×
10.08.2014
216.012.e837

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЖЕСТКИХ ПЕНОПОЛИУРЕТАНОВ

Вид РИД

Изобретение

№ охранного документа
0002525240
Дата охранного документа
10.08.2014
Аннотация: Изобретение относится к способу получения жестких пенополиуретанов. Способ получения жестких пенополиуретанов осуществляют путем взаимодействия: a) органических полиизоцианатов b) с соединениями, содержащими по меньшей мере два реакционноспособных по отношению к изоцианатным группам атома водорода, в присутствии c) порообразователей, d) катализаторов, а также при необходимости е) вспомогательных веществ и добавок, при этом в качестве компонента b) используют смесь, содержащую: b1) от 20 до 70 масс.ч. одного или нескольких высокофункциональных простых эфиров многоатомных спиртов с функциональностью от 3,7 до 5,2 и гидроксильным числом от 370 до 500 мг КОН/г, b2) от 5 до 30 масс.ч. одного или нескольких простых эфиров многоатомных спиртов на основе ароматических аминов с функциональностью от 3 до 4 и гидроксильным числом от 150 до 500 мг КОН/г, b3) от 5 до 20 масс.ч. содержащего гидроксильные группы сложного эфира жирной кислоты и b4) от 1 до 20 масс.ч. одного или нескольких низкомолекулярных агентов удлинения цепей и/или сшивающих агентов с функциональностью от 2 до 3 и средневесовой молекулярной массой M менее 400 г/моль, среднее гидроксильное число которой составляет от 400 до 550 мг КОН/г. Технический результат - получаемые жесткие пенополиуретаны отличаются благоприятными поверхностными свойствами. 5 з.п. ф-лы, 1 табл., 2 пр.

Объектом изобретения является способ получения жестких пенополиуретанов.

Жесткие пенополиуретаны являются давно известными и часто описываемыми в литературе полимерами. Жесткие пенополиуретаны преимущественно используют для теплоизоляции, например, в приборах охлаждения, транспортных средствах или зданиях, а также для изготовления деталей, в частности элементов типа «сэндвич».

Важной сферой использования жестких пенополиуретанов являются комбинированные элементы. В настоящее время широкое практическое применение находит изготовление комбинированных элементов, состоящих, в частности, из металлических наружных слоев и сердцевины из пенопластов на изоцианатной основе, в большинстве случаев полиуретановых или полиизоциануратных пенопластов, часто называемых также элементами типа «сэндвич», на функционирующих в непрерывном режиме двухполосных установках. Помимо использования элементов типа «сэндвич» для изолирования холодильников элементы подобного типа с цветными наружными слоями все шире используют для оформления фасадов самых разных зданий. При этом в качестве наружных слоев используют не только листовую сталь, но и листовые материалы из специальной стали, меди или алюминия.

Жесткие пенополиуретаны должны заполнять полости указанных элементов равномерно и без образования усадочных раковин, что, при условии максимально прочного соединения этих пенопластов с наружными слоями, обеспечивает стабильность общей конструкции, а следовательно, высокий уровень ее теплоизолирующих свойств. Для предотвращения образования дефектных зон способную к ценообразованию полиуретановую реакционную смесь необходимо вводить в подлежающую изолированию полость в течение короткого промежутка времени. Для наполнения полостей пеноматериалом обычно используют машины низкого давления или предпочтительно машины высокого давления.

Исчерпывающая информация, касающаяся получения жестких пенополиуретанов и их применения в качестве наружного или сердцевинного слоя в комбинированных элементах, а также их применения в качестве изоляционного слоя в холодильной или отопительной технике, приводится, например, в справочнике „Polyurethane", Kunststoff-Handbuch, том 7, 3-е издание 1993, издатель д-р Gunter Oertel, издательство Hanser-Verlag, Мюнхен/Вена.

Пригодные жесткие пенополиуретаны могут быть получены известными методами превращения органических полиизоцианатов с одним или несколькими соединениями, содержащими по меньшей мере два реакционноспособных атома водорода, в присутствии порообразователей, катализаторов и при необходимости используемых вспомогательных веществ и/или добавок.

При получении полиуретанов в качестве соединений по меньшей мере с двумя атомами водорода, реакционноспособными по отношению к изоцианатным группам, предпочтительно используют простые эфиры многоатомных спиртов и/или сложные эфиры многоатомных спиртов. Выбор указанных полиолов осуществляют прежде всего с учетом их стоимости и целевого применения (см., например, европейскую заявку на патент ЕР-А-1632511, патентную заявку США US-B-6495722 и международную заявку WO 2006/108833).

В европейской заявке на патент ЕР-А-728783 описан способ получения жестких пенополиуретанов путем взаимодействия органических полиизоцианатов со смесью, состоящей по меньшей мере из трех разных высокомолекулярных простых эфиров многоатомных спиртов b1)-b3) с разной функциональностью и одного содержащего гидроксильные группы сложного эфира жирной кислоты b4) (от 8 до 20 масс.ч.), в частности касторового масла, в присутствии порообразователей и катализаторов. Простой эфир многоатомного спирта b1), содержание которого составляет от 20 до 60 масс.ч., обладает функциональностью от 6 до 8 и средней эквивалентной массой от 125 до 200. Простой эфир многоатомного спирта b2), содержание которого составляет от 5 до 30 масс.ч, основан на алифатических аминах с функциональностью от 3 до 4 и средней эквивалентной массой от 70 до 130. Простой эфир многоатомного спирта b3), содержание которого составляет от 3 до 25 масс.ч., обладает функциональностью от 2 до 3 и средней эквивалентной массой от 67 до 250. Среднее гидроксильное число полиольного компонента предпочтительно составляет от 350 до 390 мг КОН/г.

Поверхностные свойства известных жестких пенополиуретанов нуждаются в дальнейшем усовершенствовании, что прежде относится к используемым для изготовления комбинированных элементов пенополиуретанам, поскольку в этому случае поверхностные свойства оказывают также существенное влияние на адгезию наружных слоев к пенопласту. Высокое качество поверхности имеет большое значение также в случае получения пенопластов методом напыления.

Исходя из вышеизложенного в основу настоящего изобретения была положена задача разработать способ получения жестких пенополиуретанов с более высокими показателями адгезии и улучшенным качеством поверхности, полиольный компонент которых обладает низкой вязкостью, а следовательно, оптимальными технологическими свойствами, в частности оптимальной текучестью и способностью к отверждению.

Указанную задачу согласно изобретению неожиданно удалось решить благодаря способу получения жестких пенополиуретанов, в которых в качестве полиольного компонента используют смесь, состоящую из:

- одного или нескольких высокофункциональных простых эфиров многоатомных спиртов с функциональностью от 3,5 до 5,5 и гидроксильным числом от 350 до 550 мг КОН/г,

- одного или нескольких простых эфиров многоатомных спиртов на основе алифатических и/или ароматических аминов с функциональностью от 3 до 4 и гидроксильным числом от 150 до 800 мг КОН/г,

- содержащего гидроксильные группы сложного эфира жирной кислоты и при необходимости

- одного или нескольких низкомолекулярных агентов удлинения цепей и/или сшивающих агентов с функциональностью от 2 до 3 и средневесовой молекулярной массой Mw менее 400 г/моль.

Объектом изобретения является способ получения жестких пенополиуретанов путем взаимодействия:

а) органических полиизоцианатов

b) с соединениями, содержащими по меньшей мере два реакционноспособных по отношению к изоцианатным группам атома водорода,

в присутствии

c) порообразователей,

d) катализаторов, а также при необходимости

e) вспомогательных веществ и добавок,

отличающийся тем, что в качестве компонента b) используют смесь, состоящую из:

b1) одного или нескольких высокофункциональных простых эфиров многоатомных спиртов с функциональностью от 3,5 до 5,5 и гидроксильным числом от 350 до 550 мг КОН/г,

b2) одного или нескольких простых эфиров многоатомных спиртов на основе алифатических и/или ароматических аминов с функциональностью от 3 до 4 и гидроксильным числом от 150 до 800 мг КОН/г,

b3) по меньшей мере одного содержащего гидроксильную группу сложного эфира жирной кислоты, и при необходимости

b4) одного или нескольких низкомолекулярных агентов удлинения цепей и/или сшивающих агентов с функциональностью от 2 до 3 и средневесовой молекулярной массой Mw менее 400 г/моль.

Полиольный компонент b) может содержать также катализаторы, стабилизаторы, а также обычные вспомогательные вещества и добавки.

Кроме того, объектом изобретения являются получаемые предлагаемым в изобретении способом жесткие пенополиуретаны.

В особенно предпочтительном варианте осуществления изобретения полиольным компонентом (b) является смесь, содержащая:

b1) от 20 до 70 масс.ч., в частности от 20 до 60 масс.ч. одного или нескольких высокофункциональных простых эфиров многоатомных спиртов с функциональностью от 3,5 до 5,5 и гидроксильным числом от 350 до 550 мг КОН/г,

b2) от 5 до 30 масс.ч., в частности от 5 до 25 масс.ч. одного или нескольких простых эфиров многоатомных спиртов на основе алифатических и/или ароматических аминов с функциональностью от 3 до 4 и гидроксильным числом от 150 до 800 мг КОН/г,

b3) от 5 до 30 масс.ч., в частности от 5 до 20 масс.ч. содержащего гидроксильные группы сложного эфира жирной кислоты и при необходимости

b4) от 1 до 20 масс.ч., в частности 2 до 10 масс.ч. одного или нескольких низкомолекулярных агентов удлинения цепей и/или сшивающих агентов с функциональностью от 2 до 3 и средневесовой молекулярной массой Mw менее 400 г/моль.

В качестве сложного эфира b3) на основе глицерина и содержащих гидроксильные группы жирных кислот прежде всего используют касторовое масло.

Среднее гидроксильное число используемого согласно изобретению полиольного компонента b) предпочтительно составляет от 300 до 600 мг КОН/г, в частности, от 400 до 550 мг КОН/г.

Определение гидроксильного числа осуществляют согласно DIN 53240.

Ниже приводится более подробная характеристика отдельных компонентов, используемых в соответствии с предлагаемым в изобретении способом.

а) Органическими полиизоцианатами, пригодными для использования в качестве компонета а), являются известные алифатические, циклоалифатические, арилалифатические и предпочтительно ароматические полифункциональные изоцианаты.

Примерами пригодных изоцианатов являются, в частности, алкилендиизоцианаты с 4-12 атомами углерода в алкиленовом остатке, такие как 1,12-додекандиизоцианат, 2-этилтетраметилендиизоцианат-1,4,2-метилпентаметилендиизоцианат-1,5, тетраметилендиизоцианат-1,4 и предпочтительно гексаметилендиизоцианат-1,6; циклоалифатические диизоцианаты, такие как циклогексан-1,3-диизоцианат, циклогексан-1,4-диизоцианат и любые смеси этих изомеров, 1-изоцианато-3,3,5-триметил-5-изоционатометилциклогексан (изофорондиизоцианат), 2,4-гексагидротолуилендиизоцианат, 2,6-гексагидротолуилендиизоцианат и смеси этих изомеров, 4,4'-дициклогексилметандиизоцианат, 2,2'-дициклогексилметандиизоцианат, 2,4'-дициклогексилметандиизоцианат и смеси этих изомеров, а также предпочтительно ароматические диизоцианаты и полиизоцианаты, например, такие как 2,4-толуилендиизоцианат, 2,6-толуилендиизоцианат и смеси этих изомеров, 4,4'-дифенилметандиизоцианат, 2,4'-дифенилметандиизоцианат, 2,2'-дифенилметандиизоцианат и смеси этих изомеров, смеси 4,4'-дифенилметандиизоцианата с 2,4'-дифенилметандиизоцианатом, полифенилполиметиленполиизоцианаты, смеси 4,4'-дифенилметандиизоцианата, 2,4'-дифенилметандиизоцианата, 2,2'-дифенилметандиизоцианата и полифенилполиметиленполиизоцианатов (сырой МДИ) и смеси сырого МДИ с толуилендиизоцианатами. Органические диизоцианаты и полиизоцианаты можно использовать по отдельности или в виде соответствующих смесей.

Часто используют также так называемые модифицированные полифункциональные изоцианаты, то есть продукты, получаемые путем химического превращения органических диизоцианатов и/или полиизоцианатов. Примерами пригодных изоцианатов подобного типа являются диизоцианаты и/или полиизоцианаты, содержащие сложноэфирные, мочевинные, биуретовые, аллофанатные, карбодиимидные, изоциануратные, уретдионовые и/или уретановые группы.

