×
27.07.2014
216.012.e57f

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ СИЛЬНОКИСЛОГО ГИДРОФУЗА

Вид РИД

Изобретение

Аннотация: Изобретение относится к масложировой промышленности. Способ включает его разделение на фракции введением в него активатора, перемешивание смеси, отстаивание, для полученной партии гидрофуза определяют его объем, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков. Причем, если значение водородного показателя исходного гидрофуза pH<3,7, то в гидрофуз вводят активатор в виде кристаллической поваренной соли, вес которой определяют по формуле: где V - объем гидрофуза, м; K- коэффициент водонасыщения гидрофуза, доли единицы; pH - водородный показатель исходного гидрофуза; pH - изоэлектрическое состояние белков исходного гидрофуза; γ- удельный вес поваренной соли, кг/м. Компоненты смеси в реакторе перемешивают, после этого нагревают до температуры 85-90°C и переливают в широкую емкость большого объема. Отстаивают в течение 2-18 часов для естественного протекания реакции разделения на масло, воду и фосфатидный концентрат. Частично извлекают масло, воду и фосфатидный концентрат. В последующих объемах исходных гидрофузов аналогично определяют необходимые параметры. А процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного гидрофуза pH<3,7, на масло, воду и фосфатидный концентрат осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции. Причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов. Изобретение позволяет повысить эффективность извлечения фосфатидов из гидрофуза, уменьшить энергозатраты, а также улучшить экологию производства и окружающей среды за счет исключения химических реагентов - кислот и щелочей.
Основные результаты: Способ переработки сильнокислого гидрофуза, включающий его разделение на фракции введением в него активатора, перемешивание смеси, отстаивание, отличающийся тем, что предварительно определяют исходный объем гидрофуза, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков, причем, если значение водородного показателя исходного гидрофуза pH <3,7, то в гидрофуз вводят активатор в виде кристаллической поваренной соли, вес которой определяют по формуле: где V - объем гидрофуза, м;K- коэффициент водонасыщения гидрофуза, доли единицы;pH - водородный показатель исходного гидрофуза;pH - изоэлектрическое состояние белков исходного гидрофуза;γ - удельный вес поваренной соли, кг/м.затем компоненты смеси в реакторе перемешивают, после этого нагревают до температуры 85-90°C и переливают в широкую емкость большого объема, отстаивают в течение 2÷18 часов для естественного протекания реакции разделения на фракции, после чего частично извлекают фракции: масло, воду и фосфатидный концентрат; затем в последующих объемах исходных гидрофузов аналогично определяют необходимые параметры, а процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного гидрофуза pH <3,7, на фракции осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции, причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов.

Изобретение относится к масложировой промышленности и может быть использовано для получения фосфатидного концентрата из гидрофуза в процессе безотходного производства растительных масел.

Природные масла представляют собой сложную многокомпонентную систему, состоящую в основном из триацилглицеринов (триглицеридов) различного состава, строения и степени непредельности, из разнообразных сопутствующих веществ, молекулярно - и коллоидно - растворимых в глицеридах. В настоящее время технология рафинации растительных масел в отечественной и зарубежной практике реализуется путем удаления из масел сопутствующих им веществ.

Существуют различные способы очистки или рафинирования масла:

физические (отстаивание, центрифугирование, фильтрование), химические (гидратация, щелочная рафинация и др.) и физико-химические (отбеливание, дезодорация и др.).

Гидратационный фуз, известный под названием «гидрофуз», образуется на маслозаводах как вторичный побочный продукт в процессе химической гидролизной очистки различных видов растительных масел. Так при производстве подсолнечного масла получается подсолнечный гидрофуз. При этом, в зависимости от технологии рафинации масла получаемый в виде отходов гидрофуз может характеризоваться широким диапазоном изменения водородного показателя pHгф от 3,2 до 6,5 единиц. Технология переработки гидрофуза, заключающаяся в отделении жировой части (фосфатидного концентрата, состоящего из белков и фосфолипидов) от воды, может существенно зависеть от величины параметра pHгф и особенно от его соотношения с величиной изоэлектрической точки белков (pHиз), присутствующих в гидрофузе. В связи с этим, по величине водородного показателя гидрофузы можно разделить на три группы (категории): сильнокислый при pHгф <3,7, кислый при pHгф≥3,7÷≤5,0 и слабокислый при pHгф>5,0.

