×
27.07.2014
216.012.e57f

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ СИЛЬНОКИСЛОГО ГИДРОФУЗА

Вид РИД

Изобретение

Аннотация: Изобретение относится к масложировой промышленности. Способ включает его разделение на фракции введением в него активатора, перемешивание смеси, отстаивание, для полученной партии гидрофуза определяют его объем, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков. Причем, если значение водородного показателя исходного гидрофуза pH<3,7, то в гидрофуз вводят активатор в виде кристаллической поваренной соли, вес которой определяют по формуле: где V - объем гидрофуза, м; K- коэффициент водонасыщения гидрофуза, доли единицы; pH - водородный показатель исходного гидрофуза; pH - изоэлектрическое состояние белков исходного гидрофуза; γ- удельный вес поваренной соли, кг/м. Компоненты смеси в реакторе перемешивают, после этого нагревают до температуры 85-90°C и переливают в широкую емкость большого объема. Отстаивают в течение 2-18 часов для естественного протекания реакции разделения на масло, воду и фосфатидный концентрат. Частично извлекают масло, воду и фосфатидный концентрат. В последующих объемах исходных гидрофузов аналогично определяют необходимые параметры. А процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного гидрофуза pH<3,7, на масло, воду и фосфатидный концентрат осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции. Причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов. Изобретение позволяет повысить эффективность извлечения фосфатидов из гидрофуза, уменьшить энергозатраты, а также улучшить экологию производства и окружающей среды за счет исключения химических реагентов - кислот и щелочей.
Основные результаты: Способ переработки сильнокислого гидрофуза, включающий его разделение на фракции введением в него активатора, перемешивание смеси, отстаивание, отличающийся тем, что предварительно определяют исходный объем гидрофуза, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков, причем, если значение водородного показателя исходного гидрофуза pH <3,7, то в гидрофуз вводят активатор в виде кристаллической поваренной соли, вес которой определяют по формуле: где V - объем гидрофуза, м;K- коэффициент водонасыщения гидрофуза, доли единицы;pH - водородный показатель исходного гидрофуза;pH - изоэлектрическое состояние белков исходного гидрофуза;γ - удельный вес поваренной соли, кг/м.затем компоненты смеси в реакторе перемешивают, после этого нагревают до температуры 85-90°C и переливают в широкую емкость большого объема, отстаивают в течение 2÷18 часов для естественного протекания реакции разделения на фракции, после чего частично извлекают фракции: масло, воду и фосфатидный концентрат; затем в последующих объемах исходных гидрофузов аналогично определяют необходимые параметры, а процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного гидрофуза pH <3,7, на фракции осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции, причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов.

Изобретение относится к масложировой промышленности и может быть использовано для получения фосфатидного концентрата из гидрофуза в процессе безотходного производства растительных масел.

Природные масла представляют собой сложную многокомпонентную систему, состоящую в основном из триацилглицеринов (триглицеридов) различного состава, строения и степени непредельности, из разнообразных сопутствующих веществ, молекулярно - и коллоидно - растворимых в глицеридах. В настоящее время технология рафинации растительных масел в отечественной и зарубежной практике реализуется путем удаления из масел сопутствующих им веществ.

Существуют различные способы очистки или рафинирования масла:

физические (отстаивание, центрифугирование, фильтрование), химические (гидратация, щелочная рафинация и др.) и физико-химические (отбеливание, дезодорация и др.).

Гидратационный фуз, известный под названием «гидрофуз», образуется на маслозаводах как вторичный побочный продукт в процессе химической гидролизной очистки различных видов растительных масел. Так при производстве подсолнечного масла получается подсолнечный гидрофуз. При этом, в зависимости от технологии рафинации масла получаемый в виде отходов гидрофуз может характеризоваться широким диапазоном изменения водородного показателя pHгф от 3,2 до 6,5 единиц. Технология переработки гидрофуза, заключающаяся в отделении жировой части (фосфатидного концентрата, состоящего из белков и фосфолипидов) от воды, может существенно зависеть от величины параметра pHгф и особенно от его соотношения с величиной изоэлектрической точки белков (pHиз), присутствующих в гидрофузе. В связи с этим, по величине водородного показателя гидрофузы можно разделить на три группы (категории): сильнокислый при pHгф <3,7, кислый при pHгф≥3,7÷≤5,0 и слабокислый при pHгф>5,0.

