×
10.08.2014
216.012.e7dc

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ УДЕЛЬНОЙ ЭЛЕКТРОПРОВОДНОСТИ И ЭЛЕКТРИЧЕСКОЙ МАКРОАНИЗОТРОПИИ ГОРНЫХ ПОРОД

Вид РИД

Изобретение

№ охранного документа
0002525149
Дата охранного документа
10.08.2014
Аннотация: Изобретение относится к области геофизики и может быть использовано при изучении электрических свойств горных пород. Заявлен способ измерения удельной электропроводности и электрической макроанизотропии горных пород, включающий электромагнитное возбуждение тока, текущего вдоль проводящей поверхности металлического корпуса каротажного прибора, тороидальной катушкой. При этом измеряется реальная и мнимая составляющие тока, стекающего с различных участков поверхности корпуса каротажного прибора. Измерение осуществляют при помощи заданного числа соосно расположенных тороидальных катушек, крайние из которых являются генераторными и включены в электрическую цепь синфазно и противофазно, а остальные приемными. Электромагнитное возбуждение тока осуществляют в широком диапазоне частот, при этом на каждой частоте измеряют реальные и мнимые составляющие сосной каротажному прибору компоненты плотности поверхностного тока и электродвижущей силы несколькими зондами различной длины. По данным измерений определяют пространственное распределение вертикальной и горизонтальной удельной электропроводности среды и коэффициент электрической макроанизотропии. Технический результат - повышение точности разведочных данных. 6 з.п.ф-лы, 4 ил.

Изобретение относится к области геофизических исследований в нефтегазовых скважинах, а именно к способам изучения электрических свойств горных пород (коллекторов), окружающих скважину, методом электромагнитного каротажа.

В настоящее время из уровня техники известен ряд способов-аналогов, применяемых для определения электрической макроанизотропии горных пород, в частности способ определения коэффициента электрической макроанизотропии в процессе бурения «PeriScope» (Schlumberger, www.slb.com). Измерения выполняют зондами, включающими коаксиальные и поперечные генераторные катушки и коаксиальные наклонные (45°) приемные катушки. Данный способ используется для определения удельной электропроводности (далее - УЭП) или обратной ей величины удельного электрического сопротивления (далее - УЭС), а также коэффициента электрической макроанизотропии и угла наклона границ пластов относительно скважины.

Основными недостатками этого способа определения электрической макроанизотропии горных пород являются малые значения сигналов перекрестных компонент, сильное влияние формы скважины, несовместность измерений в силу разных механизмов осреднения УЭС для разных компонент в тонкослоистых средах, а также резкая потеря точности определения вертикального УЭС при больших значениях коэффициента электрической макроанизотропии.

Наиболее близким к заявляемому техническому решению способом для определения коэффициента электрической макроанизотропии горных пород (прототипом) является изобретение по Патенту US №7227363. Реализуется данный способ следующим образом:

посредством специального генератора создают «течение» переменного тока вдоль корпуса прибора, часть которого стекает в окружающую среду (т.н. «боковой ток»). Затем измеряют разность сигналов между приемными тороидальными катушками, выделяя реальную и мнимую составляющие бокового тока, после чего по каждой из составляющих определяют кажущуюся УЭП. В дальнейшем вычисляют коэффициент электрической макроанизотропии на основании измеренных обоих значений кажущейся УЭП.

К числу недостатков прототипа можно отнести: отсутствие возможности высокого пространственного разрешения из-за ограничения количества независимых измерений; отсутствие возможности многочастотных измерений.

Технической целью (задачей) заявляемого изобретения является устранение вышеуказанных недостатков, а его техническим результатом - создание способа для измерения УЭП и электрической макроанизотропии горных пород, обеспечивающего высокое пространственное разрешение и позволяющего проводить измерения УЭП и электрической макроанизотропии горных пород, окружающих скважину.

Поставленная задача достигается тем, что в заявляемом техническом решении электромагнитное возбуждение тока осуществляется тороидальной катушкой, ток «течет» вдоль проводящей поверхности корпуса каротажного прибора, при этом измеряется реальная и мнимая составляющие тока, стекающего с различных участков поверхности корпуса каротажного прибора, непосредственно измерение осуществляют при помощи заданного числа соосно расположенных тороидальных катушек, крайние из которых являются генераторными и включены в электрическую цепь синфазно и противофазно, а остальные - приемными, электромагнитное возбуждение тока осуществляют в широком диапазоне частот, при этом на каждой частоте измеряют реальные и мнимые составляющие как соосной каротажному прибору компоненты плотности тока, так и электродвижущей силы несколькими зондами различной длины, затем по данным измерений определяют пространственное распределение вертикальной и горизонтальной УЭП и коэффициент электрической макроанизотропии (жирным выделены существенные признаки изобретения, отличающие его от прототипа). Именно вышеуказанная совокупность признаков обеспечивает получение изобретением заявленного технического результата.

Изобретение, в своих частных случаях выполнения, характеризуется признаками, указанными в предыдущем абзаце, в совокупности со следующим:

1) Электромагнитное возбуждение тока производят двумя тороидальными генераторными катушками, включенными встречно, при этом в одной из генераторных катушек, являющейся компенсационной, величина тока изменяется так, чтобы измеренные амплитуды электродвижущей силы и поверхностного тока в одной из приемных катушек, расположенных между генераторными катушками, были равны нулю, в этом случае можно измерять реальную и мнимую составляющие тока компенсационной катушки.

2) Электромагнитное возбуждение тока предлагается осуществлять генераторными тороидальными катушками в диапазоне частот от 5 до 500 кГц.

3) Измерения предлагается осуществлять зондами в диапазоне длин от 0.2 до 1.0 м.

Перечень графических чертежей, поясняющих сущность заявляемого изобретения:

Фиг.1 - зависимости амплитуд плотности тока и эдс от УЭС однородной среды для двухкатушечного зонда (длина 0.6 м, частоты 5-500 кГц);

Фиг.2 - зависимости амплитуд плотности тока и эдс от УЭС однородной среды для двухкатушечного зонда (длины 0.2-1.2 м, частота 50 кГц);

Фиг.3 - зависимости амплитуд плотности тока и эдс от горизонтального УЭС однородной среды (коэффициент электрической анизотропии 1-4) для двухкатушечного зонда (длина 0.6 м, частота 50 кГц);

Фиг.4 - зависимости амплитуд плотности тока и эдс от коэффициента электрической анизотропии однородной среды для двухкатушечного зонда (длина 0.6 м, частота 50 кГц).

Заявляемое изобретение реализуется следующим образом: на обмотку генераторных тороидальных катушек подается переменный электрический ток, посредством чего в окружающей среде возбуждается переменное электрическое поле, проникающее на достаточную для исследования глубину и имеющее как горизонтальную, так и вертикальную компоненты. Затем последовательно измеряет электрический ток на выводах приемных тороидальных катушек, реальную и мнимую составляющие электродвижущей силы, реальную и мнимую составляющие параллельной корпусу компоненты плотности вихревого тока. После этого по данным измерений определяют пространственное распределение горизонтальной и вертикальной УЭП среды и коэффициент электрической макроанизотропии. В дальнейшем, сопоставляют данные об электрической макроанизотропии, полученные из значений электродвижущей силы в тороидальных приемных катушках и поверхностного тока, с данными о детальной структуре тонкослоистого коллектора в разрезе, полученными из значений компенсационных токов, что позволяет достоверно устанавливать тип флюидонасыщения и эффективную мощность изучаемого коллектора.

Техническое решение позволяет реализовать два режима измерения. Первый, суммарный режим: электромагнитное возбуждение тока осуществляется двумя генераторными тороидальными катушками, включенными встречно, при этом в одной из генераторных катушек, являющейся компенсационной, изменяют величину электрического тока так, чтобы измеренные амплитуды эдс и поверхностного тока в одной из приемных катушек были равны нулю. Смысл второго, дифференциального режима состоит в том, что при стабильном электрическом токе в нижней генераторной тороидальной катушке - в верхней генераторной катушке задается компенсирующий ток. Его величина устанавливается таким образом, чтобы в каждой из приемных катушек, измеренная амплитуда эдс и поверхностного вихревого тока были равны нулю.