Известен способ получения концентрата фосфолипидов (патент РФ №2242142), в котором проводят экстракцию фосфолипидов из гидрофуза сжиженными газами ряда углеводородов, их фтор- и хлор- производными при повышенной температуре и пониженном давлении.

Недостатком известного способа является использование углеводородов, а также их фтор- и хлорпроизводных, что оказывает негативное влияние на качественные показатели фосфолипидов, значительно удорожает их производство и создает экологические проблемы последующей утилизации отходов производства.

Известен способ получения пищевого эмульгатора из гидрационного осадка растительных масел (патент РФ №210,3337), в котором обработка гидрофуза проводится этиловым спиртом, а отделение фосфатидного концентрата путем осаждения и сушки.

Недостатком этого способа является использование дефицитного пищевого этилового спирта, его повышенная пожароопасность и необходимость регенерации.

Известен способ переработки отстоя растительного масла (гидрофуза, фуза) (патент РФ №2102445 - прототип), включающий его разделение на масло и осадок с помощью гидромеханизации и гравитации с использованием активатора. Процесс переработки осуществляется следующим образом. Гидрофуз нагревают до температуры не более 60°C выше температуры свертывания не масляной плотной части, вводят в него 15÷50% от массы гидрофуза, нагретого до такой же температуры, активатор в виде 0,4÷2,6%-ного водного раствора солей щелочных и/или щелочноземельных металлов, сахаров, перемешивают компоненты 5-50 мин, разделяют смесь на масло и осадок отстаиванием смеси в течение 3÷25 ч, отводят из верхних слоев масло, подразделяют его по качеству на пищевое и непищевое, пищевое используют по назначению, непищевое перерабатывают на олифу, а в осадок вводят 0,05÷0,5% от массы осадка антиоксидант и 0,05÷2,0% от массы осадка антисептик и используют в качестве кормовой добавки животным.

К недостаткам этого способа можно отнести трудности переработки гидрофузов, получаемых с разных заводов, в которых отличается технология рафинации масел. Каждая партия гидрофуза характеризуется своими свойствами, в том числе значениями pHгф среды, которые меняются в широких диапазонах от 3,2 до 6,5. Поэтому каждую партию гидрофуза предварительно необходимо довести до определенной величины параметра pHгф, соответствующего неустойчивому изоэлектрическому состоянию белка (pHиз=4,0÷4,5). В этих условиях происходит выделение и осаждение последних совместно с фосфолипидами. В зависимости от соотношения параметров pHгф и pHиз технология переработки гидрофуза существенно меняется. В данной заявке рассматривается возможность переработки сильнокислого гидрофуза, когда параметр pHгф<3,7 и для приведения параметра pHгф в соответствие с pHиз в принципе можно применять в качестве активатора католит. Однако в этом случае требуется большое количество католита (в разы превышающее объем гидрофуза), что экономически не рентабельно. В случае применения щелочных реагентов (концентрированной щелочи, соды, извести) происходит защелачивание гидрофуза и его омыление, так как эти реагенты вступают в реакцию со свободными жирными кислотами и образуются различные мыла, препятствующие разделению гидрофуза на его составляющие.

Техническим результатом является упрощение процесса переработки, сокращение продолжительности ведения процесса переработки гидрофуза, уменьшение энергозатрат, а также улучшение экологии производства и окружающей среды за счет исключения химических реагентов - кислот и щелочей.