Известен способ получения концентрата фосфолипидов (патент РФ №2242142), в котором проводят экстракцию фосфолипидов из гидрофуза сжиженными газами ряда углеводородов, их фтор- и хлор- производными при повышенной температуре и пониженном давлении.

Недостатком известного способа является использование углеводородов, а также их фтор- и хлорпроизводных, что оказывает негативное влияние на качественные показатели фосфолипидов, значительно удорожает их производство и создает экологические проблемы последующей утилизации отходов производства.

Известен способ получения пищевого эмульгатора из гидрационного осадка растительных масел (патент РФ №210,3337), в котором обработка гидрофуза проводится этиловым спиртом, а отделение фосфатидного концентрата путем осаждения и сушки.

Недостатком этого способа является использование дефицитного пищевого этилового спирта, его повышенная пожароопасность и необходимость регенерации.

Известен способ переработки отстоя растительного масла (гидрофуза, фуза) (патент РФ №2102445 - прототип), включающий его разделение на масло и осадок с помощью гидромеханизации и гравитации с использованием активатора. Процесс переработки осуществляется следующим образом. Гидрофуз нагревают до температуры не более 60°C выше температуры свертывания не масляной плотной части, вводят в него 15÷50% от массы гидрофуза, нагретого до такой же температуры, активатор в виде 0,4÷2,6%-ного водного раствора солей щелочных и/или щелочноземельных металлов, сахаров, перемешивают компоненты 5-50 мин, разделяют смесь на масло и осадок отстаиванием смеси в течение 3÷25 ч, отводят из верхних слоев масло, подразделяют его по качеству на пищевое и непищевое, пищевое используют по назначению, непищевое перерабатывают на олифу, а в осадок вводят 0,05÷0,5% от массы осадка антиоксидант и 0,05÷2,0% от массы осадка антисептик и используют в качестве кормовой добавки животным.

К недостаткам этого способа можно отнести трудности переработки гидрофузов, получаемых с разных заводов, в которых отличается технология рафинации масел. Каждая партия гидрофуза характеризуется своими свойствами, в том числе значениями pHгф среды, которые меняются в широких диапазонах от 3,2 до 6,5. Поэтому каждую партию гидрофуза предварительно необходимо довести до определенной величины параметра pHгф, соответствующего неустойчивому изоэлектрическому состоянию белка (pHиз=4,0÷4,5). В этих условиях происходит выделение и осаждение последних совместно с фосфолипидами. В зависимости от соотношения параметров pHгф и pHиз технология переработки гидрофуза существенно меняется. В данной заявке рассматривается возможность переработки сильнокислого гидрофуза, когда параметр pHгф<3,7 и для приведения параметра pHгф в соответствие с pHиз в принципе можно применять в качестве активатора католит. Однако в этом случае требуется большое количество католита (в разы превышающее объем гидрофуза), что экономически не рентабельно. В случае применения щелочных реагентов (концентрированной щелочи, соды, извести) происходит защелачивание гидрофуза и его омыление, так как эти реагенты вступают в реакцию со свободными жирными кислотами и образуются различные мыла, препятствующие разделению гидрофуза на его составляющие.

Техническим результатом является упрощение процесса переработки, сокращение продолжительности ведения процесса переработки гидрофуза, уменьшение энергозатрат, а также улучшение экологии производства и окружающей среды за счет исключения химических реагентов - кислот и щелочей.

