×
10.08.2014
216.012.e707

Результат интеллектуальной деятельности: ФИЛЬТРУЮЩИЙ ТЕРМОСТОЙКИЙ НАНОВОЛОКНИСТЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002524936
Дата охранного документа
10.08.2014
Аннотация: Изобретение относится к области получения фильтрующих материалов для тонкой очистки воздуха и газовых сред. Фильтрующий термостойкий нановолокнистый материал содержит внутренний рабочий слой и два внешних защитных слоя, размещенных с обеих сторон рабочего слоя. Рабочий слой выполнен методом электроформования из волокон полидифениленфталида с диаметром 200-400 нм, имеет массу единицы площади, равную 0,5-3,5 г/м. Защитные слои с массой единицы площади 6-8 г/м выполнены из нетканого кварцевого материала с диаметром волокон 1-7 мкм. Электроформование нановолокон рабочего слоя осуществляют в электрическом поле с напряженностью 2-6 кВ/см из раствора полидифениленфталида в циклогексаноне, содержащем добавку, выбранную из галогенидов тетраэтиламмония и тетрабутиламмония. Образующиеся нановолокна укладывают на подложку из защитного нетканого кварцевого материала, после чего на рабочий слой накладывают второй защитный слой из того же нетканого материала. Для осуществления заявленного способа могут быть использованы устройства для электрокапиллярной технологии электроформования или устройства для технологии электроформования со свободной поверхности Nanospider™. Изобретение позволяет эффективно очищать газы при температурах до 350°С. 2 н. и 4 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к области получения фильтрующих материалов из нановолокон, преимущественно используемых для тонкой очистки воздуха и других газовых сред от дисперсных частиц при повышенных температурах.

Известен сорбционно-фильтрующий материал для бактериальных фильтров на основе нетканого материала из волокон с диаметром 0,1-10 мкм, выполненных путем электроформования из раствора полидифениленфталида в циклогексаноне (RU 2055632, 10.03.1996).

Известный материал, из-за низкого относительного удлинения волокон, обладает недостаточной механической прочностью, что особенно характерно при малых диаметрах волокон.

Известен также фильтрующий материал, который содержит микроволокна из полисульфона диаметром 5-10 мкм и нановолокна из полидифениленфталида диаметром 300-500 нм при массовом отношении волокон из полидифениленфталида к волокнам из полисульфона, равном 1:(5-25). Предложен также способ получения материала методом электроформования волокон из раствора, который включает осаждение на электроде микроволокон с диаметром 5-10 мкм из системы полисульфон-дихлорэтан-электролит, и одновременное осаждение на электроде нановолокон с диаметром 300-500 нм из системы полидифениленфталид-циклогексанон-диметилформамид-электролит (RU 2429048, 20.09.2011).

Однако известный материал обладает термостойкостью не выше 160°C и не может быть использован в высокотемпературных фильтрах.

Наиболее близким по технической сущности и достигаемому результату является фильтрующий нановолокнистый материал, выполненный из волокон полидифениленфталида со средним диаметром волокна 500 нм, материал имеет массу единицы площади, равную 1,6 г/м2. Данный материал получен методом электростатического формования волокон при напряженности поля 2,0·105 В/м. Нановолокна формуют из раствора полидифениленфталида в циклогексаноне, имеющего вязкость 0,5-3,0 Пз, удельную электропроводность 2,5·10-3 См/м (Гуляев А.И. «Технология электроформования волокнистых материалов на основе полисульфона и полидифениленфталида», Автореферат дисс. на соиск. уч. степ. канд. техн. наук, Москва, 2009, стр.15-20).

Недостатки известного нановолокнистого материала, полученного электроформованием из раствора полидифениленфталида в циклогексаноне, заключаются в низкой механической прочности слоя нановолокон, что не позволяет использовать его в фильтрах.

Задачей настоящего изобретения является разработка термостойкого композиционного фильтрующего материала, пригодного для сборки фильтров и высокоэффективной очистки газовых сред от аэрозолей при температурах до 350°C в течение длительного времени.

Поставленная задача решается описываемым фильтрующим термостойким нановолокнистым материалом, содержащим внутренний рабочий слой и два внешних защитных слоя, размещенные с обеих сторон рабочего слоя, причем рабочий слой содержит волокна полидифениленфталида с диаметром 200-400 нм, выполнен методом электроформования из раствора полидифениленфталида в циклогексаноне и имеет массу единицы площади, равную 0,5-3,5 г/м2, а защитные слои выполнены из нетканого кварцевого материала.

Защитные слои содержат кварцевые волокна, имеющие диаметр 1-7 мкм, а их масса единицы площади 6-8 г/м2.

Материал характеризуется аэрородинамическим сопротивлением потоку воздуха с линейной скоростью 1 см/с, равному 20-40 Па.

Поставленная задача решается также заявленным способом получения материала, который заключается в следующем. Осуществляют электроформование нановолокон рабочего слоя в электрическом поле с напряженностью 2-6 кВ/см из раствора полидифениленфталида в циклогексаноне, при концентрации полидифениленфталида 11-14 масс.%, при содержании электролитической добавки, выбранной из галогенидов тетраэтиламмония и тетрабутиламмония, в количестве 0,1-0,2 масс.%, при вязкости раствора 0,3-0,9 Па·с и удельной электропроводности раствора 50-100 мкСм/см. Образующиеся при этом нановолокна укладывают на подложку из защитного нетканого кварцевого материала, после чего на сформованный на подложке рабочий слой накладывают второй защитный слой из того же нетканого материала.

Электроформование нановолокнистого рабочего слоя может быть осуществлено с использованием двух известных типов устройств.

В одном случае электроформование осуществляют с использованием устройства, снабженного формующим электродом, выполненным в виде гребенки, состоящей из дозирующих раствор капилляров, и осадительным электродом с размещенной на нем подложкой из нетканого кварцевого материала, на который под действием электростатических сил укладываются образующиеся в межэлектродном пространстве нановолокна из полидифениленфталида.

Альтернативно, электроформование осуществляют с использованием устройства, снабженного формующим электродом, выполненным в виде заряженного струнного коллектора с возможностью его вращения в емкости с формовочным раствором или в виде струны, с перемещающимся по ней дозирующим устройством, и осадительным электродом, при этом между формующим и осадительным электродами размещен нетканый кварцевый материал, на который под действием электростатических сил укладываются образующиеся в межэлектродном пространстве нановолокна из полидифениленфталида.

В объеме совокупности вышеуказанных признаков достигается заявленный технический результат, поскольку полученный материал не теряет эффективности фильтрации при работе в условиях высоких температур вплоть до 350°C.

Ниже приведены конкретные примеры осуществления заявленного способа получения предложенного фильтрующего композиционного термостойкого материала, а также фильтрующие характеристики полученного материала.

Для осуществления заявленного способа использованы известные из уровня техники устройства. В первом примере использовано устройство для электрокапиллярной технологии электроформования (ЭК-ЭФВ), которое описано, например, в монографии «Филатов, Ю. Н. Электроформование волокнистых материалов (ЭФВ-процесс) / Под ред. В.Н. Кириченко. - М.: Нефть и газ, 1997. - 298 с.». Во втором примере использовано устройство для технологии электроформования со свободной поверхности Nanospider™ (NS-ЭФВ), которое описано, например, в RU 2365686, 2009 или в US 7615427, 2010.

Пример 1

Приготавливают 14% раствор полидифениленфталида в циклогексаноне с добавкой тетрабутиламмония йодида 0,1 масс.% с вязкостью 0,9 Па·с и электропроводностью 50 мкСм/см для получения волокон со средним диаметром 400 нм.

Этот раствор продавливают через соответствующие дозаторы, помещенные в поле высокого напряжения при напряженности поля между электродами 2 кВ/см и получают методом электроформования на подложку из кварцевого нетканого материала, размещенную на осадительном электроде, нановолокнистый фильтрующий материал из волокон со средним диаметром 400 нм, массой единицы площади 3,5 г/м2. Затем на слой нановолокон накладывают слой кварцевого нетканого материала.

Полученный материал выдерживает температуру воздуха 350°C в течение 50 часов, при этом эффективность фильтрации по частицам 0,4 мкм в разряженном состоянии составляет 99,5% при линейной скорости фильтрации 50 см/с при стандартном аэроодинамическом сопротивлении 40 Па (при 1 см/с).

Пример 2

Приготавливают 11% раствор полидифениленфталида в циклогексаноне с добавкой тетрабутиламмония йодида 0,2 масс.% с вязкостью 0,3 Па·с и электропроводностью 100 мкСм/см для получения волокон со средним диаметром 200 нм.

Этот раствор наносят на поверхность вращающегося заряженного струнного электрода-коллектора, по технологии Nanospider™ при напряженности поля между электродами 6 кВ/см. Образующиеся в поле высокого напряжения нановолокна со средним диаметром 200 нм укладываются на нетканый кварцевый материал, расположенный в межэлектродном пространстве на расстоянии 2 см от осадительного электрода. При этом массой единицы площади нановолокнистого слоя составляет 0,5 г/м2. Затем на слой нановолокон накладывают слой кварцевого нетканого материала.

Полученный материал выдерживает температуру воздуха 350°C в течение 50 часов, при этом эффективность фильтрации по частицам 0,4 мкм в разряженном состоянии составляет 98,5% при линейной скорости фильтрации 50 см/с при стандартном аэроодинамическом сопротивлении 20 Па (при 1 см/с).

Примеры при других заявленных параметрах сведены в таблицу 1.

Таблица 1
Параметр №примера (метод электроформования)
1 (ЭФВ-ЭК) 2 (ЭФВ-NS) 3 (ЭФВ-ЭК) 4 (ЭФВ-NS)
Концентрация полидифениленфталида, масс.% 14 11 13 11
Концентрация тетрабутиламмония йодида, масс.% од 0,2 0,15 0,2
Вязкость раствора, Па·с 0,9 0,3 0,7 0,3
Удельная электропроводность, мкСм/см 50 100 70 100
Напряженность поля между электродами, кВ/см 2 6 3 5
Средний иаметр волокон, мкм 400 200 300 200
Масса ед. площади рабочего слоя нановолокон, г/м2 3,5 0,5 1,7 1,0
Сопротивление потоку воздуха при 1 см/с, Па 40 20 35 39
Эффективность фильтрации частиц диаметром 0,4 мкм после 50 ч при 350°C, % 99,93 98,5 99,8 99,97

Как видно из приведенных данных, предложенный материал является высокоэффективным средством для очистки газов от аэрозолей при повышенных температурах и не теряет своей эффективности в условиях длительной эксплуатации при температурах до 350°C.

Источник поступления информации: Роспатент

Showing 1-10 of 13 items.
10.03.2013
№216.012.2d72

Фильтрующий материал, способ его получения и применение

Изобретение относится к области получения фильтрующих материалов, используемых в качестве фильтрующих аналитических лент и аналитических фильтров для контроля радиоактивных аэрозолей. Фильтрующий материал содержит слой, выполненный из полиамидных нановолокон, который размещен на нетканой...
Тип: Изобретение
Номер охранного документа: 0002477165
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f4d

Фильтрующий материал, способ его получения и применение

Изобретение относится к области получения волокнистых фильтрующих материалов. Фильтрующий материал выполнен из полиамидных нановолокон. Нановолокна получены методом электростатического формования, имеют диаметр от 70 до 300 нм при стандартном отклонении среднего диаметра волокна не более 30%,...
Тип: Изобретение
Номер охранного документа: 0002477644
Дата охранного документа: 20.03.2013
27.03.2013
№216.012.30b3

Фильтрующий материал

Изобретение относится к области фильтрующих материалов, предназначенных для применения в аналитических лентах непрерывно действующих приборов для отбора аэрозолей с последующим измерением содержания альфа-активных изотопов методом спектрометрии. Предложен двухслойный материал, выполненный в...
Тип: Изобретение
Номер охранного документа: 0002478005
Дата охранного документа: 27.03.2013
20.07.2013
№216.012.5679

Сорбционно-фильтрующий многослойный материал и содержащий его фильтр

Изобретение относится к области волокнистых сорбционно-фильтрующих материалов, используемых для очистки от аэрозолей и радиоактивных форм йода. Материал содержит последовательно следующие слои: слой, выполненный из высокопористого стекловолокнистого нетканого материала с диаметром волокон 5-10...
Тип: Изобретение
Номер охранного документа: 0002487745
Дата охранного документа: 20.07.2013
20.07.2014
№216.012.e176

Фильтрующий материал

Предложен двух-, трехслойный материал, выполненный в виде ленты, содержащей рабочий слой из перхлорвиниловых волокон диаметром 0,3-0,5 мкм и подложку из прокленных перхлорвиниловых волокон диаметром 5-7 мкм. Материал характеризуется малым сопротивлением потоку воздуха при высокой эффективности...
Тип: Изобретение
Номер охранного документа: 0002523504
Дата охранного документа: 20.07.2014
27.08.2014
№216.012.ef5e

Способ получения ультратонких полимерных волокон

Изобретение относится к технологии получения ультратонких полимерных волокон методом электроформования и может быть использовано для формирования нетканых волоконно-пористых материалов, применяемых в качестве разделительных перегородок, например, для фильтрации газов и жидкостей, для...
Тип: Изобретение
Номер охранного документа: 0002527097
Дата охранного документа: 27.08.2014
27.02.2015
№216.013.2e85

Нановолокнистый полимерный материал

Изобретение относится к нетканым полимерным нановолокнистым материалам на основе полигидроксибутирата, применяющимся для фильтрации различных сред, выращивания живых клеток, создания пористых матриц для контролируемого высвобождения лекарственных препаратов. Нетканый полимерный нановолокнистый...
Тип: Изобретение
Номер охранного документа: 0002543377
Дата охранного документа: 27.02.2015
10.09.2015
№216.013.7621

Способ повышения регенерационного потенциала имплантатов для восстановительной хирургии соединительной ткани

Изобретение относится к области медицины, конкретно к способам повышения регенерационной способности имплантируемых материалов для восстановительной хирургии при повреждении соединительной ткани, включая опорные ткани внутренних органов, кости, хрящи, связки. Имплантат имеет опорную конструкцию...
Тип: Изобретение
Номер охранного документа: 0002561830
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7dd8

Способ контроля содержания механических примесей в жидкости, устройство для его осуществления и система мониторинга содержания механических примесей в потоке жидкости

Группа изобретений относится к контролю (мониторингу) содержания механических примесей в потоках жидких сред. Способ контроля содержания механических примесей в рабочих жидкостях, в частности в жидком углеводородном топливе, заключается в том, что поток топлива пропускают, поддерживая...
Тип: Изобретение
Номер охранного документа: 0002563813
Дата охранного документа: 20.09.2015
10.11.2015
№216.013.8dcc

Способ получения полимерных пленок с пористой градиентной структурой

Изобретение относится к способу получения полимерных пленок с пористой градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных, гидрофобных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем,...
Тип: Изобретение
Номер охранного документа: 0002567907
Дата охранного документа: 10.11.2015
Showing 1-10 of 13 items.
10.03.2013
№216.012.2d72

Фильтрующий материал, способ его получения и применение

Изобретение относится к области получения фильтрующих материалов, используемых в качестве фильтрующих аналитических лент и аналитических фильтров для контроля радиоактивных аэрозолей. Фильтрующий материал содержит слой, выполненный из полиамидных нановолокон, который размещен на нетканой...
Тип: Изобретение
Номер охранного документа: 0002477165
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f4d

