×
10.08.2014
216.012.e631

Результат интеллектуальной деятельности: ПОЛИМЕРНЫЙ ПРОППАНТ ПОВЫШЕННОЙ ТЕРМОПРОЧНОСТИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к нефте-, газодобыче с использованием проппантов из полимерных материалов. Способ получения полимерного проппанта повышенной термопрочности, включающий смешивание дициклопентадиена с, по крайней мере, одним из метакриловых эфиров, выбранных из приведенной группы, и, по крайней мере, одним из полимерных стабилизаторов, выбранных из приведенной группы, нагрев исходной смеси до температуры 150-220°C и выдержку при данной температуре в течение 15-360 мин с последующим охлаждением до 20-50°C, последовательное введение в полученную смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена, по крайней мере, одного из радикальных инициаторов, выбранных из приведенной группы, и катализатора - соединения приведенной общей формулы, где заместитель выбран из приведенной группы, компоненты полимерной матрицы находятся в следующих количествах, мас.%: полимерные стабилизаторы 0,1-3, радикальные инициаторы 0,1-4, катализатор 0,002-0,02, смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена - остальное, затем полученную жидкую полимерную матрицу выдерживают при температуре 0-50°C в течение 1-40 минут, вводят ее в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду при ее постоянном перемешивании, содержащую ПАВ, выбранное из приведенной группы, причем смесь воды с ПАВ имеет вязкость ниже вязкости полимерной матрицы, в процессе постоянного перемешивания воду нагревают до 50-100°C, продолжая перемешивать в течение 1-60 мин, затем образовавшиеся микросферы отделяют от жидкости, нагревают в среде инертного газа до температуры 150-340°C и выдерживают в этой среде и при данной температуре в течение 1-360 мин. Полимерный проппант повышенной термопрочности, характеризующийся тем, что он получен указанным выше способом. Технический результат - повышение температурной стойкости, прочности и маслостойкости. 2 н.п. ф-лы, 35 пр.

Группа изобретений относится к технологии нефте-, газодобычи с использованием материалов из высокомолекулярных соединений, а именно к проппантам из полимерных материалов с повышенными требованиями к физико-механическим свойствам, применяемых при добыче нефти и газа методом гидравлического разрыва пласта в качестве расклинивающих гранул.

Гидравлический разрыв пласта (ГРП) заключается в закачивании под большим давлением жидкости в нефте- и газоносные пласты, в результате чего в пласте образуются трещины, через которые поступает нефть или газ. Для предотвращения смыкания трещин в закачиваемую жидкость добавляют твердые частицы, как правило, сферические гранулы, называемые проппантами, заполняющие вместе с несущей жидкостью образовавшиеся трещины. Проппанты должны выдерживать высокие пластовые давления, быть устойчивыми к агрессивным средам и сохранять физико-механические свойства при высоких температурах. При этом проппант должен иметь плотность, близкую к плотности к несущей жидкости, с тем, чтобы он находился в жидкости во взвешенном состоянии и был доставлен до самых отдаленных участков трещин. Учитывая, что наиболее широко в качестве жидкости для гидроразрыва применяется вода, то и плотность проппанта должна быть близка к плотности воды.

Для производства проппантов часто используют в качестве исходного материала минеральные материалы природного происхождения - бокситы, каолины, пески (Патенты США №4068718 и №4668645).

Известно использование различных материалов, таких как боросиликатное или кальцинированное стекло, черные и цветные металлы или их сплавы, оксиды металлов, оксиды, нитриды и карбиды кремния, для производства проппантов, имеющих форму полых гранул (Заявка США №2012/0145390).

Недостатком таких материалов является высокая технологическая сложность изготовления из них полых гранул, их недостаточная прочность на сжатие из-за полой структуры и хрупкости материала, высокая степень разрушения проппанта в трещинах и обратный вынос частиц и их осколков.

На устранение подобных недостатков направлены технические решения изготовления проппантов с полимерным покрытием. Оболочка служит компенсатором точечных напряжений, более равномерно распределяя давление по поверхности и объему проппанта, и, кроме того, снижает среднюю плотность проппанта. Широко известно использование различных органических полимерных и неорганических покрытий проппантов в виде эпоксидных и фенольных смол (заявки США №№2012/0205101, 2012/247335).

Недостатком таких технических решений выступает сложность изготовления таких проппантов, недостаточная термостойкость покрытий, низкие показатели округлости и сферичности, обусловленные формой минерального ядра проппанта, высокий разброс показателей физико-механических характеристик.

Известно применение широкого спектра термореактивных полимеров с поперечными связями, таких как эпоксидные, виниловые и фенольные соединения, полиуретан, полиэстер, меламин и пр., в качестве материала для изготовления проппантов (Заявка США №2013/0045901).

Известно использование в качестве материала для проппанта полиамида (патент США №7931087).

Недостатком известных материалов является несоответствие физико-механических характеристик данных материалов одновременно всей совокупности требований к материалу для проппантов. В частности, это недостаточная стойкость к агрессивным средам, недостаточная термостойкость и термопрочность, степень набухания в среде жидких углеводородов, прочность на сжатие.

Наиболее близким техническим решением к предлагаемому является применение полидициклопентадиена как материала для проппанта (патент РФ №2386025).

