×
20.08.2014
216.012.ebd0

Результат интеллектуальной деятельности: СПОСОБ СПЕКРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ИОНОВ МЕТАЛЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к мониторингу окружающей среды и биологических объектов на предмет определения содержания ионов металлов в жидких средах с использованием фотохромных соединений. В способе спектрофотометрического определения ионов металлов в жидких средах с использованием фотохромных соединений из класса хроменов за счет образования комплексов между фотоиндуцированной мероцианиновой формой этих соединений и ионами металлов в качестве хроменов используются бисхромены, такие как 2,2,11,11-тетракис(4-метоксифенилфенил)диокса(1,12)трифенилен, 2,2,8,8-тетракис(4-метоксифенил)диокса(1,7)хризен, 3,3,11,11-тетра-(4-метоксифенил)-3,11-дигидро-4,10-диоксадибензо[a,h]антрацен, 3,3,10,10-тетра-(4-метоксифенил)-3,10-дигидро-4,11-диоксадибензо[а,h]антрацен. Достигается повышение селективности определения. 24 пр., 1 табл., 6 ил.
Основные результаты: Способ спектрофотометрического определения ионов металлов в жидких средах с использованием фотохромных соединений из класса хроменов за счет образования комплексов между фотоиндуцированной мероцианиновой формой этих соединений и ионами металлов, отличающийся тем, что в качестве хроменов используются бисхромены, такие как 2,2,11,11-тетракис(4-метоксифенилфенил)-диокса(1,12)трифенилен (Хр 1), 2,2,8,8-тетракис(4-метоксифенил)диокса(1,7)хризен (Хр 2), 3,3,11,11-тетра-(4-метоксифенил)-3,11-дигидро-4,10-диоксадибензо[а,h]антрацен (Хр 3), 3,3,10,10-тетра-(4-метоксифенил)-3,10-дигидро-4,11-диоксадибензо[а,h]антрацен (Хр 4)

Настоящее изобретение относится к созданию средств и способов мониторинга окружающей среды и биологических объектов на предмет определения содержания ионов металлов в жидких средах с использованием фотохромных соединений.

В качестве фотохромных соединений используются соединения из классов спиропиранов (Z=C) (а), спирооксазинов (Z=N) (а) и хроменов (б), испытывающих обратимые фотоиндуцированные превращения (рис.1) с образованием мероцианиновой формы, образующей комплексы с ионами металлов.

Известен способ спектрофотометрического определения ионов металлов, основанный на спектральном сдвиге полос поглощения мероцианиновой формы спиропиранов, величина которого зависит от природы металла в результате комплексообразования образующейся мероцианиновой формы с ионами металлов [А.К., Gorner H. Chem. Phys. 1998. V.237. N 2. P.425].

Данное изобретение относится к разработке нового способа спектрофотометрического селективного определения ионов металлов путем их комплексообразования с фотоиндуцированной мероцианиновой формой хроменов.

Наиболее близким прототипом изобретения выбран способ спектрофотометрического определения содержания ионов металлов в растворах с использованием фотохромного хромена - 3-(4-диметиламинофенил)-3-(4-диметиламинонафтил)-3Н-нафто[2,1-b]пирана [Barachevsky V.A., Strokach Yu.P., Puankov Yu.A., Kobeleva O.I., Valova T.M., Levchenko K.S., Yarovenko V.N., Krayushkin M.M. ARKIVOC. 2009. N. IX. P.70]:

Недостатком известного способа является неприемлемая в ряде случаев селективность определения содержания ионов металлов из-за незначительных трудно выявляемых спектральных сдвигов при комплексообразовании мероцианиновой формы с ионами металлов. Это затрудняет, а в ряде случаев исключает определение конкретных ионов металлов в жидких средах, содержащих смесь ионов.

Задачей настоящего изобретения является повышение селективности спектрофотометрического определения ионов металлов с использованием фотохромных соединений из класса хроменов.

Поставленная задача достигается тем, что в способе спектрофотометрического определения ионов металлов в жидких средах с использованием фотохромных соединений из класса хроменов за счет образования комплексов между фотоиндуцированной мероцианиновой формой этих соединений и ионами металлов качестве хроменов используются бисхромены, такие как 2,2,11,11-тетракис(4-метоксифенилфенил)-диокса(1,12)трифенилен (Хр1), 2,2,8,8-тетракис(4-метоксифенил) диокса(1,7)хризен (Хр 2), 3,3,11,11-тетра-(4-метоксифенил)-3,11-дигидро-4,10-диоксадибензо[а,h] антрацен (Хр 3), 3,3,10,10-тетра-(4-метоксифенил)-3,10-дигидро-4,11-диоксадибензо[а,h]антрацен (Хр 4).

Новизна заявленных признаков состоит в способе спектрофотометрического определения содержания ионов металлов в жидких средах с использованием фотохромных бисхроменов, которые обеспечивают определение ионов металлов по появлению новой полосы поглощения комплексов, образующихся между фотоиндуцированной формой и ионами металлов.

Изучение и анализ известной научно-технической и патентной литературы показал, что полной совокупности признаков, характеризующих данные технические решения, не известно, т.е. заявляемые решения отвечают критерию "новизна".

Сущность изобретения поясняется примерами и рисунками.

На рис.1 представлена обобщенная схема фотохромных превращений спиросоединений и хроменов, а также структурные формулы исследованных соединений.

На рис.2 представлены спектры поглощения раствора соединения Хр 1 в ацетонитриле до (1) и после УФ облучения(2-4).

На рис.3 представлены спектры поглощения раствора соединения Хр 1 в ацетонитриле в присутствии ионов Mg+2 при соотношении концентраций L/Ме=1:100 до (1), после УФ облучения (2-4).

На рис.4 представлены спектры поглощения раствора соединения Хр 1 в ацетонитриле в присутствии ионов Ag+2 при соотношении концентраций L/Ме=1:100 до (1), после УФ облучения (2-10).

На рис.5 представлены спектры поглощения раствора соединения Хр1 в ацетонитриле в присутствии ионов Ag+2 при соотношении концентраций L/Ме=1:100 до (1), после УФ облучения (2-4).

На рис.6 представлены спектры поглощения раствора соединения Хр 1 в ацетонитриле в присутствии ионов Ag+2 при соотношении концентраций L/Ме=1:100 до (1), после УФ облучения (2-6).

Изобретение иллюстрируется следующими примерами

Пример 1. 2,2,11,11-Тетракис(4-метоксифенилфенил)-диокса(1,12)трифенилен (Хр 1) растворяют в ацетонитриле (С=2·10-4 М). Измеряют спектр поглощения раствора, определяют максимумы полос поглощения. Затем раствор облучают УФ светом лампы LC-4 фирмы "Hamamatsu" через стеклянный светофильтр УФС-1, повторно измеряют спектр поглощения раствора и определяют максимумы полос поглощения в видимой области спектра. Полученные экспериментальные данные заносят в таблицу 1. Фотоиндуцированные спектральные изменения представляют в виде рис.2.

Пример 2. В раствор, приготовленный по п.1, добавляют раствор катионов Mg2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1 и вносят данные в табл.1. Фотоиндуцированные спектральные изменения представляют в виде рис.3. Из табл.1 и рис.3 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионов металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 3. В раствор, приготовленный по п.1, добавляют раствор катионов Ag2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1 и вносят данные в табл.1 и представляют в виде рис.4. Из табл.1 и рис.4 следует, что в спектре фотоиндуцированного поглощения кроме полосы поглощения при 490 нм, близкой к положению полосы поглощения мероцианиновой формы хромена, появляется вторая полоса поглощения с максимумом при 665 нм, свидетельствующая об образовании комплекса с ионом Ag2+.

Пример 4. В раствор, приготовленный по п.1, добавляют раствор катионов Li+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1, вносят данные в табл.1. Из табл.1 видно, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 5. В раствор, приготовленный по п.1, добавляют раствор катионов Ва2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 6. В раствор, приготовленный по п.1, добавляют раствор катионов Tb3+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1 и вносят данные в табл.1. Из табл.1 и рис.5 следует, что в спектре фотоиндуцированного поглощения кроме полосы поглощения при 480 нм, близкой к положению полосы поглощения мероцианиновой формы хромена, появляется вторая полоса поглощения с максимумом при 715 нм, свидетельствующая об образовании комплекса.

Пример 7. В раствор, приготовленный по п.1, добавляют раствор катионов Pb2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1 и вносят данные в табл.1. Из табл.1 и рис.6 следует, что в спектре фотоиндуцированного поглощения кроме полосы поглощения при 480 нм, близкой к положению полосы поглощения мероцианиновой формы хромена, появляется вторая полоса поглощения с максимумом при 645 нм, свидетельствующая об образовании комплекса.

Пример 8. В раствор, приготовленный по п.1, добавляют раствор катионов Cd2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы при 480 нм практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 9. 2,2,8,8-Тетракис(4-метоксифенил)диокса(1,7)хризен (Хр 2) растворяют в ацетонитриле (С=2·10-4 М). Измеряют спектр поглощения раствора, определяют максимумы полос поглощения. Затем раствор облучают УФ светом лампы LC-4 фирмы "Hamamatsu" через стеклянный светофильтр УФС-1, повторно измеряют спектр поглощения раствора и определяют максимумы полос поглощения в видимой области спектра. Полученные экспериментальные данные заносят в табл.1.

Пример 10. В раствор, приготовленный по п.9, добавляют раствор катионов Mg2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.9 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы располагается при 510 нм и практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 11. В раствор, приготовленный по п.9, добавляют раствор катионов Ag2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.9 и вносят данные в табл.1. Из табл.1 следует, что в спектре фотоиндуцированного поглощения кроме полосы поглощения при 490 нм, близкой к положению полосы поглощения мероцианиновой формы хромена, появляется вторая полоса поглощения с максимумом при 685 нм, свидетельствующая об образовании комплекса.

Пример 12. В раствор, приготовленный по п.9, добавляют раствор катионов Li+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.9 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 13. В раствор, приготовленный по п.9, добавляют раствор катионов Ва2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.9 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 14. 3,3,11,11-Тетра-(4-метоксифенил)-3,11-дигидро-4,10-диоксадибензо[а,h]антрацен (Хр 3) растворяют в ацетонитриле (С=2·10-4 М). Измеряют спектр поглощения раствора, определяют максимумы полос поглощения. Затем раствор облучали УФ светом лампы LC-4 фирмы "Hamamatsu" через стеклянный светофильтр УФС-1, повторно измеряют спектр поглощения раствора и определяют максимум полос поглощения в видимой области спектра, который располагался при 490 нм. Полученные экспериментальные данные заносят в табл.1.

Пример 15. В раствор, приготовленный по п.14, добавляют раствор катионов Mg2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.14 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы располагается при 485 нм и практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 16. В раствор, приготовленный по п.14, добавляют раствор катионов Ag2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.14 и вносят данные в табл.1. Из табл.1 следует, что в спектре фотоиндуцированного поглощения кроме полосы поглощения при 490 нм, совпадающей с полосой поглощения мероцианиновой формы хромена, появляется вторая полоса поглощения с максимумом при 735 нм, свидетельствующая об образовании комплекса.

Пример 17. В раствор, приготовленный по п.14, добавляют раствор катионов Ва2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.14 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 18. В раствор, приготовленный по п.14, добавляют раствор катионов Tb3+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.14 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 19. 3,3,10,10-Тетра-(4-метоксифенил)-3,10-дигидро-4,11-диоксадибензо[а,h]антрацен (Хр 4) растворяют в ацетонитриле (С=2·10-4 М). Измеряют спектр поглощения раствора, определяют максимумы полос поглощения. Затем раствор облучают УФ светом лампы LC-4 фирмы "Hamamatsu" через стеклянный светофильтр УФС-1, повторно измеряют спектр поглощения раствора и определяют максимум полосы поглощения в видимой области спектра, который располагается при 505 нм. Полученные экспериментальные данные заносят в табл.1.