Технический результат достигается тем, что в способе переработки сильнокислого гидрофуза, включающем его разделение на фракции - масло, воду и фосфатидный концентрат, введение в него активатора, перемешивание смеси, отстаивание, согласно изобретению, предварительно определяют исходный объем гидрофуза, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков, причем, если значение водородного показателя исходного гидрофуза pHгф<3,7, то в гидрофуз вводят активатор в виде кристаллической поваренной соли, вес которой определяют по формуле:

где Vгф - объем гидрофуза, м3;

Kвгф- коэффициент водонасыщения гидрофуза, доли единицы;

pHгф - водородный показатель исходного гидрофуза;

pHиз - изоэлектрическое состояние белков исходного гидрофуза;

γ- удельный вес поваренной соли, кг/м3.

затем компоненты смеси в реакторе перемешивают, после этого нагревают до температуры 85-90°C и переливают в широкую емкость большого объема, отстаивают в течение 2÷18 часов для естественного протекания реакции разделения на масло, воду и фосфатидный концентрат, после чего частично извлекают масло, воду и фосфатидный концентрат; затем в последующих объемах исходных гидрофузов аналогично определяют необходимые параметры, а процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного гидрофуза pHгф<3,7, осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции, причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов.

Новизна заявляемого предложения заключается в том, что найдено комплексное решение по безотходному использованию сильнокислого гидрофуза с более эффективным извлечением из него фосфатидов при низких энергозатратах и без применения щелочных реагентов.

По данным научно-технической и патентной литературы не обнаружена аналогичная заявляемой совокупность признаков, позволяющая получить технический результат, который ранее не достигался известными средствами, что позволяет судить об изобретательском уровне заявляемого предложения.

Предложенное техническое решение соответствует критерию «промышленная применимость», поскольку воспроизводимо и в исполнении доступно и может быть использовано при переработке сильнокислого гидрофуза.

Предлагаемый способ обезвоживания фосфолипидов основан на следующем механизме взаимодействия фосфолипидов с белками. В подсолнечном гидрофузе содержатся в основном гидрофильные, водорастворимые глобулярные белки, имеющие глобулярную структуру, а также частично, либо полностью гидрофобные мембранные белки, находящиеся в мембранах. Гидрофильность и водорастворимость белков связана с наличием в структуре их молекул гидрофильных полярных - заряженных и незаряженных групп в составе аминокислот. Эти группы притягивают диполи воды. Таким образом, вокруг молекулы белка образуется "водная оболочка", которая удерживает белковую молекулу в растворе. Глобулярные белки состоят из одной полипептидной цепи или нескольких, плотно свернутых за счет нековалентных и ковалентных связей в компактную частицу - глобулу. Почти все их полярные группы находятся на поверхности молекулы и гидратированы, гидрофобные группы находятся внутри молекулы. Аминокислоты представляют собой биполярные ионы. Значение рН среды, при котором устанавливается равенство их положительных и отрицательных зарядов, называется изоэлектрической точкой (ИЭТ) (В.Г. Щербаков, В.Г. Лобанов и др. Биохимия, издание третье, Изд-во «ГИОРД», Санкт-Петербург, 2009 г., с.76). В изоэлектрической точке аминокислоты электрически нейтральны, и потому белки в таком состоянии быстро выпадают в осадок.

Проявляя положительный заряд в кислой среде, свободные белки (неструктурированные в фосфолипидных мембранах) за счет электростатического притяжения образуют белковую весьма гидратированную оболочку вокруг отрицательно заряженных фосфатных групп фосфолипидных агрегатов (мицелл), способствуя устойчивости их эмульсий в водной среде. Именно эти белковые вещества, теряя заряд в изоэлектрическом состоянии, утрачивают способность эмульгировать фосфолипиды и выпадают в осадок.

В качестве сырья для получения фосфатидного концентрата используется гидрофуз, являющийся отходом производства подсолнечного масла, широко развитого в Краснодарском крае.

Знания объема гидрофуза и его коэффициента водонасыщения необходимы для количественной оценки активатора в виде поваренной соли NaCl. Разделение сильнокислого гидрофуза с pH<3,7 на отдельные фракции наиболее активно происходит в условиях приближения водородного показателя гидрофуза pHгф к изоэлектрической точке белков гидрофуза pHиз, поэтому количество поваренной соли, добавляемой в гидрофуз, необходимое для разделения гидрофуза на фракции, зависит от разности параметров pHиз и pHгф, которые необходимо предварительно определять в лабораторных условиях, что позволит повысить эффективность извлечения фосфатидов из гидрофуза и уменьшить энергозатраты.

Применение в качестве активатора соли NaCl обусловлено невозможностью использовать в условиях сильнокислого гидрофуза в больших объемах католит или щелочь, так как в последнем случае происходит процесс омыления, что позволит улучшить экологию производства и окружающей среды за счет исключения химических реагентов - кислот и щелочей.

Перемешивание смеси гидрофуза с солью NaCl при повышенной температуре 85-90°C способствует созданию равномерной смеси, достижению ионами Na+ и Cl- агрегатов белков с фосфолипидами, проявлению ими электрического взаимодействия и нейтрализации белков. Это ускоряет процесс разделения гидрофуза на отдельные фракции.

При длительном нахождении смеси в емкости большого объема и наличии в ней кислот и поваренной соли постепенно формируется буферная смесь с параметром pH, близким к изоэлектрическому состоянию белков гидрофуза, поэтому разделение гидрофуза новых партий, смешанных с остатками прежней смеси, происходит существенно быстрее, что сокращает продолжительность ведения процесса переработки гидрофуза.

Последующий перелив смеси гидрофуза с солью NaCl в широкую емкость большого объема способствует ускорению процесса разделения на отдельные фракции за счет дополнительного контакта смеси на большой поверхности с кислородом воздуха и постепенно создания естественной буферной среды с параметром pHгф, приближающимся к pHиз.

В первой порции смеси гидрофуза с солью NaCl расслоение происходит наиболее длительно (2-18 часов), а в последующих порциях, смешивающихся с остатками предыдущих порций, процесс расслоения происходит более быстро, так как они попадают в среду с уже сформировавшейся буферной смесью. Поэтому для создания благоприятных условий расслоения последующих порций после частичного отбора масла, воды и фосфатидного концентрата, необходимо оставлять в емкости не менее 50% предыдущей смеси.

Формула для расчета веса используемой соли NaCl получена эмпирически с учетом принятого значения удельного веса соли NaCl 2,15-103 кг/м3, который изменяется в пределах(2,1-2,2)-103 кг/м3 (Словарь нефти и газа. Издание второе, исправленное и дополненное. Под редакцией чл.-кор. АНСССР М.Ф. Мирчинка, Гостоптехиздат, Ленинград, 1958 г., с.256) или составляет 2,168-103 кг/м3 (Физические свойства горных пород и полезных ископаемых (петрофизика). Справочник геофизика. Под редакцией д.г. - м.н. Н.Б. Дортман, М., «Недра», 1976 г., с.61).

Способ переработки гидрофуза осуществляется следующим образом. Для полученной партии гидрофуза предварительно определяют исходный объем гидрофуза, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков (pHиз), при значении водородного показателя исходного гидрофуза pHгф<3,7 в гидрофуз вводят активатор в виде кристаллической поваренной соли NaCl, вес которой определяют по формуле:

где Vгф - объем гидрофуза, м3;

Kвгф- коэффициент водонасыщения гидрофуза, доли единицы;

pHгф - водородный показатель исходного гидрофуза;

pHиз - изоэлектрическое состояние белков исходного гидрофуза;

γ- удельный вес поваренной соли, кг/м3.

Смесь в реакторе перемешивают, нагревают до температуры 85-90°C и переливают в широкую емкость большого объема, отстаивают в течение 2÷18 часов для естественного протекания реакции разделения на масло, воду и фосфатидный концентрат, после чего частично извлекают масло, воду и фосфатидный концентрат, затем в последующих объемах исходных гидрофузов аналогично определяют необходимые параметры, а процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного значения pHгф<3,7, осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции, причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов.