Недостатком применения полидициклопентадиена является недостаточная температурная стойкость, прочность на сжатие и недостаточная маслостойкость.

Задачей данного изобретения является получение материала, обладающего комплексом свойств, предъявляемых к проппантам, работающим в тяжелых условиях.

Технический результат, достигаемый при реализации настоящего изобретения, заключается в повышении термопрочности материала проппанта, обеспечивающего прочность на сжатие не менее 150 МПа при температуре не ниже 100°C, а также улучшении геометрических характеристик проппанта, выражаемых в сферичности гранул проппанта не менее 0,9 средний размер которых находится в диапазоне 0,25-1,1 мм, а также в объемной плотности в диапазоне 0,5-0,7 г/см3.

Технический результат достигается тем, что проппант представляет собой микросферы, выработанные способом, включающим смешивание дициклопентадиена с, по крайней мере, одним из метакриловых эфиров, выбранных из группы: аллилметакрилат (АлМАК), глицидилметакрилат (ГМА), этилендиметакрилат (ДМЭГ), диэтиленгликольдиметакрилат (ДГДМА), бутиленгликольдиметакрилат (БГДМА), 2-гидроксиэтилметакрилат (ГЭМА), 2-гидроксипропилметакрилат (ГПМА), трициклодекандиметанолдиметакрилат (ТЦДДМА), этоксилированный бисфенол А диметакрилат (E2BADMA), триметилолпропантриметакрилат (ТМПТМА) и, по крайней мере, одним из полимерных стабилизаторов, в качестве которых используют соединения (в круглых скобках после названия каждого соединения указано их сокращенное обозначение): тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан (1010), 2,6-ди-трет-бутил-4-(диметиламино)фенол (703), 1,3,5-триметил-2,4,6-трис(3,5-ди-трет-бутил-4-гидроксибензил)бензол (330), трис(4-трет-бутил-3-гидрокси-2,6-диметилбензил)изоцианурат (14), 3,5-ди-трет-бутил-4-гидроксианизол (354), 4,4′-метиленбис(2,6-ди-трет-бутилфенол) (702), дифениламин (ДФА), пара-ди-трет-бутилфенилендиамин (5057), N,N′-дифенил-1,4-фенилендиамин (ДППД), трис(2,4-ди-трет-бутилфенил)фосфит (168), трис(нонилфенил)фосфит (ТНРР), бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат (770), бис(1-октилокси-2,2,6,6-тетраметил-4-пиперидинил)себацинат (123), бис(1-метил-2,2,6,6-тетраметил-4-пиперидинил)себацинат (292), 2-трет-бутил-6-(5-хлор-2Н-бензотриазол-2-ил)-4-метилфенол (327), 2-(2Н-бензотриазол-2-ил)-4,6-бис(1-метил-1-фенил)фенол (234), нагрева исходной смеси до температуры 150-220°C и выдержки при данной температуре в течение 15-360 мин с последующим охлаждением до 20-50°C, последовательное введение в полученную смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена, по крайней мере, одного из радикальных инициаторов, выбранных из группы (в круглых скобках после названия каждого соединения указано их сокращенное обозначение): ди-трет-бутилпероксид (Б), дикумилпероксид (БЦ-ФФ), 2,3-диметил-2,3-дифенил-бутан (30), трифенилметан (ТФМ), и катализатора, в качестве которого используют соединение общей формулы:

где заместитель L выбран из группы:

, при этом компоненты полимерной матрицы находятся в следующих количествах, масс.%:

полимерные стабилизаторы 0,1-3;

радикальные инициаторы 0,1-4;

катализатор 0,002-0,02;

смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена - остальное, полученную жидкую полимерную матрицу выдерживают при температуре 0-50°C в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду, содержащую поверхностно-активное вещество при постоянном перемешивании. Смесь воды с поверхностно-активными веществами имеет вязкость ниже вязкости полимерной матрицы. Образовавшиеся микросферы отделяют от жидкости, нагревают в среде инертного газа до температуры 150-340°C и выдерживают в этой среде и при данной температуре в течение 1-360 мин.

В качестве поверхностно-активного вещества используют цетилтриметиламмоний хлорид или додецилсульфатнатрия или лаурилсульфат аммония или лаурилсаркозинат натрия или октенидина гидрохлорид или бензалкония хлорид.

Указанные отличительные признаки существенны.

Применение приведенных катализаторов обеспечивает полимеризацию заявленной смеси мономеров в жидкой среде при заданных режимах обработки, при которых достигается высокая равномерность получаемых микросфер и высокая прочность на сжатие, а применение обозначенных поверхностно-активных веществ при указанных температурах в сочетании с составом полимерной смеси обеспечивает высокий выход готового продукта и заданные характеристики сферичности и округлости. Полимерный проппант из метатезис-радикально сшитой смеси олигоциклопентадиенов и эфиров метилкарбоксинорборнена, полученный с использованием одновременно катализаторов метатезиса и радикальных инициаторов, имеет существенно большую температуру стеклования, превышающую 340°C, и лучшие механические характеристики по сравнению с полидициклопентадиеном, имеющим температуру стеклования не выше 170°C, прочность при сжатии не более 70 МПа, набухание в нефти 10-40%. Для ряда метатезис-радикально сшитых образцов температура стеклования превышает 350°C и не может быть определена, поскольку приближается к температуре начала деструкции полимера, прочность при сжатии возрастает до 260 МПа. Уменьшается значение коэффициента линейного термического расширения. Крайне важным свойством является стойкость к органическим растворителям и для некоторых образцов предлагаемого материала процент набухания в нефти не превышает 1% после выдержки в течение недели при 100°C. По сравнению с полидициклопентадиеном, данный материал обладает значительно большей прочностью при сжатии в условиях высоких температур, что особенно важно при применении проппантов.

