×
10.08.2014
216.012.e770

Результат интеллектуальной деятельности: СПОСОБ РАБОТЫ ГАЗОРАСПРЕДЕЛИТЕЛЬНОЙ СТАНЦИИ

Вид РИД

Изобретение

Аннотация: Способ предназначен для комбинированной выработки электроэнергии, промышленного холода и конденсата. Способ заключается в следующем: природный газ забирают из магистрали высокого давления перед редуцирующим устройством и через байпасный газопровод направляют в магистраль низкого давления, при этом природный газ направляют в энергоутилизационную турбодетандерную установку для выработки электрической энергии в турбодетандере при расширении природного газа высокого давления, далее его направляют в газотурбинную установку для выработки электрической энергии с помощью газотурбинного двигателя и затем его направляют в теплоутилизационную турбодетандерную установку для выработки электрической энергии в турбодетандере при расширении природного газа высокого давления. Технический результат - повышение коэффициента полезного действия, снижение вредных выбросов в окружающую среду, упрощение работы газораспределительной станции. 2 з.п. ф-лы, 2 ил.

Изобретение относится к газовой промышленности, а именно к газораспределительным станциям с применением турбодетандерной технологии понижения давления природного газа, и может быть использована для комбинированной выработки электроэнергии, промышленного холода и конденсата в виде сжиженной фракции тяжелых углеводородов за счет использования энергии перепада давления природного газа на входе и выходе газораспределительной станции.

Известна газотурбинная установка (ГТУ), включающая газотурбинный двигатель, за силовой турбиной которого установлен обращенный газогенератор, и основной электрогенератор, соединенный с валом силовой турбины, при этом обращенный газогенератор содержит установленные за силовой турбиной турбину перерасширения, дожимающий компрессор и теплообменник-охладитель перед дожимающим компрессором, причем турбина перерасширения и дожимающий компрессор установлены на общем валу, механически не связанном с валом силовой турбины (Авторское свидетельство СССР №267257, МПК F02C 3/04, опубликовано 10.06.2010).

Недостатком этого технического решения является недостаточно высокая удельная мощность и, как следствие, относительно низкий коэффициент полезного действия (КПД), обусловленные отсутствием утилизации низкопотенциальной теплоты.

Известен способ работы газораспределительной станции, реализуемый системой газораспределения, содержащей магистрали высокого и низкого давления природного газа, соединенные между собой при помощи редуцирующего устройства и через байпасный газопровод, в котором последовательно установлены газотурбинная установка и теплоутилизирующая турбодетандерная установка, которая имеет электрогенератор, соединенный с потребителем электроэнергии (Патент RU №2009389, МПК F17D 1/04, 15.03.1994).

Основным недостатком известного способа работы газораспределительной станции является недостаточно высокий коэффициент полезного действия (до 45%), связанный с особенностями термодинамического цикла газотурбинной установки с регенерацией тепла.

Омывание природного газа в теплообменнике-утилизаторе высокотемпературным потоком продуктов сгорания (350…500°С) газотурбинного двигателя приводит к пиролизу природного газа и ухудшает его физические и термодинамические свойства.

Дросселирование газотурбинного двигателя за счет регулирования температуры в камере сгорания приводит (на режимах пониженной мощности) к повышению удельного расхода топлива и увеличению выбросов загрязняющих веществ с продуктами сгорания.

Кроме этого, недостатком известного способа работы газораспределительной станции являются ограниченные функциональные возможности, так как он не позволяет вырабатывать конденсат в виде сжиженной фракции тяжелых углеводородов.

Наиболее близким техническим решением к настоящему изобретению является способ работы газораспределительной станции, реализуемый комбинированной газотурбинной установкой системы газораспределения, заключающийся в выработке электрической энергии в турбодетандере при расширении низкотемпературного природного газа высокого давления, в выработке электрической энергии с помощью газотурбинного двигателя, утилизации теплоты выхлопных газов газотурбинного двигателя и использовании низкотемпературного природного газа в качестве теплоприемника, при этом утилизацию теплоты выхлопных газов газотурбинного двигателя осуществляют путем нагрева в теплообменнике-утилизаторе рабочего тела теплового двигателя с замкнутым контуром циркуляции, работающего по циклу Брайтона, варьируя мощность теплового двигателя изменением массового расхода рабочего тела с помощью дозаторов, подкачивающего компрессора и расходных баллонов низкого и высокого давлений, содержащих запас рабочего тела, а рабочее тело теплового двигателя сжимают в многоступенчатом компрессоре, расширяют в турбине, причем охлаждение рабочего тела ведут низкотемпературным природным газом после турбодетандера в низкотемпературном теплообменнике (Патент RU №2199020, МПК F102C 6/00, 20.02.2003).

Основным недостатком известного способа работы газораспределительной станции является недостаточно высокий коэффициент полезного действия (до 60%), обусловленный необходимостью нагрева в теплообменнике-утилизаторе рабочего тела теплового двигателя с замкнутым контуром циркуляции, работающего по циклу Брайтона. При этом дополнительный замкнутый контур циркуляции характеризуется низким эффективным КПД, равным 23, 2%, при использовании низкотемпературного природного газа в качестве теплоприемника для охлаждения рабочего тела, а не для повышения эффективного КПД основного газотурбинного двигателя. Причем недостаточно высокий КПД известного способа приводит к повышению удельного расхода топлива и увеличению выбросов загрязняющих веществ с продуктами сгорания.

Кроме этого, дополнительный замкнутый контур циркуляции усложняет работу газораспределительной станции.