Пример 20. В раствор, приготовленный по п.19, добавляют раствор катионов Mg2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.19 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы располагается при 510 нм и практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 21. В раствор, приготовленный по п.19, добавляют раствор катионов Ag2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.19 и вносят данные в табл.1. Из табл.1 следует, что в спектре фотоиндуцированного поглощения кроме полосы поглощения при 505 нм, близкой к положению полосы поглощения мероцианиновой формы хромена, появляется вторая полоса поглощения с максимумом при 745 нм, свидетельствующая об образовании комплекса.

Пример 22. В раствор, приготовленный по п.19, добавляют раствор катионов Tb3+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.19 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 23. В раствор, приготовленный по п.19, добавляют раствор катионов Pb2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.19 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 24. В раствор, приготовленный по п.19, добавляют раствор катионов Cd2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.19 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Таблица 1.
Спектральные характеристики комплексообразования между мероцианиновой формой бисхроменов и катионами металлов. Концентрация фотохромных соединений С=2·10-4 М, соотношение их концентраций и катионов металлов 1:100.
Соединение Катион металла , нм , нм (в видимой области спектра)
Хр 1 - 365,385 485
Mg2+ 365,385 485
Ag2+ 365,385 490,665
Li+ 365, 385 480
Ва2+ 365,385 485
Tb3+ 365,385 480,715

Pb2+ 365,385 480, 645
Cd2+ 365,385 480
Хр 2 - 380,395 505
Mg2+ 380,395 510
Ag2+ 380,395 490,685
Li+ 360,400 510
Ba2+ 380,395 505
Хр 3 - 425,450 490
Mg2+ 425,450 485
Ag2+ 425,450 490,735
Ba2+ 425,450 490
Tb3+ 425,450 495
Хр 4 - 280,425,450 505
Mg2+ 280,425, 450 510
Ag2+ 280,425, 455 505, 745
Tb3+ 280,425,450 510
Pb2+ 280,425,450 510
Cd2+ 280,425,450 510
Примечание: и - длины волн максимумов полос поглощения исходной и фотоиндуцированной форм фотохромного соединения и его комплексов с ионами металлов

Как видно из приведенных примеров, использование бисхроменов обеспечивает селективное определение ионов металлов в результате комплексообразования бисхроменов определенной структуры с конкретными ионами металлов по появлению новой полосы поглощения, в частности 2,2,11,11-тетракис(4-метоксифенилфенил)-диокса(1,12)трифенилен (Хр 1) обеспечивает селективное определение ионов Ag2+, Tb3+ и Pb2+, а 2,2,8,8-тетракис(4-метоксифенил)диокса(1,7)хризен (Хр 2), 3,3,11,11-тетра-(4-метоксифенил)-3,11-дигидро-4,10-диоксадибензо[а,h]антрацен (Хр 3) и 3,3,10,10-тетра-(4-метоксифенил)-3,10-дигидро-4,11-диоксадибензо[а,h] антрацен (Хр 4) - определение ионов Ag2+.

Способ спектрофотометрического определения ионов металлов в жидких средах с использованием фотохромных соединений из класса хроменов за счет образования комплексов между фотоиндуцированной мероцианиновой формой этих соединений и ионами металлов, отличающийся тем, что в качестве хроменов используются бисхромены, такие как 2,2,11,11-тетракис(4-метоксифенилфенил)-диокса(1,12)трифенилен (Хр 1), 2,2,8,8-тетракис(4-метоксифенил)диокса(1,7)хризен (Хр 2), 3,3,11,11-тетра-(4-метоксифенил)-3,11-дигидро-4,10-диоксадибензо[а,h]антрацен (Хр 3), 3,3,10,10-тетра-(4-метоксифенил)-3,10-дигидро-4,11-диоксадибензо[а,h]антрацен (Хр 4)
СПОСОБ СПЕКРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ИОНОВ МЕТАЛЛОВ
СПОСОБ СПЕКРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ИОНОВ МЕТАЛЛОВ
СПОСОБ СПЕКРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ИОНОВ МЕТАЛЛОВ
СПОСОБ СПЕКРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ИОНОВ МЕТАЛЛОВ
СПОСОБ СПЕКРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ИОНОВ МЕТАЛЛОВ
СПОСОБ СПЕКРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ИОНОВ МЕТАЛЛОВ
СПОСОБ СПЕКРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ИОНОВ МЕТАЛЛОВ
Источник поступления информации: Роспатент

