×
20.08.2014
216.012.ecec

СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ ПОЛУЧЕНИЯ ПЕРОКСИДА ВОДОРОДА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения катализатора окисления водорода молекулярным кислородом до пероксида водорода, включающему стадии нанесения предшественников металлов, а именно золота и палладия, на носитель и термообработки. При этом в качестве предшественников золота и палладия используют анионные комплексы [Pd(CO)], [Pd(CN)], [PdCl], [AuCl], [AuBr] в сочетании с катионными комплексами [Pd(dien)HO], [Pd(en)], [Au(pap)], [Au(en)], [Au(dien)Cl], [Au(HDMG)] (где: pap = 2-фенилазофенил, en = этилендиамин, dien = диэтилентриамин, HDMG = однозарядный анион диметилглиоксима НОН=С(-CH)-C(-CH)=NO), которые образуют при взаимодействии друг с другом малорастворимое в воде соединение комплексной соли. Также изобретение относится к способу получения пероксида водорода путем окисления водорода молекулярным кислородом с использованием полученного катализатора. Изобретение позволяет селективно проводить синтез пероксида водорода благодаря высокой активности получаемых катализаторов. 2 н. и 5 з.п. ф-лы, 2 табл., 8 пр.
Реферат Свернуть Развернуть

Изобретение относится к катализатору и процессу каталитического метода синтеза пероксида водорода путем окисления водорода кислородом.

Пероксид водорода - перспективный окислитель, который можно использовать в очистке сточных вод, в синтезе, как портативный источник кислорода и во многих других областях. Основной метод получения данного продукта - это антрахиноновый процесс, который рентабелен только при больших объемах производства. Недостатки данного способа - высокая стоимость теплообменного и экстракционного оборудования и большой расход дорогого хинона.

Альтернативным способом синтеза пероксида водорода является метод прямого синтеза из водорода и кислорода с использованием палладиевых катализаторов (С. Samanta // Appl. Catal. A. 250 (2008) 133-149). Недостатком данного процесса является низкая селективность, из-за чего производительность оказывается низкой.

Известно, что добавки золота к палладиевому катализатору существенно увеличивают селективность процесса. Обычно катализаторы готовят совместной пропиткой носителей (Al2O3, TiO2, C, SiO2 и др.) растворами солей PdCl2 и HAuCl4 с последующей термообработкой [J.K. Edwards // J. Catal. 292 (2012) 227-238; G.J. Hutchings // Science 323 (2009) 1037-1041]. Недостатком данного метода приготовления катализаторов является то, что не обеспечивается селективный контакт атомов золота с атомами палладия, в результате чего снижается производительность и селективность катализаторов.

Недостатком известного метода (US 6387346, C01B 15/01, 14.05.2002), где активный компонент катализатора синтезировали методом распылительной сушки из кислого (pH=1.5-2) совместного раствора хлоридов Pd и Au, является высокая температура закалки металлических наночастиц 900-1050°C, использованная для образования сплавов Au и Pd. Применение таких температур приводит к образованию слишком крупных частиц и снижению производительности катализатора. Кроме того, нанесение сформированных наночастиц металлов проводилось пропиткой носителя золем частиц, что не обеспечивает равномерного распределения частиц активного компонента по поверхности носителя и может приводить к снижению их дисперсности, что также снижает производительность катализатора.

Изобретение решает задачу по созданию золотопалладиевого катализатора, обладающего более высокой активностью и селективностью, чем известные катализаторы.

Задача решается способом приготовления золотопалладиевого катализатора окисления водорода молекулярным кислородом до пероксида водорода, включающим стадии нанесения предшественников металлов на носитель и последующей термообработки, при котором в качестве предшественников золота и палладия используют анионные и катионные комплексы, которые образуют при взаимодействии друг с другом малорастворимое соединение комплексной соли.

В качестве предшественников золота и палладия могут быть использованы анионные комплексы [Pd(C2O4)2]2-, [Pd(CN)4]2-, [PdCl4]2-, [AuCl4]-, [AuBr4]- в сочетании с катионными комплексами [Pd(dien)H2O]2+, [Pd(en)2]2+, [Au(pap)2]+, [Au(en)2]3+, [Au(dien)Cl]2+, [Au(HDMG)2]+ (где: pap=2-фенилазофенил, en=этилендиамин, dien=диэтилентриамин, HDMG=однозарядный анион диметилглиоксима HON=C(-CH3)-C(-CH3)=NO-), которые образуют при взаимодействии друг с другом малорастворимое в воде соединение комплексной соли.