Фильтрующий материал, способ его получения и применение

Изобретение относится к области получения волокнистых фильтрующих материалов. Фильтрующий материал выполнен из полиамидных нановолокон. Нановолокна получены методом электростатического формования, имеют диаметр от 70 до 300 нм при стандартном отклонении среднего диаметра волокна не более 30%,...
Тип: Изобретение
Номер охранного документа: 0002477644
Дата охранного документа: 20.03.2013
27.03.2013
№216.012.30b3

Фильтрующий материал

Изобретение относится к области фильтрующих материалов, предназначенных для применения в аналитических лентах непрерывно действующих приборов для отбора аэрозолей с последующим измерением содержания альфа-активных изотопов методом спектрометрии. Предложен двухслойный материал, выполненный в...
Тип: Изобретение
Номер охранного документа: 0002478005
Дата охранного документа: 27.03.2013
20.07.2013
№216.012.5679

Сорбционно-фильтрующий многослойный материал и содержащий его фильтр

Изобретение относится к области волокнистых сорбционно-фильтрующих материалов, используемых для очистки от аэрозолей и радиоактивных форм йода. Материал содержит последовательно следующие слои: слой, выполненный из высокопористого стекловолокнистого нетканого материала с диаметром волокон 5-10...
Тип: Изобретение
Номер охранного документа: 0002487745
Дата охранного документа: 20.07.2013
20.07.2014
№216.012.e176

Фильтрующий материал

Предложен двух-, трехслойный материал, выполненный в виде ленты, содержащей рабочий слой из перхлорвиниловых волокон диаметром 0,3-0,5 мкм и подложку из прокленных перхлорвиниловых волокон диаметром 5-7 мкм. Материал характеризуется малым сопротивлением потоку воздуха при высокой эффективности...
Тип: Изобретение
Номер охранного документа: 0002523504
Дата охранного документа: 20.07.2014
27.08.2014
№216.012.ef5e

Способ получения ультратонких полимерных волокон

Изобретение относится к технологии получения ультратонких полимерных волокон методом электроформования и может быть использовано для формирования нетканых волоконно-пористых материалов, применяемых в качестве разделительных перегородок, например, для фильтрации газов и жидкостей, для...
Тип: Изобретение
Номер охранного документа: 0002527097
Дата охранного документа: 27.08.2014
27.02.2015
№216.013.2e85

Нановолокнистый полимерный материал

Изобретение относится к нетканым полимерным нановолокнистым материалам на основе полигидроксибутирата, применяющимся для фильтрации различных сред, выращивания живых клеток, создания пористых матриц для контролируемого высвобождения лекарственных препаратов. Нетканый полимерный нановолокнистый...
Тип: Изобретение
Номер охранного документа: 0002543377
Дата охранного документа: 27.02.2015
10.09.2015
№216.013.7621

Способ повышения регенерационного потенциала имплантатов для восстановительной хирургии соединительной ткани

Изобретение относится к области медицины, конкретно к способам повышения регенерационной способности имплантируемых материалов для восстановительной хирургии при повреждении соединительной ткани, включая опорные ткани внутренних органов, кости, хрящи, связки. Имплантат имеет опорную конструкцию...
Тип: Изобретение
Номер охранного документа: 0002561830
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7dd8

Способ контроля содержания механических примесей в жидкости, устройство для его осуществления и система мониторинга содержания механических примесей в потоке жидкости

Группа изобретений относится к контролю (мониторингу) содержания механических примесей в потоках жидких сред. Способ контроля содержания механических примесей в рабочих жидкостях, в частности в жидком углеводородном топливе, заключается в том, что поток топлива пропускают, поддерживая...
Тип: Изобретение
Номер охранного документа: 0002563813
Дата охранного документа: 20.09.2015
10.11.2015
№216.013.8dcc

Способ получения полимерных пленок с пористой градиентной структурой

Изобретение относится к способу получения полимерных пленок с пористой градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных, гидрофобных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем,...
Тип: Изобретение
Номер охранного документа: 0002567907
Дата охранного документа: 10.11.2015
+ добавить свой РИД