В частности, можно использовать, например, содержащие уретановые группы органические, предпочтительно ароматические полиизоцианаты с содержанием изоцианатных групп в пересчете на их общую массу, составляющим от 33,6 до 15% масс., предпочтительно от 31 до 21% масс., к которым относятся, например, 4,4'-дифенилметандиизоцианат, модифицированный низкомолекулярными диолами, триолами, диалкиленгликолями, триалкиленгликолями или полиоксиалкиленгликолями с молекулярной массой до 6000, в частности до 1500; смеси модифицированных указанными соединениями 4,4'-дифенилметандиизоцианата и 2,4'-дифенил-метандиизоцианата, модифицированный указанными соединениями сырой МДИ или модифицированный указанными соединениями 2,4-толуилендиизоцианат, соответственно 2,6-толуилендиизоцианат, причем примерами пригодных диалкиленгликолей, соответственно полиоксиалкиленгликолей, которые можно использовать по отдельности или в виде смесей, являются диэтиленгликоль, дипропиленгликоль, полиоксиэтиленгликоль, полиоксипропиленгликоль, полиоксипропиленполиоксиэтиленгликоли, а также соответствующие триолы и/или тетраолы. Пригодными являются также форполимеры со свободными изоцианатными группами, содержание которых в пересчете на общую массу форполимера составляет от 25 до 3,5% масс., предпочтительно от 21 до 14% масс., получаемые из рассмотренных ниже сложных полиэфирполиолов и/или предпочтительно простых полиэфирполиолов и 4,4'-дифенилметандиизоцианата, смесей, сорстоящих из 2,4'-дифенилметандиизоцианата, 4,4'-дифенилметандиизоцианата, 2,4-толуилендиизоцианата и/или 2,6-толуилендиизоцианата, или из сырого МДИ.

Кроме того, пригодными являются содержащие карбодиимидные группы и/или изоциануратные кольца жидкие полиизоцианаты (содержание изоцианатных групп в них в пересчете на общую массу составляет от 33,6 до 15% масс., предпочтительно от 31 до 21% масс.), например, на основе 4,4'-дифенилметандиизоцианата, 2,4'-дифенилметандиизоцианата и/или 2,2'-дифенилметандиизоцианата и/или на основе 2,4-толуилендиизоцианата и/или 2,6-толуилендиизоцианата.

Модифицированные полиизоцианаты при необходимости можно смешивать друг с другом или с немодифицированными органическими полиизоцианатами, например, такими как 2,4'-дифенилметандиизоцианат, 4,4'-дифенилметандиизоцианат, сырой МДИ, 2,4-толуилендиизоцианат и/или 2,6-толуилендиизоцианат.

Особенно пригодными, а следовательно, предпочтительными органическими полиизоцианатами являются смеси толуилендиизоцианатов и сырой МДИ или смеси, состоящие из модифицированных органических полиизоцианатов с содержанием уретановых групп от 33,6 до 15% масс., в частности, на основе толуилендиизоцианатов, 4,4'-дифенилметандиизоцианата, смесей изомеров дифенилметандиизоцианата или сырого МДИ, прежде всего на основе сырого МДИ с содержанием изомеров дифенилметандиизоцианата от 25 до 80% масс., предпочтительно от 30 до 55% масс.

b) Используемые в качестве компонента b) простые эфиры многоатомных спиртов (простые полиэфирполиолы) b1) и b2) получают из одного или нескольких алкиленоксидов с 2-4 атомами углерода в алкиленовом остатке известными методами, например путем анионной полимеризации, которую осуществляют под действием используемых в качестве катализаторов гидроксидов щелочных металлов, например, таких как гидроксид натрия или гидроксид калия, или алкоголятов щелочных металлов, например, таких как метилат натрия, метилат калия или изопропилат калия, и при добавлении по меньшей мере одного стартового реагента, содержащего от 2 до 8, предпочтительно от 2 до 6 реакционноспособных атомов водорода, или путем катионной полимеризации, которую осуществляют под действием используемых в качестве катализатора кислот Льюиса, таких как пентахлорид сурьмы, эфират фторида бора и другие, или отбельной земли. Кроме того, можно использовать также катализаторы в виде комплексных цианидов металлов (так называемых двойных металлоцианидов). В качестве катализатора можно использовать также третичные амины, например, такие как триэтиламин, трибутиламин, триметиламин, диметилэтаноламин и/или диметилциклогексиламин.

К алкиленоксидам, пригодным для получения простых полиэфирполиолов b1) и b2), относятся, например, этиленоксид, 1,2-пропиленоксид, 1,3-пропиленоксид, 1,2-бутиленоксид, 2,3-бутиленоксид, тетрагидрофуран и оксид стирола, предпочтительно этиленоксид и 1,2-пропиленоксид. Алкиленоксиды можно использовать по отдельности, в чередующейся последовательности или в виде смесей.

В качестве стартовых реагентов для получения используемых согласно изобретению простых эфиров многоатомных спиртов можно использовать следующие соединения.

В случае синтеза простых полиэфирполиолов b1) в качестве стартовых реагентов прежде всего используют высокофункциональные соединения с гидроксильными группами, в частности сахар, крахмал или лигнин. При этом особое практическое значение имеют глюкоза, сахароза и сорбит. Поскольку указанные соединения в обычных условиях алкоксилирования находятся в твердой форме, в общем случае их следует подвергать алкоксилированию совместно с соинициаторами. К особенно пригодным соинициаторам относятся вода и многоатомные низшие спирты, например глицерин, триметилолпропан, пентаэритрит, этиленгликоль, пропиленгликоль и их гомологи.

В случае синтеза простых полиэфирполиолов b2) в качестве стартовых реагентов предпочтительно используют ароматические диамины и/или полиамины по меньшей мере с двумя первичными аминогруппами в молекуле, например, фенилендиамины, 2,3-толуилендиамин, 2,4-толуилендиамин, 3,4-толуилендиамин, 2,6-толуилендиамин, 4,4'-диаминодифенилметан, 2,4'-диаминодифенилметан или 2,2'-диаминодифенилметан.

В качестве алифатических стартовых реагентов прежде всего используют аммиак, полифункциональные алифатические амины, в частности, с 2-6 атомами углерода и первичными или вторичными аминогруппами, а также аминоспирты с 2-6 атомами углерода в основной цепи. Предпочтительными диаминами являются этилендиамин, моноалкилэтилендиамины, 1,3-пропилендиамин, а также разные бутилендиамины и гексаметилендиамины, а предпочтительными аминоспиртами - этаноламин, диэтаноламин и триэтаноламин.

Простые эфиры многоатомных спиртов b1) предпочтительно обладают функциональностью в интервале от 3,7 до 5,2 и гидроксильным числом в интервале от 370 до 500 мг КОН/г.

Предпочтительными являются простые эфиры многоатомных спиртов b2) на основе ароматических или ароматических и алифатических аминов. Еще более предпочтительными являются простые эфиры многоатомных спиртов b2) на основе ароматических аминов с функциональностью от 3 до 4 и гидроксильным числом от 150 до 500 мг КОН/г.

Другие сведения, относящиеся к подлежащим использованию простым эфирам многоатомных спиртов b1) и b2), а также к их получению, приведены, например, в справочнике Kunststoffhandbuch, том 7 „Polyurethane", издатель Gunter Oertel, издательство Carl-Hanser, Мюнхен, 3-е издание, 1993.

Полиольный компонент b) предпочтительно можно получать при совместном использовании низкомолекулярных агентов удлинения цепей и/или сшивающих агентов b4). В качестве агентов удлинения цепей и/или сшивающих агентов b4) используют диолы и/или триолы, а также аминоспирты с молекулярной массой менее 400, предпочтительно в интервале от 60 до 300.

В качестве компонента b4) можно использовать, например, алифатические, циклоалифатические и/или арилалифатические диолы с 2-14 атомами углерода, предпочтительно с 2-10 атомами углерода, например, такие как этиленгликоль, 1,2-пропиленгликоль, пропандиол-1,3, декандиол-1,10, о-дигидроксициклогексан, м-дигидроксициклогексан, п-дигидроксициклогексан, диэтиленгликоль, дипропиленгликоль, бутандиол-1,4, гександиол-1,6 и бис(2-гидроксиэтил)гидрохинон, триолы, такие как 1,2,4-тригидроксициклогексан, 1,3,5-тригидроксициклогексан, глицерин и триметилолпропан, низкомолекулярные полиалкиленоксиды с гидроксильными группами на основе этиленоксида и/или 1,2-пропиленоксида и указанные выше в качестве стартовых реагентов диолы и/или триолы, а также аминоспирты, например, такие как диэтаноламин и триэтаноламин.

В качестве агента удлинения цепей b4) особенно предпочтительно используют алифатический диол с 2-6 атомами углерода, в частности 1,2-пропиленгликоль.

В случае использования для получения полиольного компонента b) указанных выше низкомолекулярных агентов удлинения цепей, сшивающих агентов или соответствующих смесей, их целесообразное количество составляет от 1 до 20% масс., предпочтительно от 2 до 10% масс. в пересчете на массу полиольного компонента b).

с) В качестве компонента с) в соответствии с предлагаемым в изобретении способом можно использовать обычные порообразователи, пригодные для получения жестких пенополиуретанов.

В качестве порообразователя с) помимо воды в общем случае дополнительно можно использовать известные химически и/или физически активные соединения. При этом под химическими порообразователями подразумевают соединения, в результате взаимодействия которых с изоцианатом образуются газообразные продукты, например, такие как вода или муравьиная кислота. Под физическими порообразователями подразумевают соединения, которые растворены или эмульгированы в исходных веществах для получения полиуретана и испаряются в условиях полиуретанобразования. Речь при этом идет, например, об углеводородах, галогенированных углеводородах и других соединениях, например, таких как перфторированные алканы, в частности перфторгексан, фторхлоруглеводороды, простые эфиры, сложные эфиры, кетоны, ацетали, а также неорганические и органические соединения, которые при нагревании высвобождают азот, или их смеси, например о (цикло)алифатических углеводородах с 4-8 атомами углерода или фторуглеводородах, таких как 1,1,1,3,3-пентафторпропан (MFC 245 fa), трифторметан, дифторметаны, 1,1,1,3,3-пентафторбутан (HFC 365 mfc), 1,1,1,2-тетрафторэтан, дифторэтан и гептафторпропан.

В качестве порообразователей предпочтительно используют низкокипящие алифатические углеводороды, предпочтительно н-пентан и/или изопентан, в частности н-пентан.

Температура кипения н-пентана составляет 36°С, в то время как изопентан кипит при 28°С. Таким образом точки кипения этих углеводородов находятся в благоприятном для порообразования температурном диапазоне.

Поскольку пригодные для использования в качестве порообразователей алифатические углеводороды являются горючими и взрывоопасными продуктами, установки для осуществления процесса вспенивания должны быть оборудованы соответствующими устройствами безопасности, аналогичными используемым в случае циклопентана в качестве порообразователя.

Предпочтительным является совместное использование в качестве порообразователей алифатических углеводородов и воды. Используемое количество алифатических углеводородов в пересчете на компонент b) составляет от 2 до 25% масс., предпочтительно от 5 до 15% масс. Содержание воды определяется целевой кажущейся плотностью жесткого пенополиуретана.

d) В качестве катализаторов а) для получения жестких пенополиуретанов прежде всего используют соединения, которые сильно ускоряют взаимодействие соединений b), содержащих реакционноспособные атомы водорода, в частности гидроксильные группы, с органическими полиизоцианатами а), при необходимости подвергнутыми модифицированию.

В качестве катализатора d) пригодны амины с выраженным основным характером, например, амидины, такие как 2,3-диметил-3,4,5,6-тетрагидропиримидин, третичные амины, такие как триэтиламин, трибутиламин, диметилциклогексиламин, диметилбензиламин, N-метилморфолин, N-этилморфолин, N-циклогексилморфолин, N,N,N',N'-тетраметилендиамин, N,N,N',N'-тетраметилбутандиамин, N,N,N',N'-тетраметилгександиамин-1,6, пентаметилдиэтилентриамин, тетраметилдиаминоэтиловый эфир, бис(2-диметиламиноэтиловый) эфир, бис(диметиламинопропил)карбамид, диметилпиперазин, 1,2-диметилимидазол, 1-азабицикло(3,3,0)октан и предпочтительно 1,4-диазабицикло(2,2,2)октан, а также алканоламины, такие как триэтаноламин, триизопропаноламин, N-метилдиэтаноламин, N-этилдиэтаноламин, N,N-диметиламиноэтоксиэтанол, N,N,N'-триметиламиноэтилэтаноламин и диметилэтаноламин.

Кроме того, в качестве катализаторов можно использовать трис(диалкиламиноалкил)-s-гексагидротриазины, в частности трис(N,N-диметиламинопропил)-s-гексагидротриазин, гидроксиды тетраалкиламмония, такие как гидроксид тетраметиламмония, гидроксиды щелочных металлов, такие как гидроксид натрия, и алкоголяты щелочных металлов, такие как метилат натрия и изопропилат калия, а также соли щелочных металлов и дпинноцепочечных жирных кислот с 10-20 атомами углерода и при необходимости боковыми гидроксильными группами.

Для встраивания изоциануратных групп в жесткий пенопласт необходимо использовать особые катализаторы. В подобном случае в качестве катализаторов обычно используют карбоксилаты металлов, в частности ацетат калия, и их растворы. В зависимости от потребности катализаторы можно использовать по отдельности или в виде любых смесей друг с другом.

Предпочтительно используют от 0,001 до 7% масс., в частности от 0,05 до 5% масс. катализатора, соответственно комбинации катализаторов, в пересчете на массу компонента (b).

е) В состав используемой для получения жестких пенополиуретанов реакционной смеси при необходимости дополнительно можно включать также вспомогательные вещества и/или добавки (е). В качестве соответствующих примеров следует упомянуть поверхностно-активные вещества, стабилизаторы пены, регуляторы ячеек, наполнители, красители, пигменты, антипирены, средства для защиты от гидролиза, а также фунгистатические и бактериостатические действующие вещества.

В качестве поверхностно-активных веществ можно использовать, например, соединения, которые способствуют гомогенизации исходных веществ и при необходимости пригодны также для регулирования ячеистой структуры полимеров. Примерами подобных веществ являются эмульгаторы, в частности натриевые соли сульфатированного касторового масла или жирных кислот, соли жирных кислот с аминами, например олеиновокислый диэтиламин, стеариновокислый диэтаноламин или рицинолевокислый диэтаноламин, а также соли сульфокислот, например соли додецилбензолдисульфокислоты, динафтилметандисульфокислоты или рицинолевой кислоты со щелочными металлами или аммонием; стабилизаторы пены, такие как сополимеры силоксанов с оксалкиленами и другие полиорганосилоксаны, оксиэтилированные алкилфенолы, оксиэтилированные жирные спирты, парафиновые масла, сложные эфиры касторового масла, соответственно рицинолевой кислоты, сульфированное касторовое масло и арахисовое масло, а также регуляторы ячеек, такие как парафины, жирные спирты и диметилполисилоксаны. Кроме того, для усиления эмульгирующего действия, улучшения ячеистой структуры и/или стабилизации пены пригодны указанные выше олигомерные акрилаты с полиоксиалкиленовыми и фторалкановыми остатками в качестве боковых групп. Поверхностно-активные вещества обычно используют в количестве от 0,01 до 5 масс.ч. в пересчете на 100 масс.ч. компонента b).

Пригодными наполнителями (прежде всего наполнителями с усиливающим действием) являются обычные известные органические и неорганические наполнители, армирующие средства, твердые наполнители, а также средства для повышения сопротивления красок, средств покрытия и так далее истиранию. Примерами пригодных наполнителей являются, в частности, неорганические наполнители, такие как силикатные минералы, например слоистые силикаты, такие как антигорит, серпентин, роговая обманка, амфибол, хризотил и тальк, оксиды металлов, такие как каолин, оксиды алюминия, оксиды титана и оксиды железа, соли металлов, такие как мел и сульфат бария, и неорганические пигменты, такие как сульфид кадмия и сульфид цинка, а также стекло и другие. В качестве наполнителя предпочтительно используют каолин (белую фарфоровую глину), алюмосиликат и соосадители из сульфата бария и алюмосиликата, а также природные и синтетические волокнистые минералы, такие как волластонит, металлические волокна и прежде всего стеклянные волокна различной длины, которые при необходимости могут быть снабжены покрытием. В качестве органических наполнителей можно использовать, например, уголь, меламин, канифоль, циклопентадиениловые смолы и привитые сополимеры, волокна целлюлозы, полиамидные, полиакрилонитрильные, полиуретановые, полиэфирные волокна на основе ароматических и/или алифатических сложных эфиров дикарбоновых кислот и в особенности углеродные волокна.

Неорганические и органические наполнители можно использовать по отдельности или в виде смесей, причем их вводят в реакционную смесь предпочтительно в количествах от 0,5 до 50% масс., преимущественно от 1 до 40% масс. в пересчете на массу компонентов (а) и (b), и причем их содержание в волокнистых матах, нетканых материалах и тканях из природных и синтетических волокон может достигать 80% масс.

В качестве антипиренов можно использовать органические эфиры фосфорной кислоты и/или фосфоновой кислоты. В качестве антипиренов предпочтительно используют соединения, которые не обладают реакционной способностью по отношению к изоцианатным группам. К предпочтительным антипиренам относятся также хлорсодержащие эфиры фосфорной кислоты. Пригодными антипиренами являются, например, трис(2-хлорпропил)фосфат, триэтилфосфат, дифенилкрезилфосфат, диэтилэтанфосфинат, трикрезилфосфат, трис(2-хлорэтил)фосфат, трис(1,3-дихлорпропил)фосфат, трис(2,3-дибромпропил)фосфат, тетракис(2-хлор-этил)этилендифосфат, диметилметанфосфонат, диэтиловый эфир диэтаноламинометилфосфоновой кислоты, а также рыночные галогенсодержащие огнезащитные полиолы.

Наряду с этим можно использовать также бромсодержащие антипирены. В качестве бромсодержащих антипиренов предпочтительно используют соединения, которые обладают реакционной способностью по отношению к изоцианатным группам. К подобным соединениям относятся, например, эфиры тетрабромфталевой кислоты с алифатическими диолами и продукты алкоксилирования дибромбутендиола. В качестве антипиренов можно использовать также соединения, производные бромированных неопентильных соединений с гидроксильными группами.

Кроме указанных выше галогензамещенных фосфатов для придания продуктам уретанового полиприсоединения огнестойкости можно использовать также неорганические или органические антипирены, такие как красный фосфор, гидратированный оксид алюминия, триоксид сурьмы, оксид мышьяка, полифосфат аммония, сульфат кальция, порообразующий графит или производные циануровой кислоты, например, такие как меламин, или смеси по меньшей мере двух антипиренов, например, таких как полифосфаты аммония и меламин, а также при необходимости кукурузный крахмал или полифосфат аммония, меламин и порообразующий графит и/или при необходимости ароматические сложные полиэфиры. В общем случае целесообразным является использование от 5 до 50 масс.ч., предпочтительно от 5 до 25 масс.ч. указанных антипиренов, соответственно на 100 масс.ч. компонента (b).