Предпочтительно, например, в качестве катионного комплекса может быть использован [Au(dien)Cl]2+, а в качестве анионного комплекса может быть использован [PdCl4]2-, при взаимодействии друг с другом образующие [Au(dien)Cl][PdCl4]. При дальнейшей термообработке происходит образование биметаллических частиц.

В качестве носителя для катализатора могут быть использованы, например, оксиды переходных металлов, пористый кремний или углерод, предпочтительно пористый кремний или углерод. Обработку носителя растворами солей золота и меди можно проводить в любой последовательности, например, вначале на носитель наносят катионную часть, а затем анионную, или вначале на носитель наносят анионную часть, а затем катионную. Или же путем нанесения сформированной комплексной соли в виде раствора, например, в полярном органическом растворителе.

Задача решается также способом синтеза пероксида водорода путем окисления водорода молекулярным кислородом в присутствии жидкости и катализатора при температурах выше - 20°C, на катализаторе, описанном выше. В качестве жидкости при проведении синтеза могут быть использованы, например, метанол и/или вода.

Сущность изобретения иллюстрируется следующими примерами и таблицами.

Примеры 1-6 иллюстрируют приготовление катализаторов.

Пример 1

Приготовление золотопалладиевого катализатора, нанесенного на пористый углерод, содержащего 2,0 мас.% Pd и 3,7 мас.% Au.

К 10,0 г носителя (C) при комнатной температуре приливают при тщательном перемешивании 15,0 мл 0,125 M водного раствора K2[PdCl4]. Далее пропитанный носитель сушат при температуре 80-90°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 15,0 мл 0,125 M водного раствора [Au(dien)Cl]Cl2. Молярное соотношение Pd:Au на поверхности носителя составляет 1:1. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Пример 2

Приготовление золотопалладиевого катализатора, нанесенного на пористый оксид алюминия, содержащего 2,0 мас.% Pd и 2,5 мас.% Au.

К 10,0 г носителя (γ-Al2O3) при комнатной температуре приливают, при тщательном перемешивании, 12,0 мл 0,104 M водного раствора [Au(en)2]Cl3. Далее пропитанный носитель сушат при температуре 50-60°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 12,0 мл 0,156 М водного раствора K2[Pd(C2O4)2]. Молярное соотношение Pd:Au на поверхности носителя составляет 3:2. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Пример 3

Приготовление золотопалладиевого катализатора, нанесенного на пористый кремний, содержащего 2,0 мас.% Pd и 7,4 мас.% Au.

1,7 г соли [Pd(en)2][AuCl4]2 растворяют в 100 мл ацетона. Далее к этому раствору при -15°C добавляют 10 г пористого кремния. Полученную суспензию выдерживают 1 ч при -15°C при интенсивном перемешивании. После чего температуру суспензии медленно (0,25°C/мин) поднимают до комнатной. Полученный осадок фильтруют, промывают водой, этанолом и ацетоном, сушат на воздухе.

После чего проводят термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч.

Пример 4

Приготовление золотопалладиевого катализатора, нанесенного на пористый углерод, содержащего 2,0 мас.% Pd и 7,4 мас.% Au.

К 10,0 г носителя (C) при комнатной температуре приливают, при тщательном перемешивании, 15,0 мл 0,125 М водного раствора K2[Pd(CN)4]. Далее пропитанный носитель сушат при температуре 80-90°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 15,0 мл 0,250 М водного раствора [Au(pap)2]Cl. Молярное соотношение Pd:Au на поверхности носителя составляет 1:2. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Пример 5

Приготовление золотопалладиевого катализатора, нанесенного на пористый углерод, содержащего 2,0 мас.% Pd и 7,4 мас.% Au.

К 10,0 г носителя (C) при комнатной температуре приливают, при тщательном перемешивании, 15,0 мл 0,125 M водного раствора [Pd(dien)H2O](NO3)2. Далее пропитанный носитель сушат при температуре 80-90°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 15,0 мл 0,250 M водного раствора H[AuBr4]. Молярное соотношение Pd:Au на поверхности носителя составляет 1:2. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Пример 6

Приготовление золотопалладиевого катализатора, нанесенного на пористый оксид алюминия, содержащего 2,0 мас.% Pd и 7,4 мас.% Au.

К 10,0 г носителя (γ-Al2O3) при комнатной температуре приливают, при тщательном перемешивании, 12,0 мл 0,156 M водного раствора K2[Pd(C2O4)2]. Далее пропитанный носитель сушат при температуре 50-60°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 12,0 мл 0,312 M водного раствора [Au(HDMG)2]Cl. Молярное соотношение Pd:Au на поверхности носителя составляет 1:2. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Примеры 7-8 иллюстрируют испытание катализаторов.

Пример 7

Процесс синтеза пероксида водорода путем окисления водорода молекулярным кислородом осуществляют на золотопалладиевом катализаторе, нанесенном на пористый углерод.

Реакцию проводят в проточном реакторе с неподвижным слоем гранулированного Pd-Au/C катализатора (180 мг), приготовленного по примеру 1, через который пропускают двухфазный газожидкостный поток 1 мл/мин смеси метанола с водой и 10,4 мл/мин газовой смеси (4% H2, 96% O2). Реактор термостатируют при различных температурах. Полученные результаты приведены в таблице 1.

Таблица 1
Температура, °C Концентрация H2O2, моль/л Выход H2O2, %
2 4,3 26,3
-5 5,5 33,8
-10 6,3 38,3
-14 6,3 38,3

Таким образом, как видно из примеров и таблиц, предлагаемое изобретение позволяет эффективно осуществлять процесс синтеза пероксида водорода путем окисления водорода молекулярным кислородом, при этом предлагаемый способ приготовления золотопалладиевых катализаторов максимально упрощается, достигается высокодисперсное состояние катализатора и его высокая активность. Так как в отличие от большинства других органических растворителей метанол или вода не образуют взрывоопасных пероксидов, то достигаются еще и условия безопасного проведения процесса.

Пример 8

Процесс синтеза пероксида водорода путем окисления водорода молекулярным кислородом осуществляют на золотопалладиевом катализаторе, нанесенном на пористый кремний.

Реакцию проводят в проточном реакторе, в котором находится 100 мл метанола, взвесь катализатора, приготовленного по примеру 3, (50-200 мг), через который с помощью дисперсера пропускают газовую смесь (4 об.% H2, 96 об.% O2) со скоростью 50 мл/мин. Реактор термостатируют при -10°C с одним слоем катализатора. Полученные результаты приведены в таблице 2.

Таблица 2
Время реакции, ч Концентрация H2O2, моль/л Конверсия H2, % Селективность, %
1 4,6 21,5 43,4
2 11,0 22,8 57,0
3 15,3 20,9 41,8
4 20,5 21,5 50,0

Пористый кремний или углерод обладают необходимыми текстурными характеристиками, позволяющими использовать их в проточных реакторах, хорошо смачиваются метанолом и/или водой, обладают механической стойкостью по сравнению с многими другими оксидными носителями. Оба этих носителя не содержат примесей переходных металлов, которые катализируют разложение пероксида водорода. Химическая стойкость позволяет обрабатывать носители кислотами и окислителями и тем самым добиваться необходимой чистоты и кислотности поверхности. Термообработка двойной комплексной соли-предшественника, содержащей оба металла в одной молекуле, позволяет получать биметаллические частицы, минимизируя образование монометаллических частиц палладия, активно разлагающих перекись водорода.

Источник поступления информации: Роспатент

Showing 21-30 of 45 items.
20.01.2016
№216.013.a3f7

Инфракрасный амплитудно-фазовый плазмонный спектрометр

Изобретение относится к инфракрасной (ИК) спектроскопии поверхности металлов и полупроводников, а именно к определению амплитудно-фазовых спектров как самой поверхности, так и ее переходного слоя, путем измерения характеристик направляемых этой поверхностью поверхностных плазмонов (ПП)....
Тип: Изобретение
Номер охранного документа: 0002573617
Дата охранного документа: 20.01.2016
20.03.2016
№216.014.c64f

Аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в лабораторных условиях. Аэродинамическая труба содержит установленные симметрично с образованием общей форкамеры два дифференциальных мультипликатора давления,...
Тип: Изобретение
Номер охранного документа: 0002578052
Дата охранного документа: 20.03.2016
10.02.2016
№216.014.ced4

Штамм бактерий pseudomonas denitrificans, обладающий свойством утилизировать фенантрен

Изобретение относится к области микробиологии. Предложен бактериальный штамм Pseudomonas denitrificans ФБУН ГНЦ ВБ «Вектор» В-1299. Штамм утилизирует фенантрен за 14 суток на 83,2%, а в присутствии детергента ТВИН-20 - за 1 сутки на 100%. Штамм может быть использован для получения препарата для...
Тип: Изобретение
Номер охранного документа: 0002575064
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2f4b

Способ получения монокристаллов ромбической формы п-ацетотолуидина

Изобретение относится к фармацевтической промышленности, в частности к производству монокристаллов биологически активных веществ, которые могут быть использованы в качестве прекурсоров для синтеза фармацевтических соединений, а именно к способу получения монокристаллов ромбической формы...
Тип: Изобретение
Номер охранного документа: 0002580326
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.3868

Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия и способ измерения расхода газа с использованием этого устройства

Изобретение относится к технике исследования свойств и состава рабочего газа в высокоэнтальпийных установках кратковременного действия. Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия содержит герметично соединенные собственно пробоотборник с...
Тип: Изобретение
Номер охранного документа: 0002582805
Дата охранного документа: 27.04.2016
12.01.2017
№217.015.5d4f

Набор олигонуклеотидов-праймеров для получения первичной структуры f гена вирусов болезни ньюкасла класса i

Изобретение относится к биотехнологии и касается набора олигонуклеотидов-праймеров для получения первичной структуры F гена вирусов болезни Ньюкасла класса I. Представленный набор состоит из трех пар олигонуклеотидов, имеющих следующую структуру (5′→3′): Представленные олигонуклеотиды не дают...
Тип: Изобретение
Номер охранного документа: 0002590718
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8a12

Катализатор и процесс гидродеоксигенации растительного сырья с его использованием

Изобретение относится к катализаторам гидродеоксигенации и процессу гидродеоксигенации растительных масел, содержащих триглицериды жирных кислот, с целью получения углеводородов дизельной фракции. Катализатор для процесса гидродеоксигенации растительного сырья включает активный компонент, в...
Тип: Изобретение
Номер охранного документа: 0002602278
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8f01

Адаптированные пандемические штаммы вируса гриппа a/tomsk/273/2010-ma1(h1n1pdm09), a/tomsk/273/2010-ma2(h1n1pdm09) и a/tomsk/273/2010-ma3(h1n1pdm09) для оценки действия противовирусных препаратов (варианты)

Изобретение относится к разделу общей и медицинской вирусологии и касается вируса гриппа А. Получены новые адаптированные варианты пандемического вируса гриппа A(H1N1)pdm09 к организмам различных лабораторных животных, представленные три адаптированных варианта пандемического вируса гриппа...
Тип: Изобретение
Номер охранного документа: 0002605317
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.ad2e

Способ создания плёночного люминофора на основе акрилового полимера

Изобретение относится к светотехнике и может быть использовано при изготовлении светодиодов, используемых в лампах дневного света, светильниках, автомобильных фарах, архитектурном, дизайнерском или тепличном освещении. Акриловую основу смешивают с изостационатом-отвердителем в пропорции 1:1,...
Тип: Изобретение
Номер охранного документа: 0002612705
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b73b

Способ получения фотокатализатора для окисления монооксида углерода

Изобретение относится к области разработки способа получения фотокатализатора на основе диоксида титана, модифицированного частицами платины, проявляющего активность под действием ультрафиолетового излучения в реакции фотокаталитического окисления монооксида углерода при комнатной температуре....
Тип: Изобретение
Номер охранного документа: 0002614761
Дата охранного документа: 29.03.2017
Showing 21-30 of 48 items.
20.01.2016
№216.013.a3f7

Инфракрасный амплитудно-фазовый плазмонный спектрометр

Изобретение относится к инфракрасной (ИК) спектроскопии поверхности металлов и полупроводников, а именно к определению амплитудно-фазовых спектров как самой поверхности, так и ее переходного слоя, путем измерения характеристик направляемых этой поверхностью поверхностных плазмонов (ПП)....
Тип: Изобретение
Номер охранного документа: 0002573617
Дата охранного документа: 20.01.2016
20.03.2016
№216.014.c64f

Аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в лабораторных условиях. Аэродинамическая труба содержит установленные симметрично с образованием общей форкамеры два дифференциальных мультипликатора давления,...
Тип: Изобретение
Номер охранного документа: 0002578052
Дата охранного документа: 20.03.2016
10.02.2016
№216.014.ced4

Штамм бактерий pseudomonas denitrificans, обладающий свойством утилизировать фенантрен

Изобретение относится к области микробиологии. Предложен бактериальный штамм Pseudomonas denitrificans ФБУН ГНЦ ВБ «Вектор» В-1299. Штамм утилизирует фенантрен за 14 суток на 83,2%, а в присутствии детергента ТВИН-20 - за 1 сутки на 100%. Штамм может быть использован для получения препарата для...
Тип: Изобретение
Номер охранного документа: 0002575064
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2f4b

Способ получения монокристаллов ромбической формы п-ацетотолуидина

Изобретение относится к фармацевтической промышленности, в частности к производству монокристаллов биологически активных веществ, которые могут быть использованы в качестве прекурсоров для синтеза фармацевтических соединений, а именно к способу получения монокристаллов ромбической формы...
Тип: Изобретение
Номер охранного документа: 0002580326
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.3868

Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия и способ измерения расхода газа с использованием этого устройства

Изобретение относится к технике исследования свойств и состава рабочего газа в высокоэнтальпийных установках кратковременного действия. Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия содержит герметично соединенные собственно пробоотборник с...
Тип: Изобретение
Номер охранного документа: 0002582805
Дата охранного документа: 27.04.2016
12.01.2017
№217.015.5d4f

Набор олигонуклеотидов-праймеров для получения первичной структуры f гена вирусов болезни ньюкасла класса i

Изобретение относится к биотехнологии и касается набора олигонуклеотидов-праймеров для получения первичной структуры F гена вирусов болезни Ньюкасла класса I. Представленный набор состоит из трех пар олигонуклеотидов, имеющих следующую структуру (5′→3′): Представленные олигонуклеотиды не дают...
Тип: Изобретение
Номер охранного документа: 0002590718
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8a12

Катализатор и процесс гидродеоксигенации растительного сырья с его использованием

Изобретение относится к катализаторам гидродеоксигенации и процессу гидродеоксигенации растительных масел, содержащих триглицериды жирных кислот, с целью получения углеводородов дизельной фракции. Катализатор для процесса гидродеоксигенации растительного сырья включает активный компонент, в...
Тип: Изобретение
Номер охранного документа: 0002602278
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8f01

Адаптированные пандемические штаммы вируса гриппа a/tomsk/273/2010-ma1(h1n1pdm09), a/tomsk/273/2010-ma2(h1n1pdm09) и a/tomsk/273/2010-ma3(h1n1pdm09) для оценки действия противовирусных препаратов (варианты)

Изобретение относится к разделу общей и медицинской вирусологии и касается вируса гриппа А. Получены новые адаптированные варианты пандемического вируса гриппа A(H1N1)pdm09 к организмам различных лабораторных животных, представленные три адаптированных варианта пандемического вируса гриппа...
Тип: Изобретение
Номер охранного документа: 0002605317
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.ad2e

Способ создания плёночного люминофора на основе акрилового полимера

Изобретение относится к светотехнике и может быть использовано при изготовлении светодиодов, используемых в лампах дневного света, светильниках, автомобильных фарах, архитектурном, дизайнерском или тепличном освещении. Акриловую основу смешивают с изостационатом-отвердителем в пропорции 1:1,...
Тип: Изобретение
Номер охранного документа: 0002612705
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b73b

Способ получения фотокатализатора для окисления монооксида углерода

Изобретение относится к области разработки способа получения фотокатализатора на основе диоксида титана, модифицированного частицами платины, проявляющего активность под действием ультрафиолетового излучения в реакции фотокаталитического окисления монооксида углерода при комнатной температуре....
Тип: Изобретение
Номер охранного документа: 0002614761
Дата охранного документа: 29.03.2017
+ добавить свой РИД