Способ осуществляют следующим образом.

Смешивают дициклопентадиен (ДЦПД) с метакриловыми эфирами и полимерными стабилизаторами, осуществляют олигомеризацию дициклопентадиена в присутствии метакриловых эфиров и стабилизаторов, при температуре 150-220°C в течение 5-360 мин. В качестве метакриловых эфиров используют следующие соединения или их смеси (в круглых скобках после каждого наименования соединения указано их краткое обозначение): аллилметакрилат (АлМАК), глицидилметакрилат (ГМА), этилендиметакрилат (ДМЭГ), диэтиленгликольдиметакрилат (ДГДМА), бутиленгликольдиметакрилат (БГДМА), 2-гидроксиэтилметакрилат (ГЭМА), 2-гидроксипропилметакрилат (ГПМА), трициклодекандиметанолдиметакрилат (ТЦДДМА), этоксилированный бисфенол А диметакрилат (E2BADMA), триметилолпропантриметакрилат (ТМПТМА). Процесс протекает по двум ветвям - олигомеризации дициклопентадиена и взаимодействия метакрилата с циклопентадиеном:

В результате получают смесь олигоциклопентадиенов (ОЦПД), содержащих, в том числе, тримеры и тетрамеры циклопентадиена, и эфиров метилкарбоксинорборнена, полученных вследствие реакции дициклопентадиена с метакриловыми эфирами. В полученную смесь последовательно вносят радикальные инициаторы (0,1-4% масс) и катализатор (0,002-0,02% масс) от общей массы матрицы. Данную полимерную матрицу выдерживают при температуре 0-50°C в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду при постоянном перемешивании, причем вода содержит поверхностно-активное вещество. Смесь воды с поверхностно-активными веществами имеет вязкость 0,5-0,8 сПуаз, в зависимости от температуры, что ниже вязкости полимерной матрицы при той же температуре, которая может колебаться в широких пределах от 1 до 300 сПуаз в зависимости от состава и температуры.

Процесс метатезисной сшивки матрицы осуществляют при постоянном перемешивании и нагреве воды до 50-100°C, продолжая перемешивать в течение 1-60 мин. Происходит метазис-радикальная сшивка ОЦПД с эфирами метилкарбоксинорборнена по следующей схеме:

Образовавшиеся микросферы отделяют от жидкости, нагревают в среде инертного газа до температуры 150-340°C и выдерживают при данной температуре в течение 1-360 мин. Использование инертного газа при нагреве гранул проппанта в виде микросфер предотвращает их окисление и деструкцию.

В процессе перемешивания образуется эмульсия из капель полимерной матрицы, которые в процессе полимеризации и под влиянием поверхностно-активного вещества формуются в гранулы проппанта в форме микросфер.

В результате получают проппант, имеющий округлость и сферичность не менее 0,9 для, не менее чем, 80% по массе, средний размер которых находится в диапазоне 0,25-1,1 мм, а объемная плотность находится в диапазоне 0,5-0,7 г/см3.

Свойства материала проппанта классифицируются по следующим характеристикам:

Температура стеклования (Tg)

- А более 250°C

- Б от 201 до 250°C

- В от 170 до 200°C

- Г менее 170°C

Прочность при сжатии, МПа

- А более 250

- Б от 170 до 249

- В от 120 до 169

Целевая фракция (0,25-1,1 мм), %

- А более 75

- Б от 70 до 74

- В мене 70 Набухание в нефти (100°C/1 неделя), %

- А менее 1

- Б от 1,1 до 3

- В 3,1 до 5

Способ иллюстрируют следующие примеры.

Пример 1

В отдельной емкости готовят раствор, содержащий дициклопентадиен (93,9% масс), полимерные стабилизаторы 1010 (0,30% масс), 168 (0,40% масс), 770 (0,40% масс), метакрилаты ГМА (2,00% масс) и ДМЭГ (3,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (2,0% масс). Катализатор N2a (0,0158% масс) вносят при 30°C. Полученную смесь перемешивают 20 минут, после чего вводят в виде ламинарного потока в нагретую до 40°C воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,1% масс). Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 250°C в атмосфере азота и выдерживают при данной температуре в указанной атмосфере в течение 30 мин. Получают микросферы 98%, средний размер (A), Tg (Б), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 2

В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,5% масс), полимерные стабилизаторы 702 (0,50% масс), 168 (0,50% масс), 770 (0,50% масс), метакрилат ДМЭГ (1,00% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (0,1% масс). Катализатор N (0,0094% масс) вносят при 35°C. Полученную смесь перемешивают 40 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,2% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°C и выдерживают 10 минут. Образовавшиеся микросферы отделяют от раствора, нагревают в среде азота до температуры 200°C и выдерживают при данной температуре в этой среде в течение 30 мин. Получают микросферы 97%, средний размер (А), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 3

В отдельной емкости готовят раствор, содержащий дициклопентадиен (91,5% масс), полимерные стабилизаторы 330 (0,50% масс), 168 (0,50% масс), метакрилаты ГЭМА (3,00% масс) и ГМА (4,5% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,5% масс). Катализатор N7a (0,0067% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,05), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. Микросферы отделяют от воды и нагревают в среде азота до 150°C, выдерживают при данной температуре в этой среде в течение 20 мин. Получают микросферы 97%, средний размер (A), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).

Пример 4

В отдельной емкости готовят раствор, содержащий дициклопентадиен (94,4% масс), полимерные стабилизаторы 1010 (0,02% масс), 168 (0,04% масс), 770 (0,04% масс), метакрилат ДМЭГ (0,50% масс), ТМПТМА (5,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 160 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,5% масс). Катализатор N1 (0,0094% масс) вносят при 50°C. Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,1% масс) при 55°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,512 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 60°C и выдерживают 45 минут. Микросферы отделяют, нагревают в среде азота до 200°C и выдерживают при данной температуре в этой среде в течение 360 мин. Получают микросферы 89%, средний размер (А), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).

Пример 5

В отдельной емкости готовят раствор, содержащий дициклопентадиен (98,7% масс), полимерные стабилизаторы 1010 (0,40% масс), 168 (0,40% масс), метакрилат ТМПТМА (0,50% масс). Смесь нагревают в автоклаве до 170°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N2 (0,0123% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,15), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,2% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 270°C и выдерживают при данной температуре в этой среде в течение 45 мин. Получают микросферы 96%, средний размер (A), Tg (В), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).

Пример 6

В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,4% масс), полимерные стабилизаторы 1010 (0,40% масс), 168 (0,80% масс), 770 (0,40% масс), метакрилат ТМПТМА (1,00% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,5% масс), 30 (2,5% масс). Катализатор N14a (0,0086% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,05% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 250°C и выдерживают при данной температуре в этой среде в течение 45 мин. Получают микросферы 98%, средний размер (А), Tg (Б), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 7

В отдельной емкости готовят раствор, содержащий дициклопентадиен (96,2% масс), полимерные стабилизаторы 702 (0,30% масс), 168 (0,50% масс), метакрилат ДМЭГ (3,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (0,5% масс). Катализатор N4 (0,0165% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,2), содержащую поверхностно-активное вещество лаурилсульфат аммония (0,25% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 75°C и выдерживают 30 минут. Микросферы отделяют, нагревают в среде азота до 150°C и выдерживают при данной температуре в этой среде в течение 30 мин. Получают микросферы 95%, средний размер (Б), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 8

В отдельной емкости готовят раствор, содержащий дициклопентадиен (91,5% масс), полимерные стабилизаторы 330 (0,50% масс), 168 (0,50% масс), 770 (0,50% масс), метакрилаты ДМЭГ (2,00% масс) и ГМА (5,0% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N5 (0,0117% масс) вносят при 10°C. Полученную смесь перемешивают 5 минуту, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,1% масс) при 30°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,804 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 200°C и выдерживают при данной температуре в этой среде в течение 30 мин. Получают микросферы 97%, средний размер (A), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).

Пример 9

В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,6% масс), полимерные стабилизаторы 702 (0,20% масс), 168 (0,50% масс), 123 (0,50% масс), метакрилат ТЦДДМА (1,20% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N15a (0,0104% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 60 минут. Микросферы отделяют, нагревают в среде азота до 170°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 97%, средний размер (А), Tg (В), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 10

В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,4% масс), полимерные стабилизаторы 702 (0,10% масс), метакрилат БГДМА (2,50% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (0,1% масс), 30 (1,5% масс). Катализатор N1а (0,0032% масс) вносят при 30°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 280°C и выдерживают в этой среде при данной температуре в течение 1 мин. Получают микросферы 90%, средний размер (В), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 11

В отдельной емкости готовят раствор, содержащий дициклопентадиен (76% масс), полимерные стабилизаторы 1010 (1,50% масс), ТНРР (1,00% масс), 123 (1,50% масс), метакрилат ТЦДДМА (20,00% масс). Смесь нагревают в автоклаве до 170°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (2,0% масс), 30 (2,0% масс). Катализатор N3a (0,0211% масс) вносят при 25°C. Полученную смесь перемешивают 4 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,3% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 260°C и выдерживают в этой среде при данной температуре в течение 40 мин. Получают микросферы 91%, средний размер (В), Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 12

В отдельной емкости готовят раствор, содержащий дициклопентадиен (92,9% масс), полимерные стабилизаторы ДФА (0,40% масс), 168 (0,50% масс), 234 (0,20% масс), метакрилат E2BADMA (6,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,0% масс). Катализатор N5a (0,0123% масс) вносят при 10°C. Полученную смесь перемешивают 2 минуты, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество лаурилсаркозинат натрия (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°C и выдерживают 1 минут. Микросферы отделяют, нагревают в среде азота до 200°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 94%, средний размер (A), Tg (В), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 13

В отдельной емкости готовят раствор, содержащий дициклопентадиен (96,3% масс), полимерные стабилизаторы 1010 (0,20% масс), 168 (0,50% масс), 292 (0,50% масс), метакрилат ТМПТМА (2,50% масс). Смесь нагревают в автоклаве до 180°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальные инициаторы Б (1,0% масс) и 30 (3,0% масс). Катализатор N19a (0,0243% масс) вносят при 0°C. Полученную смесь перемешивают 1 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 30°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,803 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 50°C и выдерживают 40 минут. Микросферы отделяют, нагревают в среде азота до 265°C и выдерживают в этой среде при данной температуре в течение 60 мин. Получают микросферы 93%, средний размер (В), Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 14

В отдельной емкости готовят раствор, содержащий дициклопентадиен (94,5% масс), полимерные стабилизаторы 1010 (0,50% масс), 168 (0,50% масс), метакрилаты ГМА (1,50% масс), ГПМА (3,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,0% масс), 30 (1,0% масс). Катализатор N6a (0,0058% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 300°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 97%, средний размер (Б), Tg (А), прочность при сжатии (В), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 15

В отдельной емкости готовят раствор, содержащий дициклопентадиен (98,3% масс), полимерные стабилизаторы 1010 (0,40% масс), ТНРР (0,40% масс), 770 (0,40% масс), метакрилат ДМЭГ (0,50% масс). Смесь нагревают в автоклаве до 200°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N8a (0,0103% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,15), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,2% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 170°C и выдерживают в этой среде при данной температуре в течение 240 мин. Получают микросферы 98%, средний размер (В), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 16

В отдельной емкости готовят раствор, содержащий дициклопентадиен (80,8% масс), полимерные стабилизаторы 168 (0,40% масс), 168 (0,40% масс), 770 (0,40% масс), метакрилат E2BADMA (18,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), ТФМ 1,0% масс). Катализатор N9a (0,0019% масс) вносят при 15°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,01), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 90°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 270°C и выдерживают в этой среде при данной температуре в течение 145 мин. Получают микросферы 97%, средний размер (Б), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 17

В отдельной емкости готовят раствор, содержащий дициклопентадиен (93,3% масс), полимерные стабилизаторы 1010 (0,45% масс), 168 (0,45% масс), метакрилаты ТЦДДМА (0,80% масс) и ТМПТМА (5,0% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 360 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (0,5% масс). Катализатор N10a (0,0068% масс) вносят при 5°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,3), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,2% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°C и выдерживают 5 минут. Микросферы отделяют, нагревают в среде азота до 170°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 98%, средний размер (Б), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 18

В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,1% масс), полимерные стабилизаторы 702 (0,45% масс), 168 (0,45% масс), метакрилат ДМЭГ (2,00% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 160 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (0,5% масс). Катализатор N11а (0,0100% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 200°C и выдерживают в этой среде при данной температуре в течение 60 мин. Получают микросферы 99%, средний размер (А), Tg (Г), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 19

В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,47% масс), полимерные стабилизаторы 168 (0,36% масс), 168 (0,72% масс), 123 (0,45% масс), метакрилат ДМЭГ (1,00% масс). Смесь нагревают в автоклаве до 190°C, выдерживают при заданной температуре в течение 50 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (0,75% масс), 30 (2,0% масс). Катализатор N3b (0,0072% масс) вносят при 30°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,804 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество октенидина гидрохлорид (0,1% масс) при 40°C. При постоянном перемешивании воду нагревают до 100°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 250°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 97%, средний размер (Б), Tg (Б), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 20

В отдельной емкости готовят раствор, содержащий дициклопентадиен (93,95% масс), полимерные стабилизаторы 1010 (0,35% масс), 327 (0,20% масс), 770 (0,50% масс), метакрилат ДМЭГ (2,00% масс), E2BADMA (3,0% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (0,1% масс), 30 (2,0% масс). Катализатор N12a (0,0081% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,2), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде аргона до 270°C и выдерживают при данной температуре в течение 30 мин. Получают микросферы 97%, средний размер (В), Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 21

В отдельной емкости готовят раствор, содержащий дициклопентадиен (94% масс), полимерные стабилизаторы 1010 (0,50% масс), 168 (0,50% масс), метакрилаты ДМЭГ (2,50% масс), БГДМА (2,50% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (0,1% масс). Катализатор N3 (0,0095% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 75°C и выдерживают 20 минут. Микросферы отделяют, нагревают в среде азота до 180°C и выдерживают в этой среде при данной температуре в течение 120 мин. Получают микросферы 97%, средний размер (A), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 22

В отдельной емкости готовят раствор, содержащий дициклопентадиен (95,45% масс), полимерные стабилизаторы 330 (0,45% масс), ТНРР (0,45% масс), 292 (0,45% масс), метакрилаты БГДМА (3,20% масс), Смесь нагревают в автоклаве до 175°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,5% масс). Катализатор N13a (0,0103% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,1% масс) при 35°. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 220°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 97%, средний размер (А), Tg (Б), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).

