает определение...
Тип: Изобретение
Номер охранного документа: 0002494385
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.7086

Устройство для моделирования статического синхронного компенсатора

Изобретение относится к области моделирования объектов электрических систем. Техническим результатом является обеспечение всережимного моделирования в реальном времени и на неограниченном интервале процессов, протекающих в статическом синхронном компенсаторе. Устройство для моделирования...
Тип: Изобретение
Номер охранного документа: 0002494457
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70b8

Материал для поглощения электромагнитных волн

Изобретение относится к радиотехнике, в частности к поглотителям электромагнитных волн, в том числе в диапазоне сверхвысоких частот. Технический результат - повышение коэффициента поглощения, механической прочности при сохранении низкого коэффициента отражения материала. Для этого материал для...
Тип: Изобретение
Номер охранного документа: 0002494507
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.71fe

Способ определения оптимальной скорости резания

Способ относится к обработке твердосплавными режущими инструментами группы применяемости К в виде режущих пластин и заключается в том, что сначала проводят измерение температуры в зоне рабочего контакта твердый сплав - обрабатываемый материал при различных скоростях резания с построением...
Тип: Изобретение
Номер охранного документа: 0002494839
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7439

Устройство для разбраковки металлических изделий

Изобретение относится к области неразрушающего контроля изделий и может быть использовано для контроля физико-химических свойств поверхностных слоев металла контролируемого изделия, подвергнутого термической или химикотермической обработке, а также для выявления степени пластической деформации....
Тип: Изобретение
Номер охранного документа: 0002495410
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.743a

Способ определения таллия в водных растворах методом хронопотенциометрии

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения таллия в водных растворах методом хронопотенциометрии заключается том, что таллий (I) переводят в растворе в гидроокисное...
Тип: Изобретение
Номер охранного документа: 0002495411
Дата охранного документа: 10.10.2013
+ добавить свой РИД