Высокое пространственное разрешение электромагнитного зонда с тороидальными катушками обусловлено использованием набора частот и катушек (частотно-геометрическое зондирование), применением двух режимов измерений (суммарный и дифференциальный), а также высоким уровнем полезного сигнала.

На основе численного моделирования и анализа электромагнитных сигналов в однородных, слоисто-однородных изотропных и макроанизотропных средах выполнен полномасштабный анализ измеряемых сигналов в заданной конфигурации каротажного прибора. Проведенный анализ источников измеряемых сигналов показал, что при возбуждении тороидальной катушкой на металлическом корпусе в среде возникает вихревое переменное электрическое поле, имеющее как горизонтальную, так и вертикальную компоненты. Это определяет зависимость измеряемых электромагнитных сигналов от горизонтальной и вертикальной УЭП пласта.

На Фиг.1 и 2 показаны зависимости амплитуд плотности тока и эдс от УЭС однородной среды для двухкатушечного зонда (фиг.1 - длина 0.6 м, частота 5-500 кГц; фиг.2 - длины 0.2-1.2 м, частота 50 кГц).

Генераторная тороидальная катушка расположена на металлическом корпусе радиусом 0.051 м с УЭС 0.57·10-9 Ом·м. Численное моделирование измеряемых сигналов выполнено при условии, что произведение моментов генераторной катушки и измерительного датчика равно единице. Приведены зависимости амплитуд плотности тока на корпусе прибора и эдс в приемной тороидальной катушке от УЭС однородной среды (1-200 Ом·м). Измеряемые амплитуды плотности тока и эдс характеризуются высоким уровнем и имеют большой динамический диапазон. Измеряемые сигналы значительно зависят от частоты, что указывает на преобладание частотного зондирования. При этом с повышением частоты зависимость сигналов от длины зонда увеличивается.

На Фиг.3 и 4 приведены зависимости амплитуд плотности тока и эдс от горизонтального УЭС однородной среды (Фиг.3) и коэффициента электрической макроанизотропии однородной среды (Фиг.4). Проведено моделирование измеряемых сигналов для однородной макроанизотропной среды с горизонтальным УЭС 1-200 Ом·м и коэффициентом электрической макроанизотропии 1-4 для двухкатушечного зонда (длина 0.6 м, частота 50 кГц). Представленные зависимости указывают на однозначную связь измеряемых характеристик с коэффициентом электрической макроанизотропии. Указанные зависимости позволяют создать соответствующие трансформанты измеряемых характеристик для оценки коэффициента электрической макроанизотропии.

Проведенное численное моделирование и сравнительный анализ электромагнитных характеристик показывают, что измерения являются линейно-независимыми и они однозначно связаны с УЭС пласта и коэффициентом электрической макроанизотропии.


СПОСОБ ИЗМЕРЕНИЯ УДЕЛЬНОЙ ЭЛЕКТРОПРОВОДНОСТИ И ЭЛЕКТРИЧЕСКОЙ МАКРОАНИЗОТРОПИИ ГОРНЫХ ПОРОД
СПОСОБ ИЗМЕРЕНИЯ УДЕЛЬНОЙ ЭЛЕКТРОПРОВОДНОСТИ И ЭЛЕКТРИЧЕСКОЙ МАКРОАНИЗОТРОПИИ ГОРНЫХ ПОРОД
СПОСОБ ИЗМЕРЕНИЯ УДЕЛЬНОЙ ЭЛЕКТРОПРОВОДНОСТИ И ЭЛЕКТРИЧЕСКОЙ МАКРОАНИЗОТРОПИИ ГОРНЫХ ПОРОД
СПОСОБ ИЗМЕРЕНИЯ УДЕЛЬНОЙ ЭЛЕКТРОПРОВОДНОСТИ И ЭЛЕКТРИЧЕСКОЙ МАКРОАНИЗОТРОПИИ ГОРНЫХ ПОРОД
Источник поступления информации: Роспатент