Пример 23

В отдельной емкости готовят раствор, содержащий дициклопентадиен (86,3% масс), полимерные стабилизаторы 1010 (0,20% масс), ТНРР (0,50% масс), метакрилат ДГДМА (8,00% масс), E2BADMA (5,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (2,0% масс). Катализатор N16a (0,0075% масс) вносят при 30°C. Полученную смесь перемешивают 1 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,4), содержащую поверхностно-активное вещество бензалкония хлорид (0,2% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 75°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 260°C и выдерживают при данной температуре в этой среде в течение 30 мин. Получают микросферы 95%, средний размер (В), Tg (А), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 24

В отдельной емкости готовят раствор, содержащий дициклопентадиен (92,8% масс), полимерные стабилизаторы 1010 (0,20% масс), 168 (0,50% масс), 292 (0,50% масс), метакрилаты ДМЭГ (1,00% масс), БГДМА (5,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,0% масс), 30 (2,0% масс). Катализатор N17a (0,0083% масс) вносят при 20°C. Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество бензалкония хлорид (0,1% масс) при 30°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,804 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 50°C и выдерживают 10 минут. Микросферы отделяют, нагревают в среде азота до 340°C и выдерживают в этой среде при данной температуре в течение 10 мин. Получают микросферы 97%, средний размер (В), Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 25

В отдельной емкости готовят раствор, содержащий дициклопентадиен (96,4% масс), полимерные стабилизаторы 14 (0,40% масс), 168 (0,80% масс), 770 (0,40% масс), метакрилаты БГДМА (1,00% масс) и ГПМА (1,0% масс). Смесь нагревают в автоклаве до 220°C, выдерживают при заданной температуре в течение 15 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N18a (0,0134% масс) вносят при 10°C. Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество бензалкония хлорид (0,1% масс) при 30°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,803 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 200°C в атмосфере аргона и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 98%, средний размер (A), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 26

В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,4% масс), полимерные стабилизаторы 702 (0,40% масс), 327 (0,20% масс), метакрилат ДМЭГ (2,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N4a (0,0127% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 200°C в среде азота и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 92%, средний размер (А), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 27

В отдельной емкости готовят раствор, содержащий дициклопентадиен (73,6% масс), полимерные стабилизаторы 330 (0,40% масс), 168 (0,50% масс), 770 (0,50% масс), метакрилат E2BADMA (25,00% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,0% масс). Катализатор N20a (0,0039% масс) вносят при 15°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество октенидина гидрохлорид (0,1% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 255°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 97%, средний размер (Б), Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 28

В отдельной емкости готовят раствор, содержащий дициклопентадиен (95,8% масс), полимерные стабилизаторы 5057 (0,40% масс), ТНРР (0,80% масс), метакрилат БГДМА (3,00% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (2,0% масс). Катализатор N1b (0,0066% масс) вносят при 30°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество октенидина гидрохлорид (0,1% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 200°C и выдерживают в этой среде при данной температуре в течение 120 мин. Получают микросферы 96%, средний размер (В), Tg (В), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).

Пример 29

В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,5% масс), полимерные стабилизаторы 354 (1,00% масс), 770 (0,50% масс), метакрилат БГДМА (1,00% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,0% масс). Катализатор N2b (0,0069% масс) вносят при 45°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,5), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,5% масс) при 50°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,553 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 275°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 92%, средний размер (В), Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 30

В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,53% масс), полимерные стабилизаторы 702 (0,37% масс), 168 (0,73% масс), 770 (0,37% масс), метакрилат ДМЭГ (1,00% масс). Смесь нагревают в автоклаве до 165°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N4b (0,0093% масс) вносят при 30°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,5% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 200°C в среде азота и выдерживают в этой среде при данной температуре в течение 60 мин. Получают микросферы 96%, средний размер (В), Tg (В), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 31

В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,6% масс), полимерные стабилизаторы 703 (0,45% масс), 770 (0,45% масс), метакрилат ТМПТМА (1,50% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 280 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,5% масс). Катализатор N5b (0,0129% масс) вносят при 30°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 60°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 260°C в среде азота и выдерживают при данной температуре и среде в течение 30 мин. Получают микросферы 97%, средний размер (Б), TG (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 32

В отдельной емкости готовят раствор, содержащий дициклопентадиен (91,56% масс), полимерные стабилизаторы 1010 (0,37% масс), 168 (0,10% масс), 770 (0,47% масс), метакрилаты ГЭМА (2,50% масс), ГМА (5,0% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 280 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,0% масс). Катализатор N1c (0,0106% масс) вносят при 20°C. Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,2), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 310°C и выдерживают при данной температуре и среде в течение 5 мин. Получают микросферы 93%, средний размер (В), Tg (А), прочность при сжатии (В), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 33

В отдельной емкости готовят раствор, содержащий дициклопентадиен (96,9% масс), полимерные стабилизаторы 702 (0,10% масс), метакрилаты АлМАК (0,50% масс) и БГДМА (2,50% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (0,1% масс), 30 (1,5% масс). Катализатор N1a (0,0032% масс) вносят при 30°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде аргона до 280°C и выдерживают в указанной среде и при данной температуре в течение 1 мин. Получают микросферы 90%, средний размер (В), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 34

В отдельной емкости готовят раствор, содержащий дициклопентадиен (80,8% масс), полимерные стабилизаторы 702 (0,40% масс), 168 (0,40% масс), 770 (0,40% масс), метакрилат E2BADMA (18,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), ТФМ (1,0% масс). Катализатор N9a (0,0019% масс) вносят при 15°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,01), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 90°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 270°C в среде азота и выдерживают в этой среде и при данной температуре в течение 145 мин. Получают микросферы 97%, средний размер (Б), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 35

В отдельной емкости готовят раствор, содержащий дициклопентадиен (83,53% масс) полимерные стабилизаторы ДППД (0,37% масс), 168 (0,73% масс), 770 (0,37% масс), метакрилат БГДМА (15,00% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,0% масс). Катализатор N2 (0,0020% масс) вносят при 15°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,01), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 270°C в среде азота и выдерживают в этой среде и при данной температуре в течение 145 мин. Получают микросферы 96%, средний размер (Б), Tg (Б), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).