Эффективность способа подтверждается данными, описанными в нижеследующих примерах:

1. Исходная партия гидрофуза, объемом 10,3 м3 и коэффициентом водонасыщения Квгф=0,69, характеризовалась параметром pHгф3,6, значением изоэлектрического состояния его белков pHиз4,1. Для достижения желаемого эффекта в соответствии с расчетами по формуле (1) добавили 458 кг поваренной соли NaCl. После нагрева смеси гидрофуза с солью до 85°C продукт переместили в отстойную емкость большого объема (56 м3), в которой после отстоя в течение 12 часов началось разделение гидрофуза, отобрали частично масло, фосфатидный концентрат и воду. Во вторую партию гидрофуза объемом 9,4 м3 и коэффициентом водонасыщения Квгф=0,71, параметром pHгф 3,4, значением изоэлектрического состояния его белков pHиз4,1 в соответствии с расчетами по формуле (1) добавили 603 кг поваренной соли NaCl. После нагрева смеси гидрофуза с солью до 90°C продукт переместили в ту же отстойную емкость, перемешали, и через 5 часов отстоя началось разделение гидрофуза, отобрали частично масло, фосфатидный концентрат и воду. В третью партию гидрофуза объемом 9,8 м3 и коэффициентом водонасыщения Квгф=0,68, параметром pHгф 3,5, значением изоэлектрического состояния его белков pHиз4,2 в соответствии с расчетами по формуле (1) добавили 607 кг поваренной соли NaCl. После нагрева смеси гидрофуза с солью до 85°C продукт переместили в ту же отстойную емкость, перемешали, и через 4 часа отстоя началось разделение гидрофуза, отобрали частично масло, фосфатидный концентрат и воду. Разделение на фракции в одной и той же емкости осуществляется многократно.

Применение данного способа позволяет повысить эффективность извлечения фосфатидов из гидрофуза, уменьшить энергозатраты, а также улучшить экологию производства и окружающей среды за счет исключения химических реагентов - кислот и щелочей.

Способ переработки сильнокислого гидрофуза, включающий его разделение на фракции введением в него активатора, перемешивание смеси, отстаивание, отличающийся тем, что предварительно определяют исходный объем гидрофуза, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков, причем, если значение водородного показателя исходного гидрофуза pH <3,7, то в гидрофуз вводят активатор в виде кристаллической поваренной соли, вес которой определяют по формуле: где V - объем гидрофуза, м;K- коэффициент водонасыщения гидрофуза, доли единицы;pH - водородный показатель исходного гидрофуза;pH - изоэлектрическое состояние белков исходного гидрофуза;γ - удельный вес поваренной соли, кг/м.затем компоненты смеси в реакторе перемешивают, после этого нагревают до температуры 85-90°C и переливают в широкую емкость большого объема, отстаивают в течение 2÷18 часов для естественного протекания реакции разделения на фракции, после чего частично извлекают фракции: масло, воду и фосфатидный концентрат; затем в последующих объемах исходных гидрофузов аналогично определяют необходимые параметры, а процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного гидрофуза pH <3,7, на фракции осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции, причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов.
Источник поступления информации: Роспатент

Showing 351-360 of 541 items.
25.08.2017
№217.015.9cc3

Бетоносмеситель непрерывного действия

Изобретение относится к устройствам для приготовления растворов и бетонных смесей. Для расширения технологических возможностей, повышения производительности и качества продукции в бетоносмесителе непрерывного действия корпус закреплен на платформе, установленной упруго на станине. Корпус...
Тип: Изобретение
Номер охранного документа: 0002610486
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9ccf