Также недостатком известного способа являются его ограниченные функциональные возможности, так как при работе газораспределительной станции не вырабатывается конденсат в виде сжиженной фракции тяжелых углеводородов.

Задачей настоящего изобретения является повышение коэффициента полезного действия за счет использования низкотемпературного природного газа для охлаждения отработавших газов газотурбинной установки, снижение вредных выбросов в окружающую среду за счет уменьшения удельного расхода топлива в газотурбинной установке, упрощение работы газораспределительной станции, а также расширение функциональных возможностей за счет выработки конденсата в виде сжиженной фракции тяжелых углеводородов.

Технический результат достигается тем, что в способе работы газораспределительной станции, согласно которому природный газ забирают из магистрали высокого давления перед редуцирующим устройством и через байпасный газопровод направляют в магистраль низкого давления, при этом природный газ направляют в энергоутилизационную турбодетандерную установку для выработки электрической энергии в турбодетандере при расширении природного газа высокого давления, далее его направляют в газотурбинную установку для выработки электрической энергии с помощью газотурбинного двигателя и затем его направляют в теплоутилизационную турбодетандерную установку для выработки электрической энергии в турбодетандере при расширении природного газа высокого давления, согласно предлагаемому изобретению при выработке электрической энергии в газотурбинной установке используют газотурбинную установку с обращенным газогенератором, выполненную с возможностью его охлаждения низкотемпературным природным газом, вырабатываемым в энергоутилизационной турбодетандерной установке, причем используют газотурбинный двигатель, имеющий теплообменник-охладитель воздушного компрессора, и используют обращенный газогенератор, имеющий теплообменник-охладитель отработавших газов, при выработке электрической энергии в энергоутилизационной турбодетандерной установке низкотемпературный природный газ направляют при отрицательных температурах окружающей среды непосредственно в теплообменник-охладитель отработавших газов обращенного газогенератора, при положительных температурах окружающей среды - в теплообменник-охладитель воздушного компрессора, а при выработке электрической энергии в газотурбинной установке низкотемпературный природный газ нагревают теплотой отработавших газов обращенного газогенератора.

При выработке электрической энергии в газотурбинной установке используют газотурбинный двигатель, имеющий первый и второй сепараторы-влагоотделители, соответственно для осушения наружного воздуха и для осушения отработавших газов обращенного газогенератора, выполненные с возможностью дренажного слива.

При выработке электрической энергии в энергоутилизационной турбодетандерной установке вырабатывают конденсат в виде сжиженной фракции тяжелых углеводородов, который направляют в камеру сгорания.

Таким образом, основным техническим результатом является повышение коэффициента полезного действия благодаря использованию газотурбинной установки с обращенным газогенератором, охлаждаемым низкотемпературным природным газом, и выполнению теплоутилизирующей турбодетандерной установки с возможностью утилизации низкопотенциальной теплоты природного газа, нагретого отработавшими газами обращенного газогенератора.

Кроме этого, техническим результатом является снижение вредных выбросов в окружающую среду за счет уменьшения удельного расхода топлива в газотурбинной установке, упрощение работы газораспределительной станции, снижение вредных выбросов в окружающую среду за счет использования обращенного газогенератора, повышающего КПД, а также расширение функциональных возможностей благодаря возможности выработки конденсата в виде сжиженной фракции тяжелых углеводородов.

Сущность изобретения поясняется чертежами, на которых показана газораспределительная станция, реализующая предлагаемый способ работы (на фиг.1 изображена укрупненная блок-схема газораспределительной станции, а на фиг.2 - принципиальная схема газораспределительной станции).

На чертеже цифрами обозначены:

1 - магистраль высокого давления природного газа,

2 - магистраль низкого давления природного газа,

3 - редуцирующее устройство,

4 - байпасный газопровод,

5 - газотурбинная установка с обращенным газогенератором,

6 - электрогенератор газотурбинной установки,

7 - теплоутилизирующая турбодетандерная установка,

8 - электрогенератор теплоутилизирующей установки,

9 - газотурбинный двигатель,

10 - обращенный газогенератор,

11 - входное устройство,

12 - воздушный компрессор,

13 - камера сгорания,

14 - турбина для привода воздушного компрессора,

15 - силовая турбина,

16 - вал силовой турбины,

17 - турбина перерасширения,

18 - дожимающий компрессор,

19 - теплообменник-охладитель обращенного газогенератора,

20 - вал турбины перерасширения,

21 - энергоутилизационная турбодетандерная установка,

22 - электрогенератор энергоутилизационной установки,

23 - теплообменник-охладитель природного газа высокого давления,

24 - турбодетандер энергоутилизационной установки,

25 - сепаратор-отделитель жидкой фазы низкотемпературного природного газа,

26 - сепаратор-отделитель жидкой фазы тяжелых углеводородных фракций,

27 - ресивер сжиженной фракции тяжелых углеводородов,

28 - теплообменник-охладитель воздушного компрессора,

29 - первый сепаратор-влагоотделитель,

30 - второй сепаратор-влагоотделитель,

31 - газопровод низкотемпературного природного газа,

32 - первый байпасный трубопровод,

33 - второй байпасный трубопровод,

34 - третий байпасный трубопровод.

Газораспределительная станция (фиг.1) содержит магистрали высокого 1 и низкого 2 давления природного газа, соединенные между собой при помощи редуцирующего устройства 3 и через байпасный газопровод 4.

В байпасном газопроводе 4 последовательно установлены газотурбинная установка 5, имеющая электрогенератор 6, и теплоутилизирующая турбодетандерная установка 7, имеющая электрогенератор 8. Электрогенераторы 6 и 8 соединены с потребителем электроэнергии, например с компрессорной станцией.

Газотурбинная установка 5 (фиг.2) включает в себя газотурбинный двигатель 9 и обращенный газогенератор 10, установленный за газотурбинным двигателем.

Газотурбинный двигатель 9 содержит входное устройство 11, воздушный компрессор 12, камеру сгорания 13, турбину 14 для привода воздушного компрессора и силовую турбину 15, вал 16 которой соединен с электродвигателем 6 газотурбинной установки 5.

Обращенный газогенератор 10 содержит установленные за силовой турбиной 15 турбину 17 перерасширения, дожимающий компрессор 18 и теплообменник-охладитель 19 обращенного газогенератора.

Теплообменник-охладитель 19 установлен перед дожимающим компрессором 18.

Турбина 17 перерасширения и дожимающий компрессор 18 установлены на общем валу 20, механически не связанном с валом 16 силовой турбины 15.

Предлагаемая газораспределительная станция снабжена энергоутилизационной турбодетандерной установкой 21 с электрогенератором 22, соединенным с потребителем электроэнергии (фиг.2).

Энергоутилизационная турбодетандерная установка 21 выполнена с возможностью выработки низкотемпературного природного газа и конденсата в виде сжиженной фракции тяжелых углеводородов.

Газотурбинная установка 5 выполнена с возможностью охлаждения его обращенного газогенератора 10 вырабатываемым низкотемпературным природным газом.

Теплоутилизирующая турбодетандерная установка 7 выполнена с возможностью утилизации низкопотенциальной теплоты природного газа, нагретого отработавшими газами обращенного газогенератора газотурбинной установки 5.

Энергоутилизационная турбодетандерная установка (фиг.2) содержит теплообменник-охладитель 23 природного газа высокого давления, турбодетандер 24 с электрогенератором 22, сепаратор-отделитель 25 жидкой фазы низкотемпературного природного газа, сепаратор-отделитель 26 жидкой фазы тяжелых углеводородных фракций и ресивер 27 сжиженной фракции тяжелых углеводородов.

Первый вход теплообменника-охладителя 23 природного газа высокого давления соединен с магистралью 1 высокого давления природного газа, а первый выход теплообменника-охладителя 23 - с входом турбодетандера 24.

Выход турбодетандера 24 соединен с сепаратором-отделителем 25 жидкой фазы низкотемпературного природного газа.

Первый выход сепаратора-отделителя 25 жидкой фазы низкотемпературного природного газа соединен с газотурбинной установкой 5 с обращенным газогенератором 10.

Второй выход сепаратора-отделителя 25 соединен с сепаратором-отделителем 26 жидкой фазы тяжелых углеводородных фракций.

Сепаратор-отделитель 26 жидкой фазы тяжелых углеводородных фракций соединен с вторым входом теплообменника-охладителя 23 природного газа высокого давления.

Второй выход теплообменника-охладителя 23 соединен с ресивером 27 сжиженной фракции тяжелых углеводородов.

Газотурбинный двигатель 9 (фиг.2) снабжен теплообменником-охладителем 28 воздушного компрессора и первым сепаратором-влагоотделителем 29, установленными перед воздушным компрессором 12.

Обращенный газогенератор (фиг.2) снабжен вторым сепаратором-влагоотделителем 30, установленным перед дожимающим компрессором 18.

Вход теплообменника-охладителя 28 воздушного компрессора соединен, посредством газопровода 31 низкотемпературного природного газа, с первым выходом сепаратора-отделителя 25 жидкой фазы низкотемпературного природного газа, т.е. первый выход сепаратора-отделителя 25 жидкой фазы низкотемпературного природного газа соединен с газотурбинной установкой 5 посредством газопровода 31 низкотемпературного природного газа.

Выход теплообменника-охладителя 28 воздушного компрессора соединен, посредством газопровода 31 низкотемпературного природного газа, с входом теплообменника-охладителя 19 обращенного газогенератора 10.

Выход теплообменника-охладителя 19 обращенного газогенератора 10 соединен с входом турбодетандера 7 теплоутилизирующей установки.

Вход камеры сгорания 13 газотурбинного двигателя 9 соединен с выходом ресивера 27 сжиженной фракции тяжелых углеводородов.

Байпасный газопровод 4 имеет первый 32 байпасный трубопровод, соединяющий первый вход и первый выход теплообменника-охладителя 23 природного газа высокого давления.

Сепаратор-отделитель 26 жидкой фазы тяжелых углеводородных фракций соединен с ресивером 27 сжиженной фракции тяжелых углеводородов при помощи второго 33 байпасного трубопровода.

Газопровод 31 низкотемпературного природного газа имеет третий 34 байпасный трубопровод, соединяющий вход и выход теплообменника-охладителя 28 воздушного компрессора.

Первый 29 и второй 30 сепараторы-влагоотделители выполнены с возможностью дренажного слива.

Сепаратор-отделитель 26 жидкой фазы тяжелых углеводородных фракций выполнен с возможностью отвода твердых примесей.

Согласно предлагаемому способу работы газораспределительной станции природный газ забирают из магистрали высокого давления перед редуцирующим устройством и через байпасный газопровод направляют в магистраль низкого давления. При этом природный газ высокого давления направляют в энергоутилизационную турбодетандерную установку для выработки электрической энергии в турбодетандере при расширении природного газа высокого давления.

Далее низкотемпературный природный газ направляют в газотурбинную установку для выработки электрической энергии с помощью газотурбинного двигателя. Затем природный газ направляют в теплоутилизационную турбодетандерную установку для выработки электрической энергии в турбодетандере при расширении природного газа высокого давления.

