×
10.08.2014
216.012.e673

Результат интеллектуальной деятельности: СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области создания антенных систем с функцией слежения за подвижным источником сигнала. Достигаемый технический результат - возможность быстрой калибровки следящих антенных систем с высокой точностью и надежностью. Указанный результат достигается за счет того, что определяют поправки к калибровочной характеристике следящей антенной системы за один технологический этап, при этом данный способ может использоваться как с применением неподвижного юстировочного источника, так и с применением сигнала от подвижного источника. Кроме того, предлагаемый способ может быть использован как во время наладочных работ, так и во время штатной эксплуатации следящих антенных систем. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области создания антенных систем с функцией слежения за подвижным источником сигнала.

Распространенным способом калибровки следящих антенных систем является независимое, последовательное определение номинальных величин смещения, поворота и коэффициентов сжатия системы координат следящей системы относительно некоторой главной оси системы. В качестве главной оси могут выступать: направление главного лепестка основной антенны, ось летательного аппарата, относительно которой осуществляется поворот управляющих органов и др.

Известно, что ISTRAC осуществляет прием телеметрии и отправку команд управления (ТТС) в диапазоне S при выполнении пусков космических аппаратов (КА) при помощи сети наземных станций. Все ТТС станции оснащены альтазимутальными антеннами с точностью наведения 0.03 градуса. В процессе пуска антенна осуществляет слежение за КА с помощью траекторной информации, поступающей из комплекса RANGE. Слежение может также осуществляться при помощи заранее рассчитанной траектории. Информация об угловом положении антенны в процессе осуществления выведения КА является исходной информацией для предварительного определения параметров орбиты непосредственно после отделения КА от ракеты-носителя. В связи с этим систематические ошибки в угловом положении антенн должны быть определены с высокой точностью [1].

Известно, что на основании глубокого анализа систематических ошибок по углу места и азимуту была разработана математическая модель данных ошибок. Был разработан комплекс программ, оценивающий коэффициенты ошибок с помощью метода наименьших квадратов в апостериорном режиме. С использованием данных от ТТС станций была достигнута точность определения коэффициентов ошибок, обеспечивающая определение положения КА с точностью не хуже 200 м. Систематические ошибки определялись для всех наземных станций в процессе выведения КА. При этом оцениваются коэффициенты ошибок одновременно по азимуту и углу места [2].

Известно, что последовательный характер определения номинальных величин смещения, поворота и коэффициентов сжатия системы координат следящей системы приводит к необходимости большого числа технологических этапов калибровки. Отметим также, что в некоторых случаях данные величины могут изменяться в процессе эксплуатации. Например, в системах спутниковой связи величина поворота системы координат следящей системы может изменяться в зависимости от используемого частотного диапазона. Аналогичные процессы могут происходить в головках самонаведения при изменении внешней температуры. Это приводит к необходимости создания таблиц, определяющих величины смещения, поворота и коэффициентов сжатия системы координат следящей системы для различных условий эксплуатации. Как следствие, число технологических этапов калибровки существенно возрастает. Основными недостатками последовательного способа калибровки следящих антенных систем являются:

- большое число технологических этапов, и как следствие, большая продолжительность;

- большая степень участия человека при переходе от одного технологического этапа к другому;

- низкая точность в случае наличия случайных составляющих в измерениях следящей антенной системы;

- предпочтительно наличие неподвижного юстировочного источника сигнала (особенно актуально при калибровке антенн для спутниковой связи).

Как следствие, данный способ обладает высокой стоимостью и при этом низкой надежностью и точностью калибровки следящих систем.

Заявленный способ устраняет вышеуказанные недостатки и позволяет определять поправки к калибровочной характеристике следящей антенной системы за один технологический этап. При этом данный способ может использоваться как с применением неподвижного юстировочного источника, так и с применением сигнала от подвижного источника. Степень возможной автоматизации способа является крайне высокой, что существенно снижает стоимость калибровочных работ. Более того, способ позволяет осуществлять точную калибровку следящей антенной системы даже в случае существенной случайной составляющей в измерениях.

В связи с этим заявленный способ может быть использован как во время наладочных работ, так и во время штатной эксплуатации следящих антенных систем.

Техническим результатом изобретения является возможность быстрой калибровки следящих антенных систем с высокой точностью и надежностью.

Технический результат достигается тем, что способ автоматизированной калибровки следящей антенной системы заключается в том, что устанавливают источник сигнала в линейный диапазон измерений, в котором значение выходного сигнала следящей антенной системы удовлетворяет выражению a=kb, где b - отклонение источника сигнала от центра системы координат следящей антенной системы O'X'Y', а - отклонение следящей антенной системы, k - коэффициент, определяющий линейный диапазон измерений, добавляют к программной траектории движения источника сигнала калибровочную траекторию следящей антенной системы, при этом главная ось следящей антенной системы совершает движение по траектории за счет формирования на системе управления следящей антенной системы управляющих воздействий на привод по углу места и привод по азимуту, на протяжении заданного калибровочного интервала Т с заданной периодичностью τ, например 10 p/с, в моменты времени t0,…,tn-1 снимают отклонения следящей антенной системы - где t0 - момент начала калибровки, ti+1=ti+τ и n=[T/τ], где i - номер точки калибровочного маневра, значения отклонений сохраняют в системе управления следящей антенной системы, по завершении калибровочной траектории в системе управления следящей антенной системы формируют наборы данных: - калибровочные положения главной оси следящей антенной системы, здесь

- отклик следящей антенной системы, далее формируют систему уравнений относительно неизвестного вектора где:

AT означает транспонированную матрицу A, решают данную систему уравнений, полученное значение вектора выдают оператору, отклик следящей антенной системы в процессе управления домножают на матрицу и к нему прибавляют вектор для определения калибровочной характеристики, вектор содержит матрицу поворота перехода координат O'X'Y' в систему координат поправок OXY и вектор параллельного переноса системы координат, матрица М и вектор δ задают матрицу поворота и вектор параллельного сдвига, которые применяют к системе координат следящей антенной системы O'X'Y', чтобы перейти в систему координат управления O0X0Y0.

В другом исполнении, для антенной следящей системы спутниковой связи ось X0 соответствует углу места главной оси антенны, а ось Y0 - азимуту.

Сущность и признаки заявленного изобретения в дальнейшем поясняются чертежами, где показано следующее.

На фиг.1 - задача калибровки следящей антенной системы.

На фиг.2 - алгоритм автоматической калибровки следящих антенных систем, где:

1 - старт;

2 - i=0

3 - переход в точку p(ti)+c(ti);

4 - съем отклика r'i;

5 - увеличений i на единице (i=i+1);

6 - блок принятия решения (i<n);

7 - формирование матрицы;

8 - решается система уравнений;

9 - выдается операторы вектор

10 - финиш.

На фиг.3 - блок схема примера реализации калибровки следящей антенной системы, где:

11 - антенна;

12 - следящая система (СС);

13 - привод по углу места;

14 - привод по азимуту;

15 - система управления антенной;

16 - оператор.

Задача калибровки следящей антенной системы представлена на Фиг.1.

Здесь OXY - система координат поправок, связанная с главной осью системы - О, относительно которой осуществляется коррекция движения. В частности, для антенн спутниковой связи с азимутально-угломестным управлением ось X соответствует поправке к управлению по азимуту, а ось Y - поправке по углу места. Система координат О'Х'Y' является системой координат следящей системы. В системе координат О'Х'Y' осуществляется измерение величины - ошибки положения источника сигнала S относительно главной оси О' следящей системы. Для корректного управления движением системы необходимо на основании величины с использованием калибровочной характеристики F определить величину ошибки положения главной оси относительно источника сигнала Иными словами,

Задача калибровки следящей антенной системы заключается в определении функции F.

В общей постановке данная задача является весьма сложной. Предлагаемый способ калибровки предназначен для тех случаев, когда преобразование F является линейным. Данное предположение является хорошо обоснованным в тех случаях, когда диапазон измерения углов следящей антенной системой является весьма небольшим. Характерным примером такого рода следящей системы является система приемник автонаведения с вращающейся диаграммой направленности, применяемый в антеннах спутниковой связи.

Если преобразование из системы координат O'X'Y' в OXY является линейным, то калибровочная характеристика F может быть представлена следующим образом:

Здесь - матрица перехода от системы координат O'X'Y в OXY, а - вектор параллельного переноса системы координат. Таким образом, задача калибровки следящей антенной системы сводится к определению матрицы М и вектора δ.

Линейное преобразование может быть представлено в виде последовательности преобразований параллельного сдвига, поворота и сжатий. Именно такое разложение зачастую используется при последовательной калибровке следящих антенных систем. При этом величины сдвига, поворота и сжатия определяются последовательно, что существенно увеличивает продолжительность калибровочных работ.