Технический результат достигается тем, что в способе переработки сильнокислого гидрофуза, включающем его разделение на фракции - масло, воду и фосфатидный концентрат, введение в него активатора, перемешивание смеси, отстаивание, согласно изобретению, предварительно определяют исходный объем гидрофуза, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков, причем, если значение водородного показателя исходного гидрофуза pHгф<3,7, то в гидрофуз вводят активатор в виде кристаллической поваренной соли, вес которой определяют по формуле:

где Vгф - объем гидрофуза, м3;

Kвгф- коэффициент водонасыщения гидрофуза, доли единицы;

pHгф - водородный показатель исходного гидрофуза;

pHиз - изоэлектрическое состояние белков исходного гидрофуза;

γ- удельный вес поваренной соли, кг/м3.

затем компоненты смеси в реакторе перемешивают, после этого нагревают до температуры 85-90°C и переливают в широкую емкость большого объема, отстаивают в течение 2÷18 часов для естественного протекания реакции разделения на масло, воду и фосфатидный концентрат, после чего частично извлекают масло, воду и фосфатидный концентрат; затем в последующих объемах исходных гидрофузов аналогично определяют необходимые параметры, а процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного гидрофуза pHгф<3,7, осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции, причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов.

Новизна заявляемого предложения заключается в том, что найдено комплексное решение по безотходному использованию сильнокислого гидрофуза с более эффективным извлечением из него фосфатидов при низких энергозатратах и без применения щелочных реагентов.

По данным научно-технической и патентной литературы не обнаружена аналогичная заявляемой совокупность признаков, позволяющая получить технический результат, который ранее не достигался известными средствами, что позволяет судить об изобретательском уровне заявляемого предложения.

Предложенное техническое решение соответствует критерию «промышленная применимость», поскольку воспроизводимо и в исполнении доступно и может быть использовано при переработке сильнокислого гидрофуза.

Предлагаемый способ обезвоживания фосфолипидов основан на следующем механизме взаимодействия фосфолипидов с белками. В подсолнечном гидрофузе содержатся в основном гидрофильные, водорастворимые глобулярные белки, имеющие глобулярную структуру, а также частично, либо полностью гидрофобные мембранные белки, находящиеся в мембранах. Гидрофильность и водорастворимость белков связана с наличием в структуре их молекул гидрофильных полярных - заряженных и незаряженных групп в составе аминокислот. Эти группы притягивают диполи воды. Таким образом, вокруг молекулы белка образуется "водная оболочка", которая удерживает белковую молекулу в растворе. Глобулярные белки состоят из одной полипептидной цепи или нескольких, плотно свернутых за счет нековалентных и ковалентных связей в компактную частицу - глобулу. Почти все их полярные группы находятся на поверхности молекулы и гидратированы, гидрофобные группы находятся внутри молекулы. Аминокислоты представляют собой биполярные ионы. Значение рН среды, при котором устанавливается равенство их положительных и отрицательных зарядов, называется изоэлектрической точкой (ИЭТ) (В.Г. Щербаков, В.Г. Лобанов и др. Биохимия, издание третье, Изд-во «ГИОРД», Санкт-Петербург, 2009 г., с.76). В изоэлектрической точке аминокислоты электрически нейтральны, и потому белки в таком состоянии быстро выпадают в осадок.

Проявляя положительный заряд в кислой среде, свободные белки (неструктурированные в фосфолипидных мембранах) за счет электростатического притяжения образуют белковую весьма гидратированную оболочку вокруг отрицательно заряженных фосфатных групп фосфолипидных агрегатов (мицелл), способствуя устойчивости их эмульсий в водной среде. Именно эти белковые вещества, теряя заряд в изоэлектрическом состоянии, утрачивают способность эмульгировать фосфолипиды и выпадают в осадок.

В качестве сырья для получения фосфатидного концентрата используется гидрофуз, являющийся отходом производства подсолнечного масла, широко развитого в Краснодарском крае.

Знания объема гидрофуза и его коэффициента водонасыщения необходимы для количественной оценки активатора в виде поваренной соли NaCl. Разделение сильнокислого гидрофуза с pH<3,7 на отдельные фракции наиболее активно происходит в условиях приближения водородного показателя гидрофуза pHгф к изоэлектрической точке белков гидрофуза pHиз, поэтому количество поваренной соли, добавляемой в гидрофуз, необходимое для разделения гидрофуза на фракции, зависит от разности параметров pHиз и pHгф, которые необходимо предварительно определять в лабораторных условиях, что позволит повысить эффективность извлечения фосфатидов из гидрофуза и уменьшить энергозатраты.