Бетоносмеситель

Изобретение относится к устройствам для приготовления растворов и бетонных смесей. В бетоносмесителе, содержащем упруго установленный на основании пустотелый корпус, собранный из секций, загрузочное и разгрузочное приспособления, корпус выполнен спиральным в виде пустотелого тоннеля с...
Тип: Изобретение
Номер охранного документа: 0002610489
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9f2c

Способ производства пшенично-ржаного солода

Изобретение относится к способу получения солода из пшеницы и ржи. Способ предусматривает составление солодовой смеси из зерна пшеницы и ржи в соотношении 1:1, промывку зерна пшеницы и ржи водопроводной водой в течение 4-8 минут, замачивание в анолите с рН 3,0-6,0 ед. и...
Тип: Изобретение
Номер охранного документа: 0002606024
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9f47

Способ получения ячменно-пшеничного солода

Изобретение относится к способу получения солода из смеси зерна ячменя и пшеницы. Способ включает составление смеси из зерна ячменя и пшеницы в соотношении 1:1, промывку смеси водопроводной водой в течение 4-8 минут, замачивание смеси анолитом с рН 3,0-6,0 ед. и окислительно-восстановительным...
Тип: Изобретение
Номер охранного документа: 0002606029
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9f97

Способ получения ячменного солода

Изобретение относится к способу получения солода из зерна ячменя. Способ предусматривает промывку зерна водопроводной водой в течение 4-8 минут, замачивание в анолите с рН 3,0-6,0 и окислительно-восстановительным потенциалом 970-1110 мВ, концентрацией кислорода 8,3-12,0 мг/л и хлора 0,006-0,01...
Тип: Изобретение
Номер охранного документа: 0002606020
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a18a

Способ профилактики и лечения желудочно-кишечных заболеваний у телят

Заявленное изобретение относится к области ветеринарии и предназначено для профилактики и лечения желудочно-кишечных заболеваний у телят. Способ включает использование смеси водно-спиртовой настойки из травы эхинацеи пурпурной и корневища девясила при приготовленной на основе 70% этилового...
Тип: Изобретение
Номер охранного документа: 0002606849
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a1eb

Аксиально-поршневой пресс для гранулирования кормов

Изобретение относится к оборудованию для прессования кормов в гранулы. Пресс содержит бункер с уплотнителем и корпус с расположенными по обе стороны от его оси входным и выходным окнами. Выходное окно снабжено матрицей в форме усеченного конуса с расположенными на ее боковой поверхности...
Тип: Изобретение
Номер охранного документа: 0002606827
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a72c

Малогабаритный станок для предпосевной обработки семян

Изобретение относится к области сельскохозяйственного машиностроения. Малогабаритный станок для предпосевной обработки семян содержит шлифовальный барабан, внутренняя поверхность которого покрыта слоем резины, бункер-дозатор и выгрузной лоток. При этом шлифовальный барабан смонтирован в...
Тип: Изобретение
Номер охранного документа: 0002608056
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.a975

Способ уборки початков кукурузы молочно-восковой спелости

Изобретение относится к сельскому хозяйству. Способ уборки початков кукурузы молочно-восковой спелости включает отделение и сбор початков в стадии молочно-восковой спелости зерна и скашивание растений кукурузы. Затем листостебельную массу направляют в измельчитель, а после ее измельчения...
Тип: Изобретение
Номер охранного документа: 0002611834
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.a976

Измельчитель соломы для зерноуборочного комбайна

Изобретение относится к сельскохозяйственному машиностроению. Измельчающий аппарат зерноуборочного комбайна содержит корпус с закрепленными на нем клавишами соломотряса, за которыми установлен прутковый направитель. Под прутковым направителем расположена поперечная балка с опорами, в которых...
Тип: Изобретение
Номер охранного документа: 0002611829
Дата охранного документа: 01.03.2017
Showing 351-360 of 700 items.
27.08.2015
№216.013.752c

Вращающаяся печь для обжига шлама для приготовления цементного клинкера

Изобретение относится к технике обжига цементного шлама для приготовления цементного клинкера и может быть использовано в цементной промышленности. Вращающаяся печь для обжига шлама для приготовления цементного клинкера содержит установленный горизонтально и смонтированный из секций корпус,...
Тип: Изобретение
Номер охранного документа: 0002561571
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.764b