Отличием предлагаемого способа работы газораспределительной станции является то, что при выработке электрической энергии в газотурбинной установке используют газотурбинную установку с обращенным газогенератором, выполненную с возможностью его охлаждения низкотемпературным природным газом, вырабатываемым в энергоутилизационной турбодетандерной установке.

При выработке электрической энергии в газотурбинной установке используют газотурбинный двигатель, имеющий теплообменник-охладитель воздушного компрессора, и используют обращенный газогенератор, имеющий теплообменник-охладитель отработавших газов.

При выработке электрической энергии в газотурбинной установке низкотемпературный природный газ нагревают теплотой отработавших газов обращенного газогенератора.

При выработке электрической энергии в энергоутилизационной турбодетандерной установке низкотемпературный природный газ направляют при отрицательных температурах окружающей среды непосредственно в теплообменник-охладитель отработавших газов обращенного газогенератора, а при положительных температурах окружающей среды - в теплообменник-охладитель воздушного компрессора.

При выработке электрической энергии в газотурбинной установке используют газотурбинный двигатель, имеющий первый и второй сепараторы-влагоотделители соответственно для осушения наружного воздуха и для осушения отработавших газов обращенного газогенератора, выполненные с возможностью дренажного слива.

При выработке электрической энергии в энергоутилизационной турбодетандерной установке вырабатывают конденсат в виде сжиженной фракции тяжелых углеводородов, который направляют в камеру сгорания.

Предлагаемая газораспределительная станция работает следующим образом.

Природный газ забирают из магистрали 1 высокого давления перед редуцирующим устройством 3 и через байпасный газопровод 4 направляют в энергоутилизационную турбодетандерную установку 21 для выработки низкотемпературного природного газа и конденсата в виде сжиженной фракции тяжелых углеводородов при расширении в турбодетандере 24 установки 21.

При положительных температурах окружающей среды забираемый природный газ из магистрали 1 высокого давления охлаждают в теплообменнике-охладителе 23 природного газа высокого давления с помощью выработанного конденсата в виде сжиженной фракции тяжелых углеводородов. При отрицательных температурах окружающей среды забираемый природный газ из магистрали 1 высокого давления направляют непосредственно в турбодетандер 24 установки 21 через первый байпасный трубопровод 32.

Срабатывание избыточного давления природного газа в турбодетандере 24 установки 21 сопровождается резким снижением температуры газа, что становится причиной выпадения твердых гидратов воды, углекислого газа CO2 и конденсата в виде сжиженной фракции тяжелых углеводородов. Мощность турбодетандера 24 передается соединенному на одном валу электрогенератору 22. Низкотемпературный природный газ на выходе из турбодетандера 24 установки 21 направляют в сепаратор-отделитель 25 жидкой фазы низкотемпературного природного газа.

Отсепарированный конденсат в виде сжиженной фракции тяжелых углеводородов с примесью твердых частиц CO2 и гидратов воды направляют в сепаратор-отделитель 26 жидкой фазы тяжелых углеводородных фракций для извлечения твердых примесей и их удаления через имеющийся отвод твердых примесей.

Очищенный конденсат в виде сжиженной фракции тяжелых углеводородов может использоваться для охлаждения природного газа высокого давления в теплообменнике-охладителе 23 при положительных температурах окружающей среды, а при отрицательных температурах окружающей среды может непосредственно подаваться в ресивер 27 через второй байпасный 33 трубопровод.

Выработанный конденсат в виде сжиженной фракции тяжелых углеводородов может использоваться для сжигания в камере сгорания 13 газотурбинной установки 5 посредством подачи его через ресивер 27.

При этом использование конденсата в виде сжиженной фракции тяжелых углеводородов позволяет охлаждать стенки жаровых труб в процессе испарения топливного конденсата в пристенной зоне камере сгорания 13.

Выполнение жаровой трубы камеры сгорания с испарительной камерой, которая образована двумя концентрично расположенными стенками жаровой трубы (на чертеже условно не показаны), позволяет улучшить теплоотвод от нагретых стенок жаровой трубы. При этом повышается эффективность использования топливного конденсата в виде сжиженной фракции тяжелых углеводородов при его испарении и газификации непосредственно в испарительной камере, обеспечивая тем самым снижение термических напряжений в стенках жаровой трубы, возникающих вследствие перепадов температур на стенках жаровых труб. Кроме этого, повышается надежность работы камеры сгорания и ресурс газотурбинного двигателя.

Отсепарированный низкотемпературный природный газ направляют в теплообменник-охладитель 28 воздушного компрессора газотурбинной установки 5 с обращенным газогенератором, через газопровод 31 низкотемпературного природного газа.

Теплообменник-охладитель 28 воздушного компрессора используют при положительных температурах окружающей среды для осушения наружного воздуха, при котором происходит конденсация влаги с дальнейшим дренажным сливом выделившейся влаги.

При отрицательных температурах окружающей среды отсепарированный низкотемпературный природный газ направляют непосредственно в теплообменник-охладитель 19 обращенного газогенератора газотурбинной установки 5 через газопровод 31 низкотемпературного природного газа, посредством третьего байпасного трубопровода 34.

Обращенный газогенератор 10 газотурбинной установки 5 охлаждают низкотемпературным природным газом, вырабатываемым в энергоутилизационной турбодетандерной установке 21. В процессе теплообмена низкотемпературного природного газа с отработавшими газами обращенного газогенератора происходит осушение отработавших газов обращенного газогенератора 10 с дальнейшим дренажным сливом выделившейся влаги.

Низкотемпературный природный газ, нагретый полученной теплотой от отработавших газов обращенного газогенератора 10 газотурбинной установки 5, направляют в теплоутилизирующую турбодетандерную установку 7 для утилизации низкопотенциальной теплоты природного газа высокого давления при его расширении в теплоутилизирующей турбодетандерной установке 7, который на выходе, через байпасный газопровод 4, соединен с магистралью 2 низкого давления природного газа. Мощность теплоутилизирующей турбодетандерной установки 7 передается соединенному на одном валу электрогенератору 8.

Работа газотурбинной установки 5 с обращенным газогенератором 10 осуществляется по схеме:

всос наружного воздуха в проточную часть воздушного компрессора 12,

охлаждение и осушение в теплообменнике-охладителе 28 воздушного компрессора 12,

сжатие его в многоступенчатом воздушном компрессоре 12,

подвод теплоты в камере сгорания 13,

расширение в компрессорной турбине 14 и силовой турбине 15,

перерасширение в турбине 17 обращенного газогенератора 10,

охлаждение и осушение в теплообменнике-охладителе 19,

сжатие в дожимающем компрессоре 18.

Мощность силовой турбины 15 газотурбинной установки 5 передается соединенному на одном валу 16 электрогенератору 6.

Пример 1 конкретного выполнения.

Предлагаемая газораспределительная станция, имеющая газотурбинную установку 5 на основе газотурбинного двигателя 9 (ГТД) типа НК-16СТ с расчетным эффективным КПД ηе=0,277.

Газотурбинный двигатель типа НК-16СТ при использовании обращенного газогенератора 10, установленного в существующем газоходе за силовой турбиной 15 ГТД, имеет следующие параметры термодинамического цикла:

температуру осушенного воздуха на входе в компрессор 12 Тов=273,15 К,

расход циклового воздуха 78,87 кг/с,

степень повышения давления в компрессоре 12 πк=9,5744,

температуру в камере сгорания 13 Ткс=1100 К,

расход топливного газа в камере сгорания 0,8824 кг/с,

температуру продуктов сгорания перед силовой турбиной 15 Тг=826,34 К,

температуру продуктов сгорания за турбиной перерасширения 17 обращенного газогенератора 10 на входе в теплообменник-охладитель 19 Tг=522,3 K,

давление продуктов сгорания за турбиной перерасширения 17 обращенного газогенератора 10 на входе в теплообменник-охладитель 19 Рг=0,0361 МПа,

температуру продуктов сгорания на входе в дожимающий компрессор 18 за теплообменником-охладителем 19 обращенного газогенератора 10 Тг=273,15 К,

давление продуктов сгорания на входе в дожимающий компрессор 18 за теплообменником-охладителем 19 обращенного газогенератора 10 Рг=0,0346 МПа,

эффективный КПД ηе=0,353,

температуру продуктов сгорания на выхлопе за дожимающим компрессором 18 обращенного газогенератора 383,13 К.

Применение указанного ГТД с обращенным газогенератором позволяет получить эффективную мощность на валу 16 силовой турбины 15 для привода электрогенератора 6, равную 16 МВт.

При этом для понижения давления транспортируемого природного газа при начальном давлении 5,5 МПа и расходе в 100 кг/с используются:

энергоутилизационная турбодетандерная установка 21, включающая следующие элементы:

теплообменник-охладитель 23 природного газа высокого давления с параметрами:

природный газ на входе Тпг=288,15 К, Рпг=5,5 МПа,

природный газ на выходе Тпг=285,15 К, Рпг=5,4 МПа,

очищенный конденсат на входе Ток=255,75 К, Рок=3,1 МПа,

очищенный конденсат на выходе Ток=275,91 К, Рок=3 МПа,

расход очищенного конденсата Gок=9,9 кг/с;

турбодетандер 24 энергоутилизационной установки 21, имеющий расчетный изоэнтропийный КПД=0,87 с параметрами:

природный газ на входе Тпг=285,15 К, Рпг=5,4 МПа,

низкотемпературный природный газ на выходе Тпг=254,54 К, Рпг=3,3 МПа,

мощность для привода электрогенератора 22 равна 4,782 МВт;

сепаратор-отделитель 25 жидкой фазы низкотемпературного природного газа с параметрами:

низкотемпературный природный газ на входе Тпг=254,54 К, Рпг=3,3 МПа,

отсепарированный низкотемпературный природный газ на выходе Тпг=255,15 К, Рпг=3,2МПа,

расход отсепарированного низкотемпературного природного газа на выходе Gпг=89,1 кг/с,

расход конденсата на выходе Gк=10,9 кг/с;

сепаратор-отделитель 26 жидкой фазы тяжелых углеводородных фракций с параметрами:

конденсат на входе Тпг=255,15 К, Рпг=3,2 МПа,

очищенный конденсат на выходе Ток=255,75 К, Рок=3,1 МПа,

расход очищенного конденсата Gок=9,9 кг/с,

расход примесей твердых частиц на выходе Gптч=1 кг/с;

ресивер 27 сжиженной фракции тяжелых углеводородов для хранения очищенного конденсата с параметрами:

очищенный конденсат на входе Ток=275,91 К, Рок=3 МПа,

расход очищенного конденсата Gок=9,9 кг/с;

теплообменник-охладитель 28 воздушного компрессора с параметрами:

наружный воздух на входе Тнв=288,15 К, Рнв=0,1013 МПа, Gнв=78,87 кг/с,

наружный воздух на выходе Тнв=273,15 К, Рнв=0,1 МПа, Gнв=78,87 кг/с,

низкотемпературный природный газ на входе Тпт=255,15 К, Рпг=3,2МПа, Gпг=89,1 кг/с,