В заявленном способе величины определяются одновременно. Последовательность действий при этом следующая:

- По команде оператора (поз.1 и 2) начинается автоматическое определение калибровочной характеристики следящей антенной системы. При этом необходимо, чтобы на момент начала калибровки источник сигнала находился в линейном диапазоне измерений следящей антенной системы. В случае нахождения источника сигнала (ИС) в линейном диапазоне измерений следящей системы (поз.12) значение выходного сигнала следящей системы (поз.12) удовлетворяет выражению a=kb, где b - отклонение ИС от центра системы координат следящей системы O'X'Y', а - отклонение следящей системы, k - постоянный коэффициент пропорциональности (действительное число). Источник сигнала может быть как подвижным, так и неподвижным. В случае использования подвижного источника сигнала необходимо, чтобы на всем протяжении калибровки главная ось системы двигалась по расчетной программной траектории движения источника - Здесь - вектор, определяющий расчетное положение источника сигнала в момент времени t в системе координат управления - O0X0Y0. В частности, для антенной системы спутниковой связи ось X0 соответствует углу места главной оси антенны, а ось Y0 - азимуту. В случае использования неподвижного юстировочного источника программная траектория не зависит от времени и задает истинное положение юстировочного источника в системе координат управления.

- В процессе калибровки к программной траектории добавляется калибровочная траектория в дальнейшем процесс прохождения будем называть «калибровочным маневром». При этом главная ось системы совершает движение по траектории (поз.3). За счет формирования на СУА (поз.15) соответствующих управляемых воздействий на привод по углу места (поз.13) и привод по азимуту (поз.14).

- На протяжении заданного калибровочного интервала Т с заданной периодичностью τ, например 10 p/с, в моменты времени t0,…,tn-1 снимаются измерения следящей антенной системы - (поз.4 и 5). Здесь t0 - момент начала калибровки, ti+1=ti+τ и n=[T/τ]. Здесь i - номер точки калибровочного маневра. Значения отклонения сохраняются в СУА (поз.15).

- По завершении калибровочного маневра (поз.6) в СУА (поз.15) формируются следующие наборы данных:

о - калибровочные положения главной оси системы. Здесь

о- отклик следящей антенной системы.

- Далее формируется следующая система уравнений (поз.7):

где AT -транспонированная матрица A,

относительно неизвестного вектора Данная система решается стандартным методом (поз.8), например методом Гаусса.

- Оператору выдается вектор (поз.9 и 10).

В случае если калибровочные положения не лежат на одной прямой и n≥6, данная система уравнений обладает единственным решением, которое определяет линейное преобразование оптимальное с точки зрения метода наименьших квадратов. Если n существенно больше 6, то решение данной системы уравнений будет устойчивым даже в случае существенной случайной составляющей в измерениях следящей антенной системы.

В дальнейшем, полученный вектор используется СУА (поз.15) для коррекции отклика следящей системы (поз.12) при проведении штатных сеансов связи, а именно отклик следящей системы в процессе управления домножается на матрицу и прибавляется к вектору параллельного переноса системы координат для определения калибровочной характеристики.

Матрица и вектор параллельного переноса системы координат определяют взаимосвязь системы координат поправок OXY и системы координат следящей системы O'X'Y'. Переход из системы координат следящей системы O'X'Y' в систему координат поправок OXY осуществляется по формуле в процессе проведения сеансов связи.

Таким образом, заявленный способ калибровки позволяет с высокой скоростью, надежностью и точностью определять калибровочные характеристики следящих антенных систем. При этом данный способ может использоваться как с применением неподвижного юстировочного источника, так и с применением сигнала от подвижного источника с известной расчетной траекторией. Также заявленный способ позволяет осуществлять точную калибровку следящих антенных систем даже в случае наличия существенной случайной составляющей в измерениях.

Литература

1. P. Soma and K. Nageswara Rao, "Estimation of Systematic errors in Angles of Tracking Antenna", Paper presented at SPACE-OPS 96, International Symposium Mission Operations and Ground Data Systems, September 16-20, 1996 held at Munich Germany.

2. Takeshi Sasaki and Hideki Hashimoto, «Object Tracking for Calibration of Distributed Sensors in Intelligent Space», http://www.intechopen.com/books/object-tracking/object-tracking-for-calibration-of-distributed-sensors-in-intelligent-space.


СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
СПОСОБ АВТОМАТИЗИРОВАННОЙ КАЛИБРОВКИ СЛЕДЯЩИХ АНТЕННЫХ СИСТЕМ
Источник поступления информации: Роспатент

Showing 1-10 of 72 items.
20.01.2013
№216.012.1def

Малогабаритная свч-антенна на основе метаматериала

Изобретение относится к области антенной техники и может быть использовано при создании и изготовлении малогабаритных антенн, обеспечивающих сужение диаграммы направленности. Техническим результатом заявленного изобретения является уменьшение массогабаритных характеристик СВЧ-антенн при...
Тип: Изобретение
Номер охранного документа: 0002473157
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.2478

Электронное устройство оперативного восстановления измерений псевдодальности

Изобретение относится к области создания портативных навигационных приемников, а также средств автономного контроля навигационных сигналов спутниковых систем ГЛОНАСС, GPS. Достигаемый технический результат заявленного изобретения - возможность создания навигационных приемников с функцией...
Тип: Изобретение
Номер охранного документа: 0002474838
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.247f

Способ формирования навигационных радиосигналов навигационных космических аппаратов (нка) на геостационарной орбите (гсо) и/или навигационных космических аппаратов (нка) на геосинхронной наклонной орбите (гсно) с помощью земных станций и система для его реализации

Изобретение относится к области радиотехники, а именно к системам спутникового наземного позиционирования, и может быть использовано для определения местоположения и навигации потребителя. Технический результат заключается в повышении надежности работы системы за счет автономной оценки...
Тип: Изобретение
Номер охранного документа: 0002474845
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.24f1

Способ радиосвязи с землей постоянно действующей обитаемой базы на обратной (невидимой) стороне луны и система для осуществления данного способа

29 Изобретение относится к технике связи. Технический результат состоит в создании постоянной радиосвязи лунной базы на обратной стороне Луны. Для этого три лунных спутника-ретранслятора выведены в точки либрации системы Луна-Земля, через которые осуществляется связь расположенной на обратной...
Тип: Изобретение
Номер охранного документа: 0002474959
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.28c5

Способ обеспечения постоянной радиосвязи обитаемой базы на поверхности марса с землей и система для осуществления данного способа

Изобретение относится к технике связи и может использоваться в космической технике. Технический результат состоит в создании постоянной радиосвязи обитаемой базы на поверхности Марса (ОБМ) с Землей и управления аппаратурой ОБМ. Для этого используют две подсистемы связи, составляющих единую...
Тип: Изобретение
Номер охранного документа: 0002475957
Дата охранного документа: 20.02.2013
20.04.2013
№216.012.37ff

Способ изготовления шунтирующего диода для солнечных батарей космических аппаратов

Изобретение относится к области изготовления дискретных полупроводниковых приборов. Способ изготовления шунтирующего диода для солнечных батарей космических аппаратов включает формирование структуры планарного диода на кремниевой монокристаллической подложке, формирование металлизации рабочей...
Тип: Изобретение
Номер охранного документа: 0002479888
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.3bae

Устройство для приема дискретных сигналов

Изобретение относится к области систем передачи и приема дискретных сигналов. Техническим результатом является повышение помехоустойчивости при приеме дискретных сигналов путем реализации посимвольного приема. Устройство для приема дискретных сигналов содержит первый 1, второй 2 и третий 3...
Тип: Изобретение
Номер охранного документа: 0002480839
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3bcb

Активная пространственная передающая антенная решетка

Изобретение относится к антенной технике, в частности к активным пространственным передающим антенным решеткам миллиметрового диапазона волн, и может быть использовано при создании антенн с немеханическим качанием луча антенны для сверхскоростной (более 15 Гбит/с) спутниковой информации....
Тип: Изобретение
Номер охранного документа: 0002480868
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3bcd

Многодиапазонная антенна круговой поляризации с метаматериалом

Изобретение относится к антенной технике и может быть использовано в качестве самостоятельной приемной, передающей или приемо-передающей многочастотной антенны или элемента фазированной антенной решетки. Техническим результатом изобретения является достижение большей компактности и...
Тип: Изобретение
Номер охранного документа: 0002480870
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4deb

Система для проведения испытаний на безотказность и электротермотренировки цифровых интегральных схем (ис) и сверхбольших интегральных схем (сбис)

Изобретение относится к испытательной технике и может быть использовано для проведения испытаний на безотказность и электротермотренировки корпусированных цифровых интегральных схем. Устройство состоит из приборной стойки для размещения испытательного оборудования; тестера для осуществления...
Тип: Изобретение
Номер охранного документа: 0002485529
Дата охранного документа: 20.06.2013
Showing 1-10 of 64 items.
20.01.2013
№216.012.1def