Более подробные сведения относительно других указанных выше обычных вспомогательных веществ и добавок приводятся в специальной литературе, например в монографии J.H. Saunders, K.C. Frisch "High Polymers", том XVI, Polyurethanes, части 1 и 2, издательство Interscience Publishers 1962, соответственно 1964, или в справочнике Kunststoff-Handbuch, Polyurethane, том VII, издательство Hanser, Мюнхен, Вена, 3-е издание, 1993.

Для получения жестких пенополиуретанов реализуют взаимодействие таких количеств полиизоцианатов а) и полиольного компонента b), чтобы изоцианатный показатель находился в диапазоне от 100 до 150, предпочтительно от 105 до 140, особенно предпочтительно от 110 до 130. Изоцианатным показателем является молярное отношение изоцианатных групп к реакционноспособным по отношению к ним группам, умноженное на 100.

Предлагаемые в изобретении жесткие пенопласты предпочтительно производят на двухполосных установках непрерывного действия. При этом полиольный и изоцианатный компоненты дозируют посредством машины высокого давления и смешивают в смесительной головке. Катализаторы и/или порообразователи можно предварительно вводить в смесь полиолов посредством отдельных насосов. Реакционную смесь непрерывно наносят на нижний наружный слой. Снабженный реакционной смесью нижний наружный слой дублируют с верхним наружным слоем. При этом происходит вспенивание и отверждение реакционной смеси. Бесконечное двойное полотно на выходе из установки разрезают на заготовки требуемого размера. Указанным методом можно производить элементы типа «сэндвич» с металлическими наружными слоями или изоляционные элементы с гибкими наружными слоями.

Исходные компоненты смешивают при температуре от 15 до 90°С, предпочтительно от 20 до 60°С, в частности от 20 до 45°С. Реакционную смесь можно заливать посредством дозирующих машин высокого или низкого давления в замкнутые опорные прессформы. В соответствии с подобной технологией производят, например, дискретные элементы типа «сэндвич».

Плотность получаемых предлагаемым в изобретении способом жестких пенополиуретанов составляет от 0,02 до 0,75 г/см3, предпочтительно от 0,025 до 0,24 г/см3, в частности от 0,03 до 0,1 г/см3. Подобные жесткие пенополиуретаны особенно пригодны для использования в качестве изоляционного материала в строительной отрасли и сфере производства торгового холодильного оборудования, например, в качестве промежуточного слоя элементов типа «сэндвич» или для заполнения корпусов холодильников и охлаждаемых прилавков пеноматериалом.

Получаемые предлагаемым в изобретении способом жесткие пенополиуретаны отличаются оптимальными поверхностными свойствами при незначительном количестве дефектов и высокой степени отверждения. Использование содержащих гидроксильные группы сложных эфиров жирной кислоты b3) и низкомолекулярных агентов удлинения цепей и/или сшивающих агентов b4) позволяет снизить вязкость полиольного компонента b). Благодаря снижению вязкости полиольного компонента b) упрощается переработка соответствующей реакционной смеси на двухполосной установке.

Приведенные ниже примеры служат для более подробного пояснения настоящего изобретения.

Жесткие пенополиуретаны получают на двухполосной установке, температуру которой устанавливают на уровне 40°С.

Сравнительный пример

Приготовление полиольного компонента осуществляют путем смешивания:

71,5 масс.ч. простого эфира многоатомного спирта с гидроксильным числом 490 мг КОН/г на основе пропиленоксида и смеси сахарозы с глицерином в качестве стартового реагента,

15 масс.ч. простого эфира многоатомного спирта с гидроксильным числом

390 мг КОН/г на основе этиленоксида/пропиленоксида и вицинального толуилендиамина в качестве стартового реагента,

10 масс.ч. трис-2-хлоризопропилфосфата,

2 масс.ч. продукта Tegostab® B8496 фирмы Goldschmidt,

0,5 масс.ч. ацетата калия в виде 50-процентного раствора в этиленгликоле и

1 масс.ч. воды.

Полученный полиольный компонент подвергают взаимодействию с полимерным МДИ (продуктом Lupranat® M50 фирмы BASF SE с содержанием изоцианатных групп 31,5% масс.) в присутствии н-пентана (7,5 масс.ч.), диметилциклогексиламина и воды при изоцианатном показателе 120. Количества диметилциклогексиламина и воды выбирают таким образом, чтобы время гелеобразования составляло 45 секунд при плотности образующегося пенопласта 36 г/л.

Пример 1

Приготовление полиольного компонента осуществляют путем смешивания:

46,5 масс.ч. простого эфира многоатомного спирта с гидроксильным числом 490 мг КОН/г на основе пропиленоксида и смеси сахарозы с глицерином в качестве стартового реагента,

15 масс.ч. простого эфира многоатомного спирта с гидроксильным числом

390 мг КОН/г на основе этиленоксида/пропиленоксида и вицинального толуилендиамина в качестве стартового реагента,

10 масс.ч. трис-2-хлоризопропилфосфата,

25 масс.ч. касторового масла,

2 масс.ч. продукта Tegostab® B8496 фирмы Goldschmidt,

0,5 масс.ч. ацетата калия в виде 50-процентного раствора в этиленгликоле и

1 масс.ч. воды.

Полученный полиольный компонент подвергают взаимодействию с полимерным МДИ (продуктом Lupranat® M50 фирмы BASF SE с содержанием изоцианатных групп 31,5% масс.) в присутствии н-пентана (7,5 масс.ч.), диметилциклогексиламина и воды при изоцианатном показателе 120. Количества диметилциклогексиламина и воды выбирают таким образом, чтобы время гелеобразования составляло 45 секунд при плотности образующегося пенопласта 36 г/л.

Пример 2

Приготовление полиольного компонента осуществляют путем смешивания:

38,5 масс.ч. простого эфира многоатомного спирта с гидроксильным числом 490 мг КОН/г на основе пропиленоксида и смеси сахарозы с глицерином в качестве стартового реагента,

15 масс.ч. простого эфира многоатомного спирта с гидроксильным числом

390 мг КОН/г на основе этиленоксида/пропиленоксида и вицинального толуилендиамина в качестве стартового реагента,

10 масс.ч. трис-2-хлоризопропилфосфата,

25 масс.ч. касторового масла,

8 масс.ч. 1,2-пропиленгликоля,

2 масс.ч. продукта Tegostab® B8496 фирмы Goldschmidt,

0,5 масс.ч. ацетата калия в виде 50-процентного раствора в этиленгликоле и

1 масс.ч. воды.