низкотемпературный природный газ на выходе Тпг=259,41 К, Рпг=3,1 МПа, Gпг=89,1 кг/с;

теплообменник-охладитель 19 обращенного газогенератора 10 с параметрами:

отработавшие газы на входе Тг=522,3 К, Рг=0,0361 МПа, Gг=73,52 кг/с,

отработавшие газы на выходе Тг=273,15 К, Рг=0,0346 МПа, Gг=73,52 кг/с,

низкотемпературный природный газ на входе Тпг=259,41 К, Рпг=3,1 МПа, Gпг=89,1 кг/с,

низкотемпературный природный газ на выходе Тпг=337,13 К, Рпг=3 МПа, Gпг=89,1 кг/с;

теплоутилизирующая турбодетандерная установка 7, имеющая расчетный изоэнтропийный КПД=0,87 с параметрами:

на входе Тпг=337,13 К, Рпг=3 МПа,

на выходе Тпг=281,07 К, Рпг=1,25 МПа,

мощность для привода электрогенератора 8 равна 10,175 МВт.

В целом, при расходе природного газа, равном 100 кг/с, и начальным давлением 5,5 МПа суммарная электрическая мощность предлагаемой газораспределительной станции, затрачиваемая на привод электрогенераторов 6, 8 и 22, составляет 30,649 МВт, а эффективный КПД предлагаемой газораспределительной станции системы распределения природного газа составляет 0,676.

Использование более экономичных газотурбинных двигателей, например ГТД типа АЛ-31Ф с эффективным КПД Че=0,389, а также повышение начального давления транспортируемого природного газа приведет к еще большому увеличению эффективного КПД предлагаемой газораспределительной станции.

Пример 2 конкретного выполнения.

Предлагаемая газораспределительная станция, имеющая газотурбинную установку 5 на основе ГТД типа ГТА-6РМ с расчетным эффективным КПД ηе=0,258.

Газотурбинный двигатель типа ГТА-6РМ при использовании обращенного газогенератора 10, установленного в существующем газоходе за силовой турбиной 15 ГТД, имеет следующие параметры термодинамического цикла:

температуру осушенного воздуха на входе в компрессор 12 Тов=273,15 К,

расход циклового воздуха 40 кг/с,

степень повышения давления в компрессоре 12 πк=8,523,

температуру в камере сгорания 13 Ткс=1050 К,

расход топливного газа в камере сгорания 0,4918 кг/с,

температуру продуктов сгорания перед силовой турбиной 15 Тг=770,27 К,

температуру продуктов сгорания за турбиной перерасширения 17 обращенного газогенератора 10 на входе в теплообменник-охладитель 19 Тг=507,75 К,

давление продуктов сгорания за турбиной перерасширения 17 обращенного газогенератора 10 на входе в теплообменник-охладитель 19 Рг=0,0364 МПа,

температуру продуктов сгорания на входе в дожимающий компрессор 18 за теплообменником-охладителем 19 обращенного газогенератора 10 Тг=273,15 К,

давление продуктов сгорания на входе в дожимающий компрессор 18 за теплообменником-охладителем 19 обращенного газогенератора 10 Рг=0,0349 МПа,

эффективный КПД ηе=0,316,

температуру продуктов сгорания на выхлопе за дожимающим компрессором 18 обращенного газогенератора 383,13 К.

Применение указанного ГТД с обращенным газогенератором позволяет получить эффективную мощность на валу 16 силовой турбины 15 для привода электрогенератора 6, равную 6,86 МВт.

При этом для понижения давления транспортируемого природного газа при начальном давлении 5,5 МПа и расходе в 50 кг/с используются:

энергоутилизационная турбодетандерная установка 21, включающая следующие элементы:

теплообменник-охладитель 23 природного газа высокого давления с параметрами:

природный газ на входе Тпг=288,15 К, Рпг=5,5 МПа,

природный газ на выходе Тпг=285,15 К, Рпг=5,4 МПа,

очищенный конденсат на входе Ток=255,75 К, Рок=3,1 МПа,

очищенный конденсат на выходе Ток=275,91 К, Рок=3 МПа,

расход очищенного конденсата Gок=4,95 кг/с;

турбодетандер 24 энергоутилизационной установки 21, имеющий расчетный изоэнтропийный КПД=0,87 с параметрами:

природный газ на входе Тпг=285,15 К, Рпг=5,4 МПа,

низкотемпературный природный газ на выходе Тпг=254,54 К, Рпг=3,3 МПа,

мощность для привода электрогенератора 22 равна 2,3912 МВт;

сепаратор-отделитель 25 жидкой фазы низкотемпературного природного газа с параметрами:

низкотемпературный природный газ на входе Тпг=254,54 К, Рпг=3,3 МПа,

отсепарированный низкотемпературный природный газ на выходе Тпг=255,15 К, Рпг=3,2МПа,

расход отсепарированного низкотемпературного природного газа на выходе Gпг=44,55 кг/с,

расход конденсата на выходе Gк=5,45 кг/с;

сепаратор-отделитель 26 жидкой фазы тяжелых углеводородных фракций с параметрами:

конденсат на входе Тпг=255,15 К, Рпг=3,2 МПа,

очищенный конденсат на выходе Ток=255,75 К, Рок=3,1 МПа,

расход очищенного конденсата Gок=4,95 кг/с,

расход примесей твердых частиц на выходе Gок=0,5 кг/с;

ресивер 27 сжиженной фракции тяжелых углеводородов для хранения очищенного конденсата с параметрами:

очищенный конденсат на входе Ток=275,91 К, Рок=3 МПа,

расход очищенного конденсата Gок=4,95 кг/с;

