×
20.08.2014
216.012.ecec

СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ ПОЛУЧЕНИЯ ПЕРОКСИДА ВОДОРОДА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения катализатора окисления водорода молекулярным кислородом до пероксида водорода, включающему стадии нанесения предшественников металлов, а именно золота и палладия, на носитель и термообработки. При этом в качестве предшественников золота и палладия используют анионные комплексы [Pd(CO)], [Pd(CN)], [PdCl], [AuCl], [AuBr] в сочетании с катионными комплексами [Pd(dien)HO], [Pd(en)], [Au(pap)], [Au(en)], [Au(dien)Cl], [Au(HDMG)] (где: pap = 2-фенилазофенил, en = этилендиамин, dien = диэтилентриамин, HDMG = однозарядный анион диметилглиоксима НОН=С(-CH)-C(-CH)=NO), которые образуют при взаимодействии друг с другом малорастворимое в воде соединение комплексной соли. Также изобретение относится к способу получения пероксида водорода путем окисления водорода молекулярным кислородом с использованием полученного катализатора. Изобретение позволяет селективно проводить синтез пероксида водорода благодаря высокой активности получаемых катализаторов. 2 н. и 5 з.п. ф-лы, 2 табл., 8 пр.
Реферат Свернуть Развернуть

Изобретение относится к катализатору и процессу каталитического метода синтеза пероксида водорода путем окисления водорода кислородом.

Пероксид водорода - перспективный окислитель, который можно использовать в очистке сточных вод, в синтезе, как портативный источник кислорода и во многих других областях. Основной метод получения данного продукта - это антрахиноновый процесс, который рентабелен только при больших объемах производства. Недостатки данного способа - высокая стоимость теплообменного и экстракционного оборудования и большой расход дорогого хинона.

Альтернативным способом синтеза пероксида водорода является метод прямого синтеза из водорода и кислорода с использованием палладиевых катализаторов (С. Samanta // Appl. Catal. A. 250 (2008) 133-149). Недостатком данного процесса является низкая селективность, из-за чего производительность оказывается низкой.

Известно, что добавки золота к палладиевому катализатору существенно увеличивают селективность процесса. Обычно катализаторы готовят совместной пропиткой носителей (Al2O3, TiO2, C, SiO2 и др.) растворами солей PdCl2 и HAuCl4 с последующей термообработкой [J.K. Edwards // J. Catal. 292 (2012) 227-238; G.J. Hutchings // Science 323 (2009) 1037-1041]. Недостатком данного метода приготовления катализаторов является то, что не обеспечивается селективный контакт атомов золота с атомами палладия, в результате чего снижается производительность и селективность катализаторов.

Недостатком известного метода (US 6387346, C01B 15/01, 14.05.2002), где активный компонент катализатора синтезировали методом распылительной сушки из кислого (pH=1.5-2) совместного раствора хлоридов Pd и Au, является высокая температура закалки металлических наночастиц 900-1050°C, использованная для образования сплавов Au и Pd. Применение таких температур приводит к образованию слишком крупных частиц и снижению производительности катализатора. Кроме того, нанесение сформированных наночастиц металлов проводилось пропиткой носителя золем частиц, что не обеспечивает равномерного распределения частиц активного компонента по поверхности носителя и может приводить к снижению их дисперсности, что также снижает производительность катализатора.

Изобретение решает задачу по созданию золотопалладиевого катализатора, обладающего более высокой активностью и селективностью, чем известные катализаторы.

Задача решается способом приготовления золотопалладиевого катализатора окисления водорода молекулярным кислородом до пероксида водорода, включающим стадии нанесения предшественников металлов на носитель и последующей термообработки, при котором в качестве предшественников золота и палладия используют анионные и катионные комплексы, которые образуют при взаимодействии друг с другом малорастворимое соединение комплексной соли.

В качестве предшественников золота и палладия могут быть использованы анионные комплексы [Pd(C2O4)2]2-, [Pd(CN)4]2-, [PdCl4]2-, [AuCl4]-, [AuBr4]- в сочетании с катионными комплексами [Pd(dien)H2O]2+, [Pd(en)2]2+, [Au(pap)2]+, [Au(en)2]3+, [Au(dien)Cl]2+, [Au(HDMG)2]+ (где: pap=2-фенилазофенил, en=этилендиамин, dien=диэтилентриамин, HDMG=однозарядный анион диметилглиоксима HON=C(-CH3)-C(-CH3)=NO-), которые образуют при взаимодействии друг с другом малорастворимое в воде соединение комплексной соли.

Предпочтительно, например, в качестве катионного комплекса может быть использован [Au(dien)Cl]2+, а в качестве анионного комплекса может быть использован [PdCl4]2-, при взаимодействии друг с другом образующие [Au(dien)Cl][PdCl4]. При дальнейшей термообработке происходит образование биметаллических частиц.

В качестве носителя для катализатора могут быть использованы, например, оксиды переходных металлов, пористый кремний или углерод, предпочтительно пористый кремний или углерод. Обработку носителя растворами солей золота и меди можно проводить в любой последовательности, например, вначале на носитель наносят катионную часть, а затем анионную, или вначале на носитель наносят анионную часть, а затем катионную. Или же путем нанесения сформированной комплексной соли в виде раствора, например, в полярном органическом растворителе.

Задача решается также способом синтеза пероксида водорода путем окисления водорода молекулярным кислородом в присутствии жидкости и катализатора при температурах выше - 20°C, на катализаторе, описанном выше. В качестве жидкости при проведении синтеза могут быть использованы, например, метанол и/или вода.

Сущность изобретения иллюстрируется следующими примерами и таблицами.

Примеры 1-6 иллюстрируют приготовление катализаторов.

Пример 1

Приготовление золотопалладиевого катализатора, нанесенного на пористый углерод, содержащего 2,0 мас.% Pd и 3,7 мас.% Au.

К 10,0 г носителя (C) при комнатной температуре приливают при тщательном перемешивании 15,0 мл 0,125 M водного раствора K2[PdCl4]. Далее пропитанный носитель сушат при температуре 80-90°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 15,0 мл 0,125 M водного раствора [Au(dien)Cl]Cl2. Молярное соотношение Pd:Au на поверхности носителя составляет 1:1. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Пример 2

Приготовление золотопалладиевого катализатора, нанесенного на пористый оксид алюминия, содержащего 2,0 мас.% Pd и 2,5 мас.% Au.

К 10,0 г носителя (γ-Al2O3) при комнатной температуре приливают, при тщательном перемешивании, 12,0 мл 0,104 M водного раствора [Au(en)2]Cl3. Далее пропитанный носитель сушат при температуре 50-60°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 12,0 мл 0,156 М водного раствора K2[Pd(C2O4)2]. Молярное соотношение Pd:Au на поверхности носителя составляет 3:2. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Пример 3

Приготовление золотопалладиевого катализатора, нанесенного на пористый кремний, содержащего 2,0 мас.% Pd и 7,4 мас.% Au.

1,7 г соли [Pd(en)2][AuCl4]2 растворяют в 100 мл ацетона. Далее к этому раствору при -15°C добавляют 10 г пористого кремния. Полученную суспензию выдерживают 1 ч при -15°C при интенсивном перемешивании. После чего температуру суспензии медленно (0,25°C/мин) поднимают до комнатной. Полученный осадок фильтруют, промывают водой, этанолом и ацетоном, сушат на воздухе.

После чего проводят термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч.

Пример 4

Приготовление золотопалладиевого катализатора, нанесенного на пористый углерод, содержащего 2,0 мас.% Pd и 7,4 мас.% Au.

К 10,0 г носителя (C) при комнатной температуре приливают, при тщательном перемешивании, 15,0 мл 0,125 М водного раствора K2[Pd(CN)4]. Далее пропитанный носитель сушат при температуре 80-90°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 15,0 мл 0,250 М водного раствора [Au(pap)2]Cl. Молярное соотношение Pd:Au на поверхности носителя составляет 1:2. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Пример 5

Приготовление золотопалладиевого катализатора, нанесенного на пористый углерод, содержащего 2,0 мас.% Pd и 7,4 мас.% Au.

К 10,0 г носителя (C) при комнатной температуре приливают, при тщательном перемешивании, 15,0 мл 0,125 M водного раствора [Pd(dien)H2O](NO3)2. Далее пропитанный носитель сушат при температуре 80-90°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 15,0 мл 0,250 M водного раствора H[AuBr4]. Молярное соотношение Pd:Au на поверхности носителя составляет 1:2. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Пример 6

Приготовление золотопалладиевого катализатора, нанесенного на пористый оксид алюминия, содержащего 2,0 мас.% Pd и 7,4 мас.% Au.

К 10,0 г носителя (γ-Al2O3) при комнатной температуре приливают, при тщательном перемешивании, 12,0 мл 0,156 M водного раствора K2[Pd(C2O4)2]. Далее пропитанный носитель сушат при температуре 50-60°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 12,0 мл 0,312 M водного раствора [Au(HDMG)2]Cl. Молярное соотношение Pd:Au на поверхности носителя составляет 1:2. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Примеры 7-8 иллюстрируют испытание катализаторов.

Пример 7

Процесс синтеза пероксида водорода путем окисления водорода молекулярным кислородом осуществляют на золотопалладиевом катализаторе, нанесенном на пористый углерод.

Реакцию проводят в проточном реакторе с неподвижным слоем гранулированного Pd-Au/C катализатора (180 мг), приготовленного по примеру 1, через который пропускают двухфазный газожидкостный поток 1 мл/мин смеси метанола с водой и 10,4 мл/мин газовой смеси (4% H2, 96% O2). Реактор термостатируют при различных температурах. Полученные результаты приведены в таблице 1.

Таблица 1
Температура, °C Концентрация H2O2, моль/л Выход H2O2, %
2 4,3 26,3
-5 5,5 33,8
-10 6,3 38,3
-14 6,3 38,3

Таким образом, как видно из примеров и таблиц, предлагаемое изобретение позволяет эффективно осуществлять процесс синтеза пероксида водорода путем окисления водорода молекулярным кислородом, при этом предлагаемый способ приготовления золотопалладиевых катализаторов максимально упрощается, достигается высокодисперсное состояние катализатора и его высокая активность. Так как в отличие от большинства других органических растворителей метанол или вода не образуют взрывоопасных пероксидов, то достигаются еще и условия безопасного проведения процесса.

Пример 8

Процесс синтеза пероксида водорода путем окисления водорода молекулярным кислородом осуществляют на золотопалладиевом катализаторе, нанесенном на пористый кремний.

Реакцию проводят в проточном реакторе, в котором находится 100 мл метанола, взвесь катализатора, приготовленного по примеру 3, (50-200 мг), через который с помощью дисперсера пропускают газовую смесь (4 об.% H2, 96 об.% O2) со скоростью 50 мл/мин. Реактор термостатируют при -10°C с одним слоем катализатора. Полученные результаты приведены в таблице 2.

Таблица 2
Время реакции, ч Концентрация H2O2, моль/л Конверсия H2, % Селективность, %
1 4,6 21,5 43,4
2 11,0 22,8 57,0
3 15,3 20,9 41,8
4 20,5 21,5 50,0

Пористый кремний или углерод обладают необходимыми текстурными характеристиками, позволяющими использовать их в проточных реакторах, хорошо смачиваются метанолом и/или водой, обладают механической стойкостью по сравнению с многими другими оксидными носителями. Оба этих носителя не содержат примесей переходных металлов, которые катализируют разложение пероксида водорода. Химическая стойкость позволяет обрабатывать носители кислотами и окислителями и тем самым добиваться необходимой чистоты и кислотности поверхности. Термообработка двойной комплексной соли-предшественника, содержащей оба металла в одной молекуле, позволяет получать биметаллические частицы, минимизируя образование монометаллических частиц палладия, активно разлагающих перекись водорода.

Источник поступления информации: Роспатент

Showing 1-10 of 45 items.
10.02.2013
№216.012.234b

Способ получения порошка оксида висмута (iii)

Изобретение может быть использовано в химической технологии. Способ получения порошка оксида висмута(III) включает окисление висмута кислородом во вращающемся реакторе с контролируемой атмосферой. При этом окислению подвергают смесь металлического висмута и порошка оксида висмута. Порошок...
Тип: Изобретение
Номер охранного документа: 0002474537
Дата охранного документа: 10.02.2013
27.03.2013
№216.012.30fe

Способ получения порошка оксида висмута (iii)

Изобретение может быть использовано в химической технологии. Способ получения порошка оксида висмута (III) включает окисление висмута кислородом во вращающемся реакторе с контролируемой атмосферой. Расплав висмута окисляют кислородом до получения оксидной смеси с содержанием висмута не более 93...
Тип: Изобретение
Номер охранного документа: 0002478080
Дата охранного документа: 27.03.2013
10.04.2014
№216.012.af69

Способ приготовления биметаллического катализатора окисления

Изобретение относится к области катализа. Описан способ приготовления биметаллического золотомедного катализатора окисления, включающий последовательные стадии нанесения предшественников металлов на носитель, и термообработки, в качестве предшественников золота и меди используют анионные и...
Тип: Изобретение
Номер охранного документа: 0002510620
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.bea6

Способ извлечения висмута и германия из отходов производства кристаллов ортогерманата висмута

Изобретение относится к области гидрометаллургии рассеянных элементов, а именно к способу извлечения висмута и германия из вторичных источников сырья, образующегося при механической обработке оксидных материалов, в частности к способу извлечения висмута и германия из масло-абразивных отходов...
Тип: Изобретение
Номер охранного документа: 0002514546
Дата охранного документа: 27.04.2014
27.08.2014
№216.012.ee8d

Способ сопряжения набора вторичных плазмон-поляритонных каналов связи терагерцового диапазона с основным каналом

Изобретение относится к области средств коммуникации, в которых перенос информации осуществляется поверхностными электромагнитными волнами, точнее поверхностными плазмон-поляритонами (ППП) терагерцового (ТГц) диапазона, направляемыми плоской поверхностью проводящей подложки, и может найти...
Тип: Изобретение
Номер охранного документа: 0002526888
Дата охранного документа: 27.08.2014
10.10.2014
№216.012.faf7

Способ получения монокристаллов солей серотонина кристаллизацией из водных растворов

Изобретение относится к фармацевтической и пищевой отраслям промышленности, в частности к производству биологически активных веществ, которые могут быть использованы как биологически активные добавки. Способ включает растворение в воде исходной соли и получение насыщенного при температуре...
Тип: Изобретение
Номер охранного документа: 0002530093
Дата охранного документа: 10.10.2014
20.10.2014
№216.013.009e

Способ калибровки криогенного детектора частиц на основе жидкого аргона и устройство для реализации способа

Изобретение относится к устройствам для регистрации ядерных излучений, в частности к криогенным детекторам на основе жидкого аргона, и может быть использовано при решении ряда фундаментальных физических задач, а также при регистрации ядерных излучений в системах ядерной энергетики,...
Тип: Изобретение
Номер охранного документа: 0002531550
Дата охранного документа: 20.10.2014
20.11.2014
№216.013.0971

Способ получения порошковых препаратов, содержащих серотонин, из неплодовых частей облепихи

Изобретение относится к фармацевтической и пищевой промышленности, в частности к способу получения порошковых препаратов, содержащих серотонин, из неплодовых частей облепихи. Данные препараты могут найти применение в качестве биологически активных добавок. Предлагаемый способ включает...
Тип: Изобретение
Номер охранного документа: 0002533818
Дата охранного документа: 20.11.2014
20.12.2014
№216.013.1197

4-изопропил-7-метокси-2а-метил-2,2а,2а,3,5а,9b-гексагидрофлуорено[9,1-bc]фуран-8-ол, обладающий противоопухолевой активностью

Изобретение относится к новому соединению, а именно 2,2a,2a,3,5a,9b-гексагидрофлуорено[9,1-bc]фуран-8-олу формулы 1
Тип: Изобретение
Номер охранного документа: 0002535926
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.1549

Производные усниновой кислоты как противоопухолевые агенты

Изобретение относится к области медицины и фармацевтики и касается применения соединений, представляющих собой бензилиденфураноновые производные (+)-усниновой кислоты формулы 6-13 в качестве противоопухолевых агентов. Соединения проявляют цитотоксическую активность в отношении опухолевых...
Тип: Изобретение
Номер охранного документа: 0002536873
Дата охранного документа: 27.12.2014
Showing 1-10 of 48 items.
10.02.2013
№216.012.234b

Способ получения порошка оксида висмута (iii)

Изобретение может быть использовано в химической технологии. Способ получения порошка оксида висмута(III) включает окисление висмута кислородом во вращающемся реакторе с контролируемой атмосферой. При этом окислению подвергают смесь металлического висмута и порошка оксида висмута. Порошок...
Тип: Изобретение
Номер охранного документа: 0002474537
Дата охранного документа: 10.02.2013
27.03.2013
№216.012.30fe

Способ получения порошка оксида висмута (iii)

Изобретение может быть использовано в химической технологии. Способ получения порошка оксида висмута (III) включает окисление висмута кислородом во вращающемся реакторе с контролируемой атмосферой. Расплав висмута окисляют кислородом до получения оксидной смеси с содержанием висмута не более 93...
Тип: Изобретение
Номер охранного документа: 0002478080
Дата охранного документа: 27.03.2013
10.04.2014
№216.012.af69

Способ приготовления биметаллического катализатора окисления

Изобретение относится к области катализа. Описан способ приготовления биметаллического золотомедного катализатора окисления, включающий последовательные стадии нанесения предшественников металлов на носитель, и термообработки, в качестве предшественников золота и меди используют анионные и...
Тип: Изобретение
Номер охранного документа: 0002510620
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.bea6

Способ извлечения висмута и германия из отходов производства кристаллов ортогерманата висмута

Изобретение относится к области гидрометаллургии рассеянных элементов, а именно к способу извлечения висмута и германия из вторичных источников сырья, образующегося при механической обработке оксидных материалов, в частности к способу извлечения висмута и германия из масло-абразивных отходов...
Тип: Изобретение
Номер охранного документа: 0002514546
Дата охранного документа: 27.04.2014
27.08.2014
№216.012.ee8d

Способ сопряжения набора вторичных плазмон-поляритонных каналов связи терагерцового диапазона с основным каналом

Изобретение относится к области средств коммуникации, в которых перенос информации осуществляется поверхностными электромагнитными волнами, точнее поверхностными плазмон-поляритонами (ППП) терагерцового (ТГц) диапазона, направляемыми плоской поверхностью проводящей подложки, и может найти...
Тип: Изобретение
Номер охранного документа: 0002526888
Дата охранного документа: 27.08.2014
10.10.2014
№216.012.faf7

Способ получения монокристаллов солей серотонина кристаллизацией из водных растворов

Изобретение относится к фармацевтической и пищевой отраслям промышленности, в частности к производству биологически активных веществ, которые могут быть использованы как биологически активные добавки. Способ включает растворение в воде исходной соли и получение насыщенного при температуре...
Тип: Изобретение
Номер охранного документа: 0002530093
Дата охранного документа: 10.10.2014
20.10.2014
№216.013.009e

Способ калибровки криогенного детектора частиц на основе жидкого аргона и устройство для реализации способа

Изобретение относится к устройствам для регистрации ядерных излучений, в частности к криогенным детекторам на основе жидкого аргона, и может быть использовано при решении ряда фундаментальных физических задач, а также при регистрации ядерных излучений в системах ядерной энергетики,...
Тип: Изобретение
Номер охранного документа: 0002531550
Дата охранного документа: 20.10.2014
20.11.2014
№216.013.0971

Способ получения порошковых препаратов, содержащих серотонин, из неплодовых частей облепихи

Изобретение относится к фармацевтической и пищевой промышленности, в частности к способу получения порошковых препаратов, содержащих серотонин, из неплодовых частей облепихи. Данные препараты могут найти применение в качестве биологически активных добавок. Предлагаемый способ включает...
Тип: Изобретение
Номер охранного документа: 0002533818
Дата охранного документа: 20.11.2014
20.12.2014
№216.013.1197

4-изопропил-7-метокси-2а-метил-2,2а,2а,3,5а,9b-гексагидрофлуорено[9,1-bc]фуран-8-ол, обладающий противоопухолевой активностью

Изобретение относится к новому соединению, а именно 2,2a,2a,3,5a,9b-гексагидрофлуорено[9,1-bc]фуран-8-олу формулы 1
Тип: Изобретение
Номер охранного документа: 0002535926
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.1549

Производные усниновой кислоты как противоопухолевые агенты

Изобретение относится к области медицины и фармацевтики и касается применения соединений, представляющих собой бензилиденфураноновые производные (+)-усниновой кислоты формулы 6-13 в качестве противоопухолевых агентов. Соединения проявляют цитотоксическую активность в отношении опухолевых...
Тип: Изобретение
Номер охранного документа: 0002536873
Дата охранного документа: 27.12.2014
+ добавить свой РИД