Способ обеззараживания животноводческих помещений от возбудителя псевдомоноза

Изобретение относится к ветеринарной медицине и может быть использовано при обеззараживании животноводческих помещений. Способ включает обработку животноводческих помещений озоно-воздушной смесью, обработку осуществляют в течение 120 мин с концентрацией озона в воздухе помещений 25 мг/м или в...
Тип: Изобретение
Номер охранного документа: 0002561872
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.779d

Устройство для очистки вод акваторий бухт и заливов с многоугольной внутренней винтовой поверхностью трубопроводов

Изобретение относится к гидротехнике. Устройство включает один и более изогнутых винтовых трубопроводов, соединенных между собой боковыми сторонами и смонтированных в одном блоке, который закреплен на пути потока прибрежных течений для изменения направления части потока воды, увеличения его...
Тип: Изобретение
Номер охранного документа: 0002562210
Дата охранного документа: 10.09.2015
10.10.2015
№216.013.807a

Установка для приготовления кормов в коническом винтовом барабане

Изобретение относится к устройствам для смешивания кормов, в частности к барабанным смесителям непрерывного действия. Установка содержит барабан с винтовыми поверхностями, загрузочную и разгрузочную цапфы. Барабан установлен горизонтально и изготовлен из трех или более полос трапециевидной...
Тип: Изобретение
Номер охранного документа: 0002564487
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.807e

Установка для непрерывного приготовления концентрированных кормов

Изобретение относится к устройствам для приготовления кормов. Установка содержит станину, установленный на ней с возможностью вращения барабан, состоящий из секций. Барабан выполнен расширяющимся по длине к его центру бочкообразной формы из четырех и более полос переменной ширины выпуклой...
Тип: Изобретение
Номер охранного документа: 0002564491
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.8080

Устройство для очистки застойных вод акваторий бухт и заливов трубопроводами с треугольной внутренней винтовой поверхностью

Изобретение относится к гидротехнике. Устройство включает блок из одного и более изогнутых трубопроводов, соединенных между собой боковыми сторонами и смонтированных в одном блоке, который закреплен на пути потока прибрежных течений для изменения направления части потоков воды, увеличения их...
Тип: Изобретение
Номер охранного документа: 0002564493
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.80b0

Малогабаритный вибрационный грохот

Изобретение относится к устройствам для грохочения пород, строительных материалов при подготовке к транспортировке, для выполнения дробильно-сортировочных операций, а также для классификации строительных материалов. Малогабаритный вибрационный грохот содержит просеивающую поверхность, привод,...
Тип: Изобретение
Номер охранного документа: 0002564541
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.80b1

Вибрационный грохот

Изобретение относится к устройствам для грохочения пород, строительных материалов при подготовке к транспортировке, для выполнения дробильно-сортировочных операций, а также для классификации строительных материалов. Вибрационный грохот содержит привод, загрузочное и разгрузочное приспособления,...
Тип: Изобретение
Номер охранного документа: 0002564542
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.815b

Бетоносмеситель

Изобретение относится к устройствам для приготовления растворов и бетонных смесей. Для расширения технологических возможностей, повышения производительности и упрощения конструкции корпус бетоносмесителя смонтирован из секций, поочередно соединенных друг с другом по его длине своими торцевыми...
Тип: Изобретение
Номер охранного документа: 0002564712
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.815c

Малогабаритный грохот вибрационный

Изобретение относится к устройствам для грохочения пород, строительных материалов при подготовке к транспортировке, для выполнения дробильно-сортировочных операций, а также для классификации строительных материалов. Малогабаритный грохот вибрационный содержит упруго установленную на основании,...
Тип: Изобретение
Номер охранного документа: 0002564713
Дата охранного документа: 10.10.2015
+ добавить свой РИД