Showing 1-7 of 7 items.
27.01.2013
№216.012.1f95

Фотохромная регистрирующая среда для трехмерной оптической памяти

Изобретение относится к фотохромным полимерным регистрирующим средам на основе нового семейства термически необратимых диарилэтенов, а именно арил-замещенных циклопентеновых бензтиенил производных диарилэтенов, для использования в многослойных оптических дисках нового поколения с информационной...
Тип: Изобретение
Номер охранного документа: 0002473586
Дата охранного документа: 27.01.2013
27.03.2013
№216.012.3122

Светочувствительный полимерный материал с флуоресцентным считыванием информации

Изобретение относится к области материалов для оптической записи информации, в частности материалов для архивной записи информации, основанной на фотоиндуцированной флуоресценции, с возможностью использования в устройствах оптической памяти, включая трехмерные системы оптической памяти для Read...
Тип: Изобретение
Номер охранного документа: 0002478116
Дата охранного документа: 27.03.2013
20.03.2014
№216.012.ad0a

Способ спектрофотометрического определения катионов металлов

Настоящее изобретение относится к сенсорике катионов металлов с использованием фотохромных соединений в жидких средах для мониторинга окружающей среды и биологических объектов. Описан способ спектрофотометрического определения катионов металлов в водных растворах с использованием фотохромных...
Тип: Изобретение
Номер охранного документа: 0002510013
Дата охранного документа: 20.03.2014
20.02.2015
№216.013.2a2b

Полимеризационноспособная фотохромная изоцианатная композиция, фотохромный сетчатый оптический материал и способ получения фотохромного сетчатого оптического материала

Группа изобретений относится к полимеризационноспособной фотохромной изоцианатной композиции, содержащей фотохромное соединение, к фотохромному сетчатому оптическому материалу и к способу его получения. Полимеризационноспособная фотохромная изоцианатная композиция включает, мас.ч.: органическое...
Тип: Изобретение
Номер охранного документа: 0002542252
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3cd3

Способ получения гибридного наноструктурированного металлополимера

Изобретение относится к области биомедицины, в частности к способу получения гибридных металлополимеров (софт-полимеры), которые могут быть использованы в качестве экологически безопасных биомиметических полимеров с управляемыми процессами физиологической электропроводности, а также для...
Тип: Изобретение
Номер охранного документа: 0002547059
Дата охранного документа: 10.04.2015
26.08.2017
№217.015.e553

Фотохромная полимеризационноспособная композиция, фотохромный сетчатый оптический материал и способ его получения

Изобретение относится к фотохромной полимеризационноспособной композиции, фотохромному сетчатому оптическому материалу на ее основе и способу его получения и может быть использовано во всех областях применения фотохромных оптических материалов. Предложенная композиция состоит из порошка...
Тип: Изобретение
Номер охранного документа: 0002626640
Дата охранного документа: 31.07.2017
17.02.2018
№218.016.2e29

Полимерный материал для оптической записи информации на основе прекурсоров флуоресцирующих соединений и способ получения этих соединений

Изобретение относится к области светочувствительных материалов, применяющихся для записи информации на многослойных оптических дисках с флуоресцентным считыванием. Описывается полимерный материал для оптической записи информации на основе новых прекурсоров флуоресцирующих соединений ряда...
Тип: Изобретение
Номер охранного документа: 0002643951
Дата охранного документа: 06.02.2018
Showing 1-10 of 25 items.
27.03.2013
№216.012.3122

Светочувствительный полимерный материал с флуоресцентным считыванием информации

Изобретение относится к области материалов для оптической записи информации, в частности материалов для архивной записи информации, основанной на фотоиндуцированной флуоресценции, с возможностью использования в устройствах оптической памяти, включая трехмерные системы оптической памяти для Read...
Тип: Изобретение
Номер охранного документа: 0002478116
Дата охранного документа: 27.03.2013
20.05.2013
№216.012.41c4