ПОЛИМЕРНЫЙ ПРОППАНТ ПОВЫШЕННОЙ ТЕРМОПРОЧНОСТИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
ПОЛИМЕРНЫЙ ПРОППАНТ ПОВЫШЕННОЙ ТЕРМОПРОЧНОСТИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
ПОЛИМЕРНЫЙ ПРОППАНТ ПОВЫШЕННОЙ ТЕРМОПРОЧНОСТИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
ПОЛИМЕРНЫЙ ПРОППАНТ ПОВЫШЕННОЙ ТЕРМОПРОЧНОСТИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
ПОЛИМЕРНЫЙ ПРОППАНТ ПОВЫШЕННОЙ ТЕРМОПРОЧНОСТИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
ПОЛИМЕРНЫЙ ПРОППАНТ ПОВЫШЕННОЙ ТЕРМОПРОЧНОСТИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 11-20 of 132 items.
10.11.2013
№216.012.7e77

Скважинная установка и способ ее монтажа

Группа изобретений относится к горному делу и может быть применена для добычи углеводородов. Установка состоит из НКТ, одного или нескольких перепускных отверстий, выполненных в НКТ, канала или каналов высокого давления с напорным устройством высокого давления, одного или нескольких...
Тип: Изобретение
Номер охранного документа: 0002498048
Дата охранного документа: 10.11.2013
10.12.2013
№216.012.8980

Способ одновременно-раздельной или поочередной добычи пластового флюида из скважин многопластовых месторождений с применением внутрискважинного разъемного блока "мокрый контакт"

Изобретение относится к скважинным насосным установкам и может быть применено для управления скважиной при одновременно-раздельной или поочередной эксплуатации нескольких продуктивных пластов. Способ включает отдельный спуск в скважину колонны труб с пакерной системой, оснащенной, по крайней...
Тип: Изобретение
Номер охранного документа: 0002500882
Дата охранного документа: 10.12.2013
20.02.2014
№216.012.a239

Пакет присадок к дизельным маслам и дизельное масло его содержащее

Настоящее изобретение относится к пакету присадок для дизельных масел, содержащему алкилсалицилат кальция и цинковую соль эфиров дитиофосфорной кислоты, при этом он дополнительно содержит беззольный сукцинимидный дисперсант, а в качестве алкилсалицилата кальция - малозольный алкилсалицилат...
Тип: Изобретение
Номер охранного документа: 0002507244
Дата охранного документа: 20.02.2014
10.05.2014
№216.012.c15b

Способ получения изделий из полидициклопентадиена центробежным формованием

Изобретение относится к химии, к полимерным материалам. Описан способ получения полимерных изделий на основе полидициклопентадиена центробежным формованием, включающий смешивание дициклопентадиена с рутенийсодержащим катализатором и модифицирующими добавками, помещение смеси в форму, вращение...
Тип: Изобретение
Номер охранного документа: 0002515248
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c2cd

Способ разработки нефтяных низкопроницаемых залежей с применением горизонтальных скважин с поперечно-направленными трещинами гидроразрыва пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке чисто нефтяных залежей с низкопроницаемыми коллекторами. Обеспечивает снижение темпов падения добычи нефти добывающими скважинами и увеличение коэффициента извлечения нефти. Сущность изобретения:...
Тип: Изобретение
Номер охранного документа: 0002515628
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c2ce

Способ определения хрупких зон коллекторов

Изобретение относится к нефтяной промышленности, а именно к исследованию геомеханический свойств пластов. Техническим результатом являются повышение точности определения и результативности стимуляции хрупких зон коллекторов, а также повышение экономичности исследования вновь бурящихся скважин....
Тип: Изобретение
Номер охранного документа: 0002515629
Дата охранного документа: 20.05.2014
20.07.2014
№216.012.df88

Компрессорное масло

Настоящее изобретение относится к компрессорному маслу, содержащему базовое нефтяное масло и полиметилсилоксан, при этом оно дополнительно содержит 4,4'-динонилдифениламин, пентаэритритовый эфир 3,5-ди-трет-бутил-4-гидроксифенилпропионовой кислоты, 1,2,3-бензотриазол, сложный эфир...
Тип: Изобретение
Номер охранного документа: 0002523010
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df8d

Катализатор для получения синтетических базовых масел в процессе соолигомеризации этилена с альфа-олефинами с6-с10 и способ его приготовления

Изобретение относится к катализатору для получения синтетических базовых масел в процессе соолигомеризации этилена с α-олефинами С-С. Катализатор содержит оксид вольфрама, промотор и носитель, включающий оксидную составляющую и связующее. В качестве промотора используют Pd или Re или их оксиды....
Тип: Изобретение
Номер охранного документа: 0002523015
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e0be