Малогабаритная свч-антенна на основе метаматериала

Изобретение относится к области антенной техники и может быть использовано при создании и изготовлении малогабаритных антенн, обеспечивающих сужение диаграммы направленности. Техническим результатом заявленного изобретения является уменьшение массогабаритных характеристик СВЧ-антенн при...
Тип: Изобретение
Номер охранного документа: 0002473157
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.2478

Электронное устройство оперативного восстановления измерений псевдодальности

Изобретение относится к области создания портативных навигационных приемников, а также средств автономного контроля навигационных сигналов спутниковых систем ГЛОНАСС, GPS. Достигаемый технический результат заявленного изобретения - возможность создания навигационных приемников с функцией...
Тип: Изобретение
Номер охранного документа: 0002474838
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.247f

Способ формирования навигационных радиосигналов навигационных космических аппаратов (нка) на геостационарной орбите (гсо) и/или навигационных космических аппаратов (нка) на геосинхронной наклонной орбите (гсно) с помощью земных станций и система для его реализации

Изобретение относится к области радиотехники, а именно к системам спутникового наземного позиционирования, и может быть использовано для определения местоположения и навигации потребителя. Технический результат заключается в повышении надежности работы системы за счет автономной оценки...
Тип: Изобретение
Номер охранного документа: 0002474845
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.24f1

Способ радиосвязи с землей постоянно действующей обитаемой базы на обратной (невидимой) стороне луны и система для осуществления данного способа

29 Изобретение относится к технике связи. Технический результат состоит в создании постоянной радиосвязи лунной базы на обратной стороне Луны. Для этого три лунных спутника-ретранслятора выведены в точки либрации системы Луна-Земля, через которые осуществляется связь расположенной на обратной...
Тип: Изобретение
Номер охранного документа: 0002474959
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.28c5

Способ обеспечения постоянной радиосвязи обитаемой базы на поверхности марса с землей и система для осуществления данного способа

Изобретение относится к технике связи и может использоваться в космической технике. Технический результат состоит в создании постоянной радиосвязи обитаемой базы на поверхности Марса (ОБМ) с Землей и управления аппаратурой ОБМ. Для этого используют две подсистемы связи, составляющих единую...
Тип: Изобретение
Номер охранного документа: 0002475957
Дата охранного документа: 20.02.2013
20.04.2013
№216.012.37ff

Способ изготовления шунтирующего диода для солнечных батарей космических аппаратов

Изобретение относится к области изготовления дискретных полупроводниковых приборов. Способ изготовления шунтирующего диода для солнечных батарей космических аппаратов включает формирование структуры планарного диода на кремниевой монокристаллической подложке, формирование металлизации рабочей...
Тип: Изобретение
Номер охранного документа: 0002479888
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.3bae

Устройство для приема дискретных сигналов

Изобретение относится к области систем передачи и приема дискретных сигналов. Техническим результатом является повышение помехоустойчивости при приеме дискретных сигналов путем реализации посимвольного приема. Устройство для приема дискретных сигналов содержит первый 1, второй 2 и третий 3...
Тип: Изобретение
Номер охранного документа: 0002480839
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3bcb

Активная пространственная передающая антенная решетка

Изобретение относится к антенной технике, в частности к активным пространственным передающим антенным решеткам миллиметрового диапазона волн, и может быть использовано при создании антенн с немеханическим качанием луча антенны для сверхскоростной (более 15 Гбит/с) спутниковой информации....
Тип: Изобретение
Номер охранного документа: 0002480868
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3bcd

Многодиапазонная антенна круговой поляризации с метаматериалом

Изобретение относится к антенной технике и может быть использовано в качестве самостоятельной приемной, передающей или приемо-передающей многочастотной антенны или элемента фазированной антенной решетки. Техническим результатом изобретения является достижение большей компактности и...
Тип: Изобретение
Номер охранного документа: 0002480870
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4deb

Система для проведения испытаний на безотказность и электротермотренировки цифровых интегральных схем (ис) и сверхбольших интегральных схем (сбис)

Изобретение относится к испытательной технике и может быть использовано для проведения испытаний на безотказность и электротермотренировки корпусированных цифровых интегральных схем. Устройство состоит из приборной стойки для размещения испытательного оборудования; тестера для осуществления...
Тип: Изобретение
Номер охранного документа: 0002485529
Дата охранного документа: 20.06.2013
+ добавить свой РИД