Showing 121-124 of 124 items.
26.08.2017
№217.015.dee2

Способ разработки низкопроницаемой залежи

Изобретение относится к нефтедобывающей промышленности и может быть применено для повышения эффективности разработки нефтяных низкопроницаемых залежей. Разработку нефтяных залежей ведут системой наклонно направленных нагнетательных и добывающих скважин с нагнетательной скважиной с ГРП в центре...
Тип: Изобретение
Номер охранного документа: 0002624944
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e5a2

Способ измерения петрофизических параметров низкопроницаемого керна

Изобретение относится к области нефтедобычи, в частности к способам определения проницаемости горных пород в лабораторных условиях, и предназначено для лабораторного определения коэффициента абсолютной газопроницаемости при стационарной фильтрации в образцах керна ультранизкопроницаемых горных...
Тип: Изобретение
Номер охранного документа: 0002626749
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e5e8

Тандемный металлооксидный солнечный элемент

Изобретение относится к области солнечной фотоэнергетики. Тандемный металлооксидный солнечный элемент содержит два расположенных один под другим по ходу светового потока металлооксидных солнечных элемента (МО СЭ) на основе мезоскопических слоев сенсибилизированного металлооксида, имеющих общий...
Тип: Изобретение
Номер охранного документа: 0002626752
Дата охранного документа: 31.07.2017
19.01.2018
№218.016.0921

Способ изготовления образца из слабоконсолидированного керна для проведения петрофизических исследований

Изобретение относится к петрофизике и может быть использовано при подготовке образцов керна слабоконсолидорованных осадочных горных пород к лабораторным исследованиям. Предлагаемый способ изготовления образца из слабоконсолидированного керна включает заморозку слабоконсолидированного и рыхлого...
Тип: Изобретение
Номер охранного документа: 0002631704
Дата охранного документа: 26.09.2017
Showing 121-125 of 125 items.
26.08.2017
№217.015.dee2

Способ разработки низкопроницаемой залежи

Изобретение относится к нефтедобывающей промышленности и может быть применено для повышения эффективности разработки нефтяных низкопроницаемых залежей. Разработку нефтяных залежей ведут системой наклонно направленных нагнетательных и добывающих скважин с нагнетательной скважиной с ГРП в центре...
Тип: Изобретение
Номер охранного документа: 0002624944
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e5a2

Способ измерения петрофизических параметров низкопроницаемого керна

Изобретение относится к области нефтедобычи, в частности к способам определения проницаемости горных пород в лабораторных условиях, и предназначено для лабораторного определения коэффициента абсолютной газопроницаемости при стационарной фильтрации в образцах керна ультранизкопроницаемых горных...
Тип: Изобретение
Номер охранного документа: 0002626749
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e5e8

Тандемный металлооксидный солнечный элемент

Изобретение относится к области солнечной фотоэнергетики. Тандемный металлооксидный солнечный элемент содержит два расположенных один под другим по ходу светового потока металлооксидных солнечных элемента (МО СЭ) на основе мезоскопических слоев сенсибилизированного металлооксида, имеющих общий...
Тип: Изобретение
Номер охранного документа: 0002626752
Дата охранного документа: 31.07.2017
19.01.2018
№218.016.0921

Способ изготовления образца из слабоконсолидированного керна для проведения петрофизических исследований

Изобретение относится к петрофизике и может быть использовано при подготовке образцов керна слабоконсолидорованных осадочных горных пород к лабораторным исследованиям. Предлагаемый способ изготовления образца из слабоконсолидированного керна включает заморозку слабоконсолидированного и рыхлого...
Тип: Изобретение
Номер охранного документа: 0002631704
Дата охранного документа: 26.09.2017
10.07.2019
№219.017.b192

Способ калибровки устройства для наземного электромагнитного индукционного частотного зондирования

Изобретение относится к способам определения технических параметров приборов, выполняющих дистанционные исследования геологической среды. Согласно заявленному способу калибровку выполняют при помощи замкнутого токопроводящего калибровочного кольца, расположенного между устройством для...
Тип: Изобретение
Номер охранного документа: 0002461850
Дата охранного документа: 20.09.2012
+ добавить свой РИД