теплообменник-охладитель 28 воздушного компрессора с параметрами:

наружный воздух на входе Тнв=288,15 К, Рнв=0,1013 МПа, Gнв=40 кг/с,

наружный воздух на выходе Тнв=273,15 К, Рнв=0,1 МПа, Gнв=40 кг/с,

низкотемпературный природный газ на входе Тпг=255,15 К, Рпг=3,2 МПа, Gпг=44,55 кг/с,

низкотемпературный природный газ на выходе Тпг=259,48 К, Рпг=3,1 МПа, Gпг=44,55 кг/с;

теплообменник-охладитель 19 обращенного газогенератора 10 с параметрами:

отработавшие газы на входе Тг=507,75 К, Рг=0,0364 МПа, Gг=40,29 кг/с,

отработавшие газы на выходе Тг=273,15 К, Рг=0,0349МПа, Gг=40,29 кг/с,

низкотемпературный природный газ на входе Тпг=259,48 К, Рпг=3,1 МПа, Gпг=44,55 кг/с,

низкотемпературный природный газ на выходе Тпг=339,59 К, Рпг=3 МПа, Gпгr=44,55 кг/с;

теплоутилизирующая турбодетандерная установка 7, имеющая расчетный изоэнтропийный КПД=0,87 с параметрами:

на входе Тпг=339,59 К, Рпг=3 МПа,

на выходе Тпг=283,29 К, Рпг=1,25 МПа,

мощность для привода электрогенератора 8 равна 5,1308 МВт.

В целом, при расходе природного газа, равном 50 кг/с, и начальным давлением 5,5 МПа суммарная электрическая мощность предлагаемой газораспределительной станции, затрачиваемая на привод электрогенераторов 6, 8 и 22, составляет 14,2368 МВт, а эффективный КПД предлагаемой газораспределительной станции системы распределения природного газа составляет 0,65.

Использование более экономичных газотурбинных двигателей, например ГТД типа АЛ-31Ф с эффективным КПД Ме=0,389, а также повышение начального давления транспортируемого природного газа, приведет к еще большому увеличению эффективного КПД предлагаемой газораспределительной станции.

Таким образом, по сравнению с прототипом, при сохранении надежности функционирования, возможность варьирования режимами газотурбинной установки 5 с обращенным газогенератором 10, а также использование низкотемпературного природного газа, вырабатываемого в энергоутилизационной турбодетандерной установке 21, приводит к повышению коэффициента полезного действия (до 76%) предлагаемой газораспределительной станции и снижению выбросов (до 60%) окислов азота в процессе конденсации паров влаги, содержащихся в выхлопных газах газотурбинной установки 5 с обращенным газогенератором 10, расширению функциональных возможностей за счет получения конденсата в виде сжиженной фракции тяжелых углеводородов.

Предлагаемая газораспределительная станция позволяет повысить эффективность съема электрической энергии с одного килограмма природного газа, широко варьировать мощностями электрогенераторов в зависимости от запросов потребителя, обеспечить гарантийные значения давления и температуры газа, транспортируемого в системах газораспределительных пунктов, а также осуществить утилизацию: теплоты продуктов сгорания газотурбинного двигателя, физической эксергии природного газа, транспортируемого по магистральным трубопроводам под высоким давлением.


СПОСОБ РАБОТЫ ГАЗОРАСПРЕДЕЛИТЕЛЬНОЙ СТАНЦИИ
СПОСОБ РАБОТЫ ГАЗОРАСПРЕДЕЛИТЕЛЬНОЙ СТАНЦИИ
Источник поступления информации: Роспатент

Showing 11-20 of 164 items.
27.12.2013
№216.012.9189

Способ голографической визуализации обтекания движущегося тела

Способ реализуют посредством двухлучевого интерферометра с оптической системой для формирования опорного и объектного пучков, системой зеркал, установленных вдоль опорной и объектной ветвей, рабочей зоной, проекционным объективом и узлом регистрации голограммы. Голограмму регистрируют...
Тип: Изобретение
Номер охранного документа: 0002502950
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.957f

Способ определения места повреждения на линиях электропередачи по спектру переходного процесса

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места повреждения в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью....
Тип: Изобретение
Номер охранного документа: 0002503965
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9d16

Регулируемое акустоэлектронное устройство

Изобретение относится к области акустоэлектроники и может быть использовано в составе регулируемых устройств, а именно регулируемой ультразвуковой линии задержки в частотном диапазоне 10-1000 МГц с применением в различных радиоэлектронных системах обработки информации. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002505920
Дата охранного документа: 27.01.2014
27.02.2014
№216.012.a731

Теплообменная труба

Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе, канал которой выполнен с выступами и канавками, согласно заявляемому изобретению, канал образован гладкими участками трубы и...
Тип: Изобретение
Номер охранного документа: 0002508516
Дата охранного документа: 27.02.2014
10.04.2014
№216.012.b0d0

Цифроаналоговый преобразователь

Изобретение относится к области электроники, а именно к цифроаналоговым преобразователям. Техническим результатом является упрощение конструкции и повышение быстродействия цифроаналогового преобразователя при сохранении точности преобразования за счет формирования двухполярного выходного...
Тип: Изобретение
Номер охранного документа: 0002510979
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b3f2

Горелка для сжигания газа

Изобретение относится к технологии сжигания газообразного топлива в топках котлов и печах. Задачей изобретения является повышение качества сжигания топлива на всех режимах работы горелки. Технический результат достигается тем, что в горелку для сжигания газа, содержащую цилиндрический корпус,...
Тип: Изобретение
Номер охранного документа: 0002511783
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b43c