Полимерный проппант и способ его получения

Изобретение относится к нефте-, газодобычи с применением проппантов. Способ получения проппанта включает получение смеси олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С,...
Тип: Изобретение
Номер охранного документа: 0002523320
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e0bf

Материал для проппанта и способ его получения

Изобретение относится к производству проппантов, используемых при добыче нефти и газа. Способ получения материала для проппанта включает получение смеси олигоциклопентадиенов с содержанием тримеров и тетрамеров 5-60 мас.% путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при...
Тип: Изобретение
Номер охранного документа: 0002523321
Дата охранного документа: 20.07.2014
Showing 11-20 of 156 items.
10.11.2013
№216.012.7e77

Скважинная установка и способ ее монтажа

Группа изобретений относится к горному делу и может быть применена для добычи углеводородов. Установка состоит из НКТ, одного или нескольких перепускных отверстий, выполненных в НКТ, канала или каналов высокого давления с напорным устройством высокого давления, одного или нескольких...
Тип: Изобретение
Номер охранного документа: 0002498048
Дата охранного документа: 10.11.2013
10.12.2013
№216.012.8980

Способ одновременно-раздельной или поочередной добычи пластового флюида из скважин многопластовых месторождений с применением внутрискважинного разъемного блока "мокрый контакт"

Изобретение относится к скважинным насосным установкам и может быть применено для управления скважиной при одновременно-раздельной или поочередной эксплуатации нескольких продуктивных пластов. Способ включает отдельный спуск в скважину колонны труб с пакерной системой, оснащенной, по крайней...
Тип: Изобретение
Номер охранного документа: 0002500882
Дата охранного документа: 10.12.2013
20.02.2014
№216.012.a239

Пакет присадок к дизельным маслам и дизельное масло его содержащее

Настоящее изобретение относится к пакету присадок для дизельных масел, содержащему алкилсалицилат кальция и цинковую соль эфиров дитиофосфорной кислоты, при этом он дополнительно содержит беззольный сукцинимидный дисперсант, а в качестве алкилсалицилата кальция - малозольный алкилсалицилат...
Тип: Изобретение
Номер охранного документа: 0002507244
Дата охранного документа: 20.02.2014
10.05.2014
№216.012.c15b

Способ получения изделий из полидициклопентадиена центробежным формованием

Изобретение относится к химии, к полимерным материалам. Описан способ получения полимерных изделий на основе полидициклопентадиена центробежным формованием, включающий смешивание дициклопентадиена с рутенийсодержащим катализатором и модифицирующими добавками, помещение смеси в форму, вращение...
Тип: Изобретение
Номер охранного документа: 0002515248
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c2cd

Способ разработки нефтяных низкопроницаемых залежей с применением горизонтальных скважин с поперечно-направленными трещинами гидроразрыва пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке чисто нефтяных залежей с низкопроницаемыми коллекторами. Обеспечивает снижение темпов падения добычи нефти добывающими скважинами и увеличение коэффициента извлечения нефти. Сущность изобретения:...
Тип: Изобретение
Номер охранного документа: 0002515628
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c2ce

Способ определения хрупких зон коллекторов

Изобретение относится к нефтяной промышленности, а именно к исследованию геомеханический свойств пластов. Техническим результатом являются повышение точности определения и результативности стимуляции хрупких зон коллекторов, а также повышение экономичности исследования вновь бурящихся скважин....
Тип: Изобретение
Номер охранного документа: 0002515629
Дата охранного документа: 20.05.2014
20.07.2014
№216.012.df88

Компрессорное масло

Настоящее изобретение относится к компрессорному маслу, содержащему базовое нефтяное масло и полиметилсилоксан, при этом оно дополнительно содержит 4,4'-динонилдифениламин, пентаэритритовый эфир 3,5-ди-трет-бутил-4-гидроксифенилпропионовой кислоты, 1,2,3-бензотриазол, сложный эфир...
Тип: Изобретение
Номер охранного документа: 0002523010
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df8d

Катализатор для получения синтетических базовых масел в процессе соолигомеризации этилена с альфа-олефинами с6-с10 и способ его приготовления

Изобретение относится к катализатору для получения синтетических базовых масел в процессе соолигомеризации этилена с α-олефинами С-С. Катализатор содержит оксид вольфрама, промотор и носитель, включающий оксидную составляющую и связующее. В качестве промотора используют Pd или Re или их оксиды....
Тип: Изобретение
Номер охранного документа: 0002523015
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e0be

Полимерный проппант и способ его получения

Изобретение относится к нефте-, газодобычи с применением проппантов. Способ получения проппанта включает получение смеси олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С,...
Тип: Изобретение
Номер охранного документа: 0002523320
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e0bf

Материал для проппанта и способ его получения

Изобретение относится к производству проппантов, используемых при добыче нефти и газа. Способ получения материала для проппанта включает получение смеси олигоциклопентадиенов с содержанием тримеров и тетрамеров 5-60 мас.% путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при...
Тип: Изобретение
Номер охранного документа: 0002523321
Дата охранного документа: 20.07.2014
+ добавить свой РИД