Полученный полиольный компонент подвергают взаимодействию с полимерным МДИ (продуктом Lupranat® M50 фирмы BASF SE с содержанием изоцианатных групп 31,5% масс.) в присутствии н-пентана (7,5 масс.ч.), диметилциклогексиламина и воды при изоцианатном показателе 120. Количества диметилциклогексиламина и воды выбирают таким образом, чтобы время гелеобразования составляло 45 секунд при плотности образующегося пенопласта 36 г/л.

Степень отверждения оценивают путем испытания, предусматривающего использование болта. С этой целью соответственно через 3, 4, 5 и 6 минут после выполненного в полистирольном химическом стакане смешивания исходных компонентов в образующийся пенопласт в форме грибка на машине для растяжения/сжатия на глубину 10 мм вдавливают стальной болт со сферическим гнездом радиусом 10 мм. Мерой отверждения пенопласта служит необходимое для вдавливания максимальное усилие (в Ньютонах). В качестве результатов определения степени отверждения указывают максимальные усилия соответственно через 3, 4, 5 и 6 минут после смешивания исходных компонентов, а также сумму измеренных через 3, 4, 5 и 6 минут максимальных усилий.

Для испытания адгезии в лабораторных условиях в замкнутой обогреваемой форме путем вспенивания осуществляют изготовление элементов типа «сэндвич» (200×200×80 мм) с металлическими наружными слоями.

Температура формы составляет 40°С, общая плотность пенопласта 36 г/л. После отверждения системы отпиливают образец с размерами 100×100×80 мм и согласно DIN EN ISO 527-1 / DIN 53292 определяют адгезию слоя пенопласта к наружному слою.

Количественную оценку поверхностных дефектов осуществляют оптическим методом. Для этого в пене на расстоянии один миллиметр от нижнего наружного слоя (то есть от наружного слоя, на который методом изготовления двойного полотна нанесен полиуретановый реакционный раствор) укладывают плоскость и удаляют находящийся выше нее материал.

С целью количественной оценки поверхности пенопласта ее освещают справа, а затем слева и соответственно фотографируют. Снимки накладывают друг на друга и анализируют с помощью специальной программы для обработки. При этом дефектные места проявляются на поверхности в виде темных участков. Выраженное в процентах отношение площади темных участков к общей площади поверхности пенопласта служит мерой численности поверхностных дефектов.

Кроме того, выполняют дополнительную качественную оценку поверхности пенопластов, для чего от образца пенопласта размером 1 м × 2 м отделяют наружный слой и визуально оценивают качество поверхности.

Результаты экспериментов приведены в таблице 1.

Таблица 1
Сравнительный пример Пример 1 Пример 2
Отверждение через 3 мин [Н] 72 62 68
Отверждение через 4 мин [Н] 78 75 80
Отверждение через 5 мин [Н] 85 83 91
Отверждение через 6 мин [Н] 91 91 98
Суммарное отверждение через 3-6 мин [Н] 326 311 337
Предел прочности при растяжении [Н/мм2] 0,25 0,28 0,34
Поверхность (качественная оценка) Неудовлетворительно Хорошо Очень хорошо
Поверхность (количественная оценка) [%] 5,5 1,7 0,9
Вязкость полиольного компонента при 20°С [мПа·с] 8370 3750 1920

Приведенные в таблице 1 экспериментальные данные показывают, что предлагаемый в изобретении способ позволяет существенно улучшить поверхностные свойства пенопластов и повысить их адгезию. Кроме того, значительно уменьшается вязкость полиольного компонента, что обусловливает упрощение переработки вследствие оптимальной текучести и удовлетворительного отверждения.

Источник поступления информации: Роспатент

Showing 91-100 of 657 items.
20.10.2014
№216.012.ff3d

Абсорбент для извлечения кислых газов, содержащий аминокислоту и кислый промотор

В заявке описан абсорбент для извлечения кислых газов из жидкостного потока, включающий водный раствор а) по меньшей мере одной соли металла с аминокарбоновой кислотой и b) по меньшей мере одного кислого промотора, причем молярное отношение компонента b) к компоненту а) составляет от 0,0005 до...
Тип: Изобретение
Номер охранного документа: 0002531197
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.ffd3

Листовой конструкционный элемент из композиционного материала

Изобретение относится к листовому конструкционному элементу из композиционного материала, используемого в жилищном и промышленном строительстве для большепролетных крыш и фасадов, в качестве сэндвичных элементов конструкции в холодильных складах, в секционных воротах, в офисных сооружениях...
Тип: Изобретение
Номер охранного документа: 0002531347
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.00d7

Способ получения полиметилолов

Настоящее изобретение относится к способу дистилляции водной полиметилольной смеси, содержащей полиметилол формулы (I), третичный амин, воду, а также аддукт третичного амина и муравьиной кислоты (амин-формиат). Согласно предлагаемому способу дистилляцию проводят в снабженной конденсатором...
Тип: Изобретение
Номер охранного документа: 0002531613
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.06bd

Способ для нанесения покрытий, склеивания и соединения минеральных поверхностей

Изобретение относится к способу для нанесения покрытий для склеивания или соединения поверхностей минеральных материалов с помощью синтетической смолы, предпочтительно 2-компонентой синтетической смолы. Изобретение используется для укрепления склонов, прежде всего береговых склонов для...
Тип: Изобретение
Номер охранного документа: 0002533126
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0a06

Способ получения сыпучего порошка, содержащего одно или несколько производных глицин-n,n-диуксусной кислоты, и применение сыпучего порошка для получения прессованных агломератов

Изобретение относится к способу получения сыпучего порошка, содержащего одно или несколько производных глицин-N,N-диуксусной кислоты общей формулы (I), из водного раствора в качестве исходного материала, содержащего одно или несколько производных глицин-N,N-диуксусной кислоты, который сушат...
Тип: Изобретение
Номер охранного документа: 0002533974
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0cbe

Процесс для закупоривания подземных формаций

Изобретение относится к процессу для закупоривания подземных формаций в добыче нефти и/или газа. Первый этап включает введение абсорбирующих воду частиц в содержащие жидкость и пористые горные породы. Указанными частицами будут набухающие в воде, сшивающие и растворимые в воде полимеры....
Тип: Изобретение
Номер охранного документа: 0002534679
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0edd

Способ интегрированного получения целлюлозы и пригодных для повторного использования низкомолекулярных веществ

Изобретение относится к интегрированному способу получения целлюлозы и по меньшей мере одного пригодного для повторного использования низкомолекулярного вещества. Осуществляют подготовку содержащего лигноцеллюлозу исходного материала и его варку с использованием щелочного средства обработки. Из...
Тип: Изобретение
Номер охранного документа: 0002535222
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f5d

Способ получения меламина

Описывается способ получения меламина при помощи разложения мочевины с применением катализатора, содержащего 15-40 мас.% цеолита, который имеет низкое содержание никеля и ванадия, 50-85 мас.% матрицы, содержащей диоксид кремния, оксид алюминия, кремний-алюминий-оксиды и/или глинистые минералы,...
Тип: Изобретение
Номер охранного документа: 0002535350
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.10b2

Система красочного покрытия и способ получения многослойного красочного покрытия

Изобретение относится к системе красочного покрытия и, более конкретно, к системе красочного покрытия, которая включает органоборановый комплекс, и к способу формирования многослойного красочного покрытия. Система красочного покрытия содержит подложку и первый красочный слой, расположенный на...
Тип: Изобретение
Номер охранного документа: 0002535697
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.16f0

Способ отделения ацетонитрила от воды

Изобретение относится к способу отделения ацетонитрила от воды и может найти применение в процессах эпоксидирования пропилена пероксидом водорода. Предлагаемый способ отделения ацетонитрила от воды содержит стадии (i)-(iv). На стадии (i) предоставляют поток S1, содержащий, по меньшей мере, 95...
Тип: Изобретение
Номер охранного документа: 0002537296
Дата охранного документа: 27.12.2014
Showing 91-100 of 384 items.
20.07.2014
№216.012.dde7

Способ получения содержащих двуокись кремния полиольных дисперсий и их применение для получения полиуретановых материалов

Изобретение относится к способу получения содержащих двуокись кремния полиольных дисперсий, используемых для получения полиуретановых материалов. Предложен способ получения силикатсодержащих полиолов, включающий стадии: (i) смешения водного кремнезоля (К) со средним диаметром частиц от 1 до 150...
Тип: Изобретение
Номер охранного документа: 0002522593
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dde9

Носители катализатора на основе силикагеля

Изобретение относится к области катализа. Описаны сферические частицы, содержащие по меньшей мере один оксид металла и/или полуметалла, причем частицы имеют средний диаметр от 10 до 120 мкм, поверхность БЭТ от 400 до 800 м/г и объем пор от 0,3 до 3,0 см/г, а диаметр частицы в любом месте...
Тип: Изобретение
Номер охранного документа: 0002522595
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de8f

Способ получения n, n-замещенных 3-аминопропан-1-олов

Изобретение относится к способу получения N,N-замещенных 3-аминопропан-1-олов путем: a) взаимодействия вторичного алифатического амина с акролеином при температуре от -50 до 100°C и давлении от 0,01 до 300 бар и b) взаимодействия полученной на стадии а) реакционной смеси с водородом и аммиаком...
Тип: Изобретение
Номер охранного документа: 0002522761
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e193

Тонкодисперсные, содержащие крахмал дисперсии полимеров, способ их получения и их применение в качестве средств проклейки при изготовлении бумаги

Изобретение относится к тонкодисперсным, содержащим крахмал, дисперсиям полимеров, способу их получения и применению. Тонкодисперсную, содержащую крахмал дисперсию полимеров, предназначенную в качестве средства проклейки и покрывающего средства для бумаги, картона и картонажа, получают путем...
Тип: Изобретение
Номер охранного документа: 0002523533
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e879

Устройства и способ непрерывного дистилляционного разделения смеси, содержащей один или несколько алканоламинов

Изобретение предназначено для непрерывного дистилляционного разделения смеси, содержащей один или несколько алканоламинов. В заявке раскрыты устройства и способы дистилляционного разделения смеси, содержащей один или несколько алканоламинов. Разделение осуществляют в одной или нескольких...
Тип: Изобретение
Номер охранного документа: 0002525306
Дата охранного документа: 10.08.2014
27.09.2014
№216.012.f91a

Композиция для нанесения металлического покрытия, содержащая подавляющий агент, для беспустотного заполнения субмикронных элементов

Изобретение относится к области гальванотехники и может быть использовано для изготовления полупроводников. Способ электролитического осаждения меди на подложку, содержащую элементы поверхности субмикрометрового размера, имеющие размер отверстия 30 нанометров или менее, включает: а)...
Тип: Изобретение
Номер охранного документа: 0002529607
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fa0d

Способ производства пропиленоксида

Изобретение относится к способу производства пропиленоксида. Предложенный способ включает взаимодействие пропилена с перекисью водорода в присутствии катализатора с получением смеси (GI), содержащей пропиленаоксид, непрореагировавший пропилен и кислород; выделение пропиленоксида из смеси (GI)...
Тип: Изобретение
Номер охранного документа: 0002529859
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fab5

Способ получения полиметилолов

Настоящее изобретение относится к способу очистки сырого полиметилола, содержащего полиметилол формулы (I), а также гидроксикислоту формулы (IV). Согласно предлагаемому способу сырой полиметилол получают в многостадийном процессе, при этом на стадии а) алканали по реакции альдольной конденсации...
Тип: Изобретение
Номер охранного документа: 0002530027
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.ff3d

Абсорбент для извлечения кислых газов, содержащий аминокислоту и кислый промотор

В заявке описан абсорбент для извлечения кислых газов из жидкостного потока, включающий водный раствор а) по меньшей мере одной соли металла с аминокарбоновой кислотой и b) по меньшей мере одного кислого промотора, причем молярное отношение компонента b) к компоненту а) составляет от 0,0005 до...
Тип: Изобретение
Номер охранного документа: 0002531197
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.ffd3

Листовой конструкционный элемент из композиционного материала

Изобретение относится к листовому конструкционному элементу из композиционного материала, используемого в жилищном и промышленном строительстве для большепролетных крыш и фасадов, в качестве сэндвичных элементов конструкции в холодильных складах, в секционных воротах, в офисных сооружениях...
Тип: Изобретение
Номер охранного документа: 0002531347
Дата охранного документа: 20.10.2014
+ добавить свой РИД