Теплообменная труба

Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором...
Тип: Изобретение
Номер охранного документа: 0002511859
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b497

Газотурбинный двигатель со свободнопоршневым генератором газа

Газотурбинный двигатель со свободнопоршневым генератором газа (СПГГ) состоит из связанных между собой СПГГ, газосборника и газовой турбины. СПГГ содержит рабочий цилиндр двигателя, рабочие поршни двигателя, поршни компрессора, синхронизирующий механизм движения рабочих поршней двигателя и...
Тип: Изобретение
Номер охранного документа: 0002511952
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0d9

Способ измерения пористости хлебобулочного изделия и устройство для осуществления

Изобретение относится к области технологического контроля пористости хлебобулочных изделий в процессе их производства и может быть использовано при отработке оптимального режима технологии получения заданной пористости в цеховых лабораторных условиях. В способе измерения пористости...
Тип: Изобретение
Номер охранного документа: 0002515118
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c0dc

Способ определения допустимых величины и длительности перегрузки силового маслонаполненного трансформаторного оборудования

Изобретение относится к области электроэнергетики, в частности к автоматизированным системам управления и диагностики трансформаторного оборудования электрических подстанций. Технический результат: повышение эксплуатационной надежности трансформаторного оборудования за счет более достоверного...
Тип: Изобретение
Номер охранного документа: 0002515121
Дата охранного документа: 10.05.2014
Showing 11-20 of 179 items.
27.05.2013
№216.012.442d

Алюмокремниевый флокулянт

Изобретение может быть использовано для осветления природной воды в теплоэнергетике. Кремнийорганическая жидкость «Силор» образуется в процессе химической деструкции отходов кремнийорганических резиновых смесей и изделий на основе силиконовых каучуков. Кремнийорганическую жидкость «Силор»...
Тип: Изобретение
Номер охранного документа: 0002483030
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.454a

Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов

Изобретение относится к области электроизмерительной. Осуществляют пассивный прием электромагнитным и акустическим приемниками одновременно электромагнитного и акустического излучений от частичных разрядов, индикацию и совместную компьютерную обработку сигналов, согласно предлагаемому...
Тип: Изобретение
Номер охранного документа: 0002483315
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.45cc

Система беспроводной атмосферной оптической связи на объектах с высоким уровнем электромагнитных помех

Изобретение относится к области оптической связи, в частности к атмосферным системам передачи информации. Технический результат состоит в повышении помехоустойчивости и вероятности гарантированной связи на объектах, имеющих высокий уровень помех и шумов, как в радиодиапазоне, так и в оптической...
Тип: Изобретение
Номер охранного документа: 0002483445
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.492c

Гидравлический таран

Изобретение относится к гидротаранным установкам. В гидравлическом таране напорный колпак 11 выполнен составным из жестко закрепленных между собой верхней, средней и нижней частей. Верхняя часть выполнена в виде корпуса возвратного клапана 14, в полости которого размещен подпружиненный...
Тип: Изобретение
Номер охранного документа: 0002484312
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b6c

Применение шлама, образующегося на водоподготовительной установке, в качестве сорбента при очистке газовых выбросов тэс

Изобретение относится к области производства сорбентов. В качестве сорбента для очистки газов предложен шлам, образующийся при совместной коагуляции и известковании сырой воды на водоподготовительной установке тепловых электрических станций. Шлам имеет химический состав:...
Тип: Изобретение
Номер охранного документа: 0002484890
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4bb4

Устройство для сварки полимерных трубчатых элементов

Изобретение относится к сварке термопластов путем их электрического нагрева и последующего сжатия между собой, а именно к устройствам для сварки полимерных трубчатых элементов, в частности фитинга и трубы. Оно может найти применение в системах отопления, водоснабжения, газоснабжения при монтаже...
Тип: Изобретение
Номер охранного документа: 0002484962
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5482

Устройство для обработки призабойной зоны скважины и способ обработки призабойной зоны скважины

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения эффективности обработки призабойной зоны скважины. Устройство для обработки призабойной зоны скважины, содержащее воздушную камеру с атмосферным давлением, выполненную длиной 20-50 м и соединенную при...
Тип: Изобретение
Номер охранного документа: 0002487237
Дата охранного документа: 10.07.2013
27.09.2013
№216.012.7035

Способ информационного квч воздействия на живой организм

Способ информационного КВЧ воздействия на живой организм относится к области биологии и медицины и может быть использован для стимуляции жизнедеятельности живых организмов или растений, в частности для лечения ряда заболеваний человека и животных. Технический результат - упрощение процесса и...
Тип: Изобретение
Номер охранного документа: 0002494376
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70bc

Способ контроля провиса провода линии электропередачи

Изобретение относится к электротехнике. Способ включает размещение на проводе подвесного датчика температуры, а под проводом - контрольного устройства. При помощи первого и второго ультразвуковых приемопередатчиков осуществляют посредством контрольного устройства совместно с подвесным датчиком...
Тип: Изобретение
Номер охранного документа: 0002494511
Дата охранного документа: 27.09.2013
20.10.2013
№216.012.76cc

Теплообменная труба

Изобретение относится к энергетике. Теплообменная труба, у которой канал выполнен с выступами и канавками, причем канал выполнен с геометрическими соотношениями: h/Д=0,03, l=(90-100)/h, l=(90-100)h, где h - высота выступа, мм, Д - внутренний диаметр теплообменной трубы, мм, l - длина выступа,...
Тип: Изобретение
Номер охранного документа: 0002496072
Дата охранного документа: 20.10.2013
+ добавить свой РИД