Способ получения электроэнергии, холода и диоксида углерода из дымовых газов

Изобретение относится к отраслям промышленности, использующим ископаемое топливо, например электроэнергетике, химии, нефтехимии, металлургии, коксохимии. Способ включает удаление из очищенных дымовых газов влаги, сжатие и охлаждение очищенных и осушенных дымовых газов, улавливание диоксида...
Тип: Изобретение
Номер охранного документа: 0002482406
Дата охранного документа: 20.05.2013
20.09.2013
№216.012.6bcd

Способ защиты дрожжей saccharomyces cerevisiae от окислительного стресса в результате воздействия перекиси водорода

Изобретение относится к биотехнологии и может быть использовано в медицинской, химической и микробиологической промышленности. Способ защиты дрожжей Saccharomyces cerevisiae от окислительного стресса в результате воздействия перекиси водорода включает выращивание культуры дрожжей в стандартных...
Тип: Изобретение
Номер охранного документа: 0002493248
Дата охранного документа: 20.09.2013
10.10.2013
№216.012.728c

Стеклокристаллический материал

Изобретение относится к легированным прозрачным стеклокристаллическим материалам, которые могут использоваться в качестве активной среды лазеров и усилителей в ближней ИК области. Технический результат изобретения заключается в снижении температуры синтеза прозрачного люминесцирующего в ближней...
Тип: Изобретение
Номер охранного документа: 0002494981
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.733f

Водоразбавляемая полимерная композиция для покрытий

Изобретение относится к области получения водоразбавляемых композиций на основе эпоксиаминных и уретановых олигомеров для покрытий по металлу, получаемых методом катодного электроосаждения. Водоразбавляемая полимерная композиция для покрытий включает эпоксиаминную смолу, полиуретановый...
Тип: Изобретение
Номер охранного документа: 0002495160
Дата охранного документа: 10.10.2013
27.12.2013
№216.012.908c

Способ изготовления строительных изделий

Изобретение относится к промышленности строительных материалов, а именно к технологии производства фундаментных и стеновых блоков, тротуарных изделий, бордюрного камня. В способе изготовления строительных изделий, включающем приготовление сырьевой смеси, содержащей жидкое стекло, измельченный...
Тип: Изобретение
Номер охранного документа: 0002502697
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.90c8

Эпоксидно-фенольная композиция

Изобретение относится к области получения полимерных материалов и может применяться в качестве покрытий для антикоррозионной защиты консервной тары. Композиция содержит в % масс.: эпоксидный олигомер - 31,32-33,81, бутанолизированный фенолформальдегидный олигомер - 8,45-10,89, о-фосфорную...
Тип: Изобретение
Номер охранного документа: 0002502757
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.90d3

Электропроводящий термопластичный материал для гальванопластики

Изобретение относится к гальванопластике, в частности к электропроводящим термопластичным материалам для изготовления электропроводящих форм. Описан электропроводящий термопластичный материал для гальванопластики, содержащий связующие и электропроводящий наполнитель, где в качестве связующего...
Тип: Изобретение
Номер охранного документа: 0002502768
Дата охранного документа: 27.12.2013
27.01.2014
№216.012.9b5d

Способ получения гидроксиапатита

Изобретение относится к области технологии неорганических материалов, в частности к способу получения гидроксиапатита. Гидроксиапатит получают путем смешения 1-1,5%-ной водной суспензии карбоната кальция, насыщенной углекислым газом в концентрации 1-1,5 г/л, и 1-1,5%-ного водного раствора...
Тип: Изобретение
Номер охранного документа: 0002505479
Дата охранного документа: 27.01.2014
20.03.2014
№216.012.ad0a

Способ спектрофотометрического определения катионов металлов

Настоящее изобретение относится к сенсорике катионов металлов с использованием фотохромных соединений в жидких средах для мониторинга окружающей среды и биологических объектов. Описан способ спектрофотометрического определения катионов металлов в водных растворах с использованием фотохромных...
Тип: Изобретение
Номер охранного документа: 0002510013
Дата охранного документа: 20.03.2014
+ добавить свой РИД