Применение в качестве активатора соли NaCl обусловлено невозможностью использовать в условиях сильнокислого гидрофуза в больших объемах католит или щелочь, так как в последнем случае происходит процесс омыления, что позволит улучшить экологию производства и окружающей среды за счет исключения химических реагентов - кислот и щелочей.

Перемешивание смеси гидрофуза с солью NaCl при повышенной температуре 85-90°C способствует созданию равномерной смеси, достижению ионами Na+ и Cl- агрегатов белков с фосфолипидами, проявлению ими электрического взаимодействия и нейтрализации белков. Это ускоряет процесс разделения гидрофуза на отдельные фракции.

При длительном нахождении смеси в емкости большого объема и наличии в ней кислот и поваренной соли постепенно формируется буферная смесь с параметром pH, близким к изоэлектрическому состоянию белков гидрофуза, поэтому разделение гидрофуза новых партий, смешанных с остатками прежней смеси, происходит существенно быстрее, что сокращает продолжительность ведения процесса переработки гидрофуза.

Последующий перелив смеси гидрофуза с солью NaCl в широкую емкость большого объема способствует ускорению процесса разделения на отдельные фракции за счет дополнительного контакта смеси на большой поверхности с кислородом воздуха и постепенно создания естественной буферной среды с параметром pHгф, приближающимся к pHиз.

В первой порции смеси гидрофуза с солью NaCl расслоение происходит наиболее длительно (2-18 часов), а в последующих порциях, смешивающихся с остатками предыдущих порций, процесс расслоения происходит более быстро, так как они попадают в среду с уже сформировавшейся буферной смесью. Поэтому для создания благоприятных условий расслоения последующих порций после частичного отбора масла, воды и фосфатидного концентрата, необходимо оставлять в емкости не менее 50% предыдущей смеси.

Формула для расчета веса используемой соли NaCl получена эмпирически с учетом принятого значения удельного веса соли NaCl 2,15-103 кг/м3, который изменяется в пределах(2,1-2,2)-103 кг/м3 (Словарь нефти и газа. Издание второе, исправленное и дополненное. Под редакцией чл.-кор. АНСССР М.Ф. Мирчинка, Гостоптехиздат, Ленинград, 1958 г., с.256) или составляет 2,168-103 кг/м3 (Физические свойства горных пород и полезных ископаемых (петрофизика). Справочник геофизика. Под редакцией д.г. - м.н. Н.Б. Дортман, М., «Недра», 1976 г., с.61).

Способ переработки гидрофуза осуществляется следующим образом. Для полученной партии гидрофуза предварительно определяют исходный объем гидрофуза, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков (pHиз), при значении водородного показателя исходного гидрофуза pHгф<3,7 в гидрофуз вводят активатор в виде кристаллической поваренной соли NaCl, вес которой определяют по формуле:

где Vгф - объем гидрофуза, м3;

Kвгф- коэффициент водонасыщения гидрофуза, доли единицы;

pHгф - водородный показатель исходного гидрофуза;

pHиз - изоэлектрическое состояние белков исходного гидрофуза;

γ- удельный вес поваренной соли, кг/м3.

Смесь в реакторе перемешивают, нагревают до температуры 85-90°C и переливают в широкую емкость большого объема, отстаивают в течение 2÷18 часов для естественного протекания реакции разделения на масло, воду и фосфатидный концентрат, после чего частично извлекают масло, воду и фосфатидный концентрат, затем в последующих объемах исходных гидрофузов аналогично определяют необходимые параметры, а процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного значения pHгф<3,7, осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции, причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов.

Эффективность способа подтверждается данными, описанными в нижеследующих примерах:

1. Исходная партия гидрофуза, объемом 10,3 м3 и коэффициентом водонасыщения Квгф=0,69, характеризовалась параметром pHгф3,6, значением изоэлектрического состояния его белков pHиз4,1. Для достижения желаемого эффекта в соответствии с расчