×
27.07.2014
216.012.e5c0

Результат интеллектуальной деятельности: ЭЛЕКТРОХИМИЧЕСКИЙ ВОДЯНОЙ НАСОС

Вид РИД

Изобретение

№ охранного документа
0002524606
Дата охранного документа
27.07.2014
Аннотация: Изобретение относится к насосной технике и может применяться при создании систем водоснабжения и силовых гидравлических установок, в том числе малогабаритных гидросистем высокого давления для космических аппаратов (КА). Электрохимический водяной насос включает твердополимерные электролизные ячейки и топливные элементы, гидравлически связанные друг с другом через резервуар сбора воды, который имеет входной штуцер для воды, газоотделители водорода и кислорода, гидравлически связанные с соответствующими полостями электролизных ячеек, а пневматически - с соответствующими полостями топливных элементов, при этом газоотделитель кислорода гидравлически сообщается с резервуаром сбора воды, газоотделитель водорода снабжен выходным штуцером для воды, а электролизные ячейки и топливные элементы соединены силовой электрической связью. Изобретение позволяет снизить МГХ ЭВН, уменьшить удельный расход энергии на перекачку воды, повысить производительность ЭВН. 1 ил.
Основные результаты: Электрохимический водяной насос, включающий твердополимерные электролизные ячейки и топливные элементы, гидравлически связанные друг с другом через резервуар сбора воды, который имеет входной штуцер для воды, газоотделители водорода и кислорода, гидравлически связанные с соответствующими полостями электролизных ячеек, а пневматически - с соответствующими полостями топливных элементов, при этом газоотделитель кислорода гидравлически сообщается с резервуаром сбора воды, отличающийся тем, что газоотделитель водорода снабжен выходным штуцером для воды, а электролизные ячейки и топливные элементы соединены силовой электрической связью.

Изобретение относится к насосной технике и может применяться при создании систем водоснабжения и силовых гидравлических установок, в том числе малогабаритных гидросистем высокого давления для космических аппаратов (КА).

В качестве аналога предлагаемого технического решения в принципе можно рассматривать любой из существующих типов водяных насосов (в частности вибрационный насос), недостатком которых является наличие в них подвижных элементов, снижающих их ресурс (в вибрационных насосах это мембрана). По принципу действия, однако, для аналога больше подходит электрохимический водородный компрессор (ЭВК), не имеющий подвижных деталей (US 6068673, 30.05.2000, МГЖ: B01J 7/00 (2006.01); C01B 3/38 (2006.01); C01B 3/50 (2006.01); Н01М8/06 (2006.01)). Он представляет собой обращенный топливный элемент (ТЭ), в котором под действием электрического напряжения идет перенос водорода через твердополимерную (ТП) мембрану из анодной полости в катодную, где создается повышенное давление водорода.

Недостатком ЭВК является его неспособность перекачивать воду, хотя ТП мембрана вместе с водородом способна пропускать также и воду, как это происходит в ТП электролизных ячейках (ЭЯ).

Более близким (как по принципу действия, так и по составу) к предлагаемому решению, является аккумулятор энергии с водяным (водородным) циклом (АЭВЦ), который представляет собой регенеративную электрохимическую систему для накопления и хранения электроэнергии на основе ТП ЭЯ и ТЭ (US20100055512A1, 2010-03-04, МПК: B64C 3/14 (2006.01), B64D 27/02 (2006.01), C25B 1/00 (2006.01)). Регенеративная электрохимическая система типа АЭВЦ (электрохимический водяной насос) содержит твердополимерные электролизные ячейки и топливные элементы, гидравлически связанные друг с другом через резервуар сбора воды, который имеет входной штуцер для воды, газоотделители водорода и кислорода, гидравлически связанные с соответствующими полостями электролизных ячеек, а пневматически - с соответствующими полостями топливных элементов, при этом газоотделитель кислорода гидравлически сообщается с резервуаром сбора воды.

Электроэнергия, поступающая в АЭВЦ, используется в ЭЯ для разложения воды током на водород и кислород, которые накапливаются в соответствующих блоках хранения (например, баллонах) и в нужный момент используются в качестве рабочих газов для ТЭ.

Недостатком прототипа является то, что он как водяной насос имеет крайне высокий удельный расход энергии на перекачку воды, поскольку одновременно идет разложение воды на электролизные газы. Энергия, затрачиваемая на перекачку воды через мембрану ЭЯ, примерно на два порядка больше величины, характерной для обычных насосов высокого давления. По этой причине ни высокое рабочее давление, ни отсутствие подвижных частей не могут служить аргументом для практического использования ТП ЭЯ в качестве электрохимического водяного насоса (ЭВН), по аналогии с ЭВК.

Кроме того, в АЭВЦ используются блоки для хранения электролизных газов (водорода и кислорода), которые при любом способе хранения (баллоны, интерметаллиды и пр.) имеют большие массо-габаритные характеристики (МГХ).

Задача данного технического решения - разработать принципиальную схему ЭВН высокого давления, не имеющего подвижных деталей, с минимальными МГХ и минимальным удельным расходом энергии на перекачку воды.

Техническим результатом предложения является:

- снижение МГХ ЭВН;

- уменьшение удельного расхода энергии на перекачку воды;

- повышение производительности ЭВН.

Технический результат достигается тем, что электрохимический водяной насос содержит твердополимерные электролизные ячейки и топливные элементы, гидравлически связанные друг с другом через резервуар сбора воды, который имеет входной штуцер для воды, газоотделители водорода и кислорода, гидравлически связанные с соответствующими полостями электролизных ячеек, а пневматически - с соответствующими полостями топливных элементов, при этом газоотделитель кислорода гидравлически сообщается с резервуаром сбора воды, газоотделитель водорода снабжен выходным штуцером для воды, а электролизные ячейки и топливные элементы соединены силовой электрической связью.

Схема предлагаемого ЭВН представлена на фиг.1. Здесь основной агрегат устройства - батарея твердополимерных ЭЯ (1) своими выходными магистралями по водороду (2) и по кислороду (3) соединены с соответствующими газоотделителями (4) и (5). Кислородный газоотделитель (5) своей выходной пневмомагистралью (11) подключен к соответствующей полости батареи ТЭ (13), а выходной гидромагистралью (7) - к резервуару сбора воды (РСВ) (8), который снабжен входным штуцером для воды (10), а выходной гидромагистралью (9) подсоединен к кислородной полости батареи ЭЯ (1). Водородный газоотделитель (4) снабжен выходным штуцером для воды (6), а выходной пневмомагистралью (12) подключен к соответствующей полости батареи ТЭ (13). Выходная гидромагистраль последней (14) соединена с РСВ (8).

Батареи ТЭ (13) и ЭЯ (1) связаны друг с другом силовой электролинией (15), возвращающей в ЭЯ (1) электроэнергию, затраченную там, на разложение воды.

Работает ЭВН следующим образом. Порция воды, предназначенная для перекачки через штуцер (10), заливается в РСВ (8), откуда поступает по магистрали (9) в кислородную полость батареи ЭЯ (1). Подача воды из РСВ (8) в ЭЯ (1) может осуществляться либо дополнительным насосом (на фиг.1 не показан), либо в ходе циркуляции воды в режиме «газ-лифт» по замкнутому контуру [ЭЯ (1) - магистраль (3) - газоотделитель кислорода (5) - магистраль (7) - РСВ (8) - магистраль (9) - ЭЯ (1)]. В обоих случаях реализуется анодная система водоснабжения ЭЯ. В процессе электролиза в ЭЯ (1) происходит частичное разложение воды на газы, а часть воды вместе с ионами водорода переходит из анодной (кислородной) полости ЭЯ в их катодную (водородную) полость, где образуется молекулярный водород. Водородо-водная смесь из катодной полости ЭЯ (1) по магистрали (2) поступает в газоотделитель водорода (4), где вода, перекачанная через мембрану ЭЯ (1), накапливается, а водород по пневмомагистрали (12) подается в ТЭ (13), где реагирует с кислородом, поступившим из газоотделителя кислорода (5) по пневмомагистрали (11). В результате электрохимической реакции в ТЭ (13) образуется вода, которая по гидромагистрали (14) перетекает в РСВ (8) и электроэнергия, которая по электролинии (15) передается в ЭЯ (1). Выдача воды происходит через штуцер (6).

Тем самым компенсируются основные энергозатраты на электролиз воды в ЭЯ (1).

Компенсация энергозатрат, однако, не является полной, поскольку существуют потери энергии на всех стадиях процесса (главным образом, это тепловые потери). Кроме того, величина «недокомпенсированной» энергии в первом приближении определяется разностью КПД ЭЯ (70÷85%) и ТЭ (50÷65%), то есть существенно зависит от эффективности каждого из этих агрегатов, и именно эта величина определяет удельные энергозатраты ЭВН на перекачку воды.

Суть данного предложения - использовать протонопроводящую мембрану не для переноса водорода (как в ЭВК), а для переноса воды. В ТП ЭЯ это происходит вместе с переносом через мембрану протонов Н*. В отличие от прототипа (ЭВК), где водород извлекается из газовой смеси, в ЭВН водород извлекается из воды после ее частичного разложения током. Протоны же, диффундируя через мембрану, «тащат» за собой по нескольку молекул воды, то есть в принципе такая мембрана больше проводит воды, чем водорода. Это, в частности, подтвердилось при испытаниях ТП электролизера в РКК «Энергия». Оказалось, что перенос воды через мембрану по расходу примерно в три раза больше, чем переработка воды в газы. При этом, как и в ЭВК, перенос может происходить с повышением давления до значительного уровня.

Высокие энергозатраты на транспортировку воды через мембрану ЭЯ почти полностью компенсируются возвратом в систему (в виде электричества) химической энергии, выделяющейся при обратной реакции синтеза воды (H2+O2→H2O). Для этого, как и в АЭВЦ, используются ТЭ, которые генерируют электроэнергию и воду для работы ЭЯ. Таким образом, ЭВН - это по сути АЭВЦ без блоков хранения водорода и кислорода, с разомкнутым циклом по воде, но с прямой электрической (силовой) связью между ЭЯ и ТЭ.

Отсутствие баллонов в составе ЭВН позволяет кардинально снизить его МГХ, например, выполнять его в виде плоской конструкции с большой площадью мембраны и соответственно большой производительностью либо в виде компактного моноблока с высоким рабочим давлением.

Кроме того, в качестве ЭВН можно использовать стандартный АЭВЦ, если не задействовать его блоки хранения газов, а выходное напряжение ЭХГ использовать для питания электролизера. Таким образом, после небольшой доработки схемы АЭВЦ при необходимости сможет выполнять роль насоса воды высокого давления.

Компенсация же основных энергозатрат ЭЯ за счет работы ТЭ позволяет на порядок снизить удельные энергозатраты на перекачку воды через мембрану ЭЯ и приблизить эту характеристику ЭВН к аналогичному показателю, характерному для обычных механических насосов высокого давления (~102÷103 Вт·ч/л воды). При этом давление воды на выходе ЭВН (так же, как и в ЭВК) может достигать сотен атмосфер.

Перечисленные обстоятельства придают целесообразность практической разработке ЭВН особенно в перспективных космических системах.

Электрохимический водяной насос, включающий твердополимерные электролизные ячейки и топливные элементы, гидравлически связанные друг с другом через резервуар сбора воды, который имеет входной штуцер для воды, газоотделители водорода и кислорода, гидравлически связанные с соответствующими полостями электролизных ячеек, а пневматически - с соответствующими полостями топливных элементов, при этом газоотделитель кислорода гидравлически сообщается с резервуаром сбора воды, отличающийся тем, что газоотделитель водорода снабжен выходным штуцером для воды, а электролизные ячейки и топливные элементы соединены силовой электрической связью.
ЭЛЕКТРОХИМИЧЕСКИЙ ВОДЯНОЙ НАСОС
Источник поступления информации: Роспатент

Showing 271-280 of 370 items.
26.08.2017
№217.015.de7e

Способ определения выходного тока солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение и измерение тока от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ. Определяют текущее значение угла...
Тип: Изобретение
Номер охранного документа: 0002624763
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.df0b

Способ определения характеристик оптического канала передачи информационного сигнала

Способ определения характеристик оптического канала передачи информационного сигнала включает в себя измерение затухания оптического канала от источника оптического излучения до приемника оптического излучения. При этом производят перемещение лазерного пучка согласованно с линейным перемещением...
Тип: Изобретение
Номер охранного документа: 0002624976
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.fa09

Приёмник-преобразователь лазерного излучения

Изобретение может быть использовано в беспроводных системах дистанционного энергопитания воздушных или космических объектов. Предложенный приемник-преобразователь лазерного излучения включает несущую силовую конструкцию с установленной на ней приемной плоскостью площадью S, на внешней стороне...
Тип: Изобретение
Номер охранного документа: 0002639738
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00b2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает поворот панели СБ в положения, при которых рабочая поверхность СБ освещена Солнцем, измерение значений тока от СБ, сравнение определяемого параметра,...
Тип: Изобретение
Номер охранного документа: 0002629647
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00c0

Способ управления космическим кораблём при сближении с кооперируемым космическим аппаратом

Изобретение относится к операциям сближения и стыковки космических аппаратов (КА) на околокруговой орбите, например, грузового космического корабля в качестве КА и международной космической станции в качестве кооперируемого КА (ККА). После выведения КА на опорную орбиту определяют параметры...
Тип: Изобретение
Номер охранного документа: 0002629644
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00e4

Способ регулирования температуры в термокамере

Изобретение относится к проведению тепловакуумных испытаний космических объектов. Способ регулирования температуры в термокамере включает нагрев объекта испытаний в вакууме, измерение текущего значения температуры T на объекте испытаний, измерение текущего значения температуры Т на объекте...
Тип: Изобретение
Номер охранного документа: 0002629645
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.0266

Всенаправленный приёмник-преобразователь лазерного излучения (2 варианта)

Изобретение относится к области оптико-электронного приборостроения и касается всенаправленного приемника-преобразователя лазерного излучения. Приемник-преобразователь включает в себя приемную плоскость, выполненную в виде трех круговых панелей, взаимно пересекающихся между собой...
Тип: Изобретение
Номер охранного документа: 0002630190
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.09ff

Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, и система для его реализации

Изобретения относятся к авиационной технике. Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, включает тепловой контакт между тепловыделяющими поверхностями аппаратуры и воздушными термоплатами (2), движение атмосферного воздуха через...
Тип: Изобретение
Номер охранного документа: 0002632057
Дата охранного документа: 02.10.2017
20.01.2018
№218.016.1de6

Способ определения с космического аппарата координат источника кольцевых волн на водной поверхности

Изобретение относится к методам наблюдения планеты из космоса и обработки результатов этого наблюдения. Способ включает регистрацию на снимке кольцевых волн, одновременно с которыми регистрируют часть суши, выбирая и идентифицируя на ней не менее четырех характерных объектов, не лежащих на...
Тип: Изобретение
Номер охранного документа: 0002640944
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e4e

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает ориентацию рабочей поверхности СБ на Солнце, измерение значений тока от СБ, контроль текущего состояния СБ по результатам сравнения текущих...
Тип: Изобретение
Номер охранного документа: 0002640937
Дата охранного документа: 12.01.2018
Showing 271-280 of 295 items.
26.08.2017
№217.015.dda6

Электропривод

Изобретение относится к машиностроению, а более конкретно к электроприводам. Электропривод содержит корпус с расточкой, подшипниковый щит, кронштейн с электродвигателем с шестерней и цилиндрический зубчатый редуктор. Кронштейн выполнен в виде двух фланцев, соединенных друг с другом аксиальными...
Тип: Изобретение
Номер охранного документа: 0002624886
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dda9

Средство и способ защиты искусственных объектов от воздействия факторов космического пространства

Группа изобретений относится к области защиты сооружаемых на Луне объектов от радиации, экстремальных температур и микрометеороидов. Средство защиты содержит оболочку, заполненную реголитом и изготовленную из материала на основе стекловолокна с пределами рабочих температур от -200°C до +550°C и...
Тип: Изобретение
Номер охранного документа: 0002624893
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddb4

Система фиксации космонавта при передвижении по внешней поверхности космического объекта (варианты) и способ её эксплуатации (варианты)

Группа изобретений относится к космической технике, а именно к средствам обеспечения безопасной деятельности на внешней поверхности космического объекта (КО), например орбитальной станции (ОС). Система фиксации космонавта при передвижении по внешней поверхности КО включает поручни, жестко...
Тип: Изобретение
Номер охранного документа: 0002624895
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dde2

Система фиксации космонавта при передвижении по внешней поверхности космического объекта и способ её эксплуатации

Группа изобретений относится к страховочным средствам внекорабельной деятельности космонавта, а также может быть использована в других видах монтажных работ. Система фиксации включает в себя поручни, закрепленные на внешней поверхности космического объекта, и закрепленную на скафандре...
Тип: Изобретение
Номер охранного документа: 0002624891
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddfd

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение, измерение напряжения (U) и тока (I) от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ, и определение...
Тип: Изобретение
Номер охранного документа: 0002624885
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.de1c

Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки и способ определения его массы

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ. Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной...
Тип: Изобретение
Номер охранного документа: 0002624688
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.de7e

Способ определения выходного тока солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение и измерение тока от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ. Определяют текущее значение угла...
Тип: Изобретение
Номер охранного документа: 0002624763
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.df0b

Способ определения характеристик оптического канала передачи информационного сигнала

Способ определения характеристик оптического канала передачи информационного сигнала включает в себя измерение затухания оптического канала от источника оптического излучения до приемника оптического излучения. При этом производят перемещение лазерного пучка согласованно с линейным перемещением...
Тип: Изобретение
Номер охранного документа: 0002624976
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.fa09

Приёмник-преобразователь лазерного излучения

Изобретение может быть использовано в беспроводных системах дистанционного энергопитания воздушных или космических объектов. Предложенный приемник-преобразователь лазерного излучения включает несущую силовую конструкцию с установленной на ней приемной плоскостью площадью S, на внешней стороне...
Тип: Изобретение
Номер охранного документа: 0002639738
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00b2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает поворот панели СБ в положения, при которых рабочая поверхность СБ освещена Солнцем, измерение значений тока от СБ, сравнение определяемого параметра,...
Тип: Изобретение
Номер охранного документа: 0002629647
Дата охранного документа: 30.08.2017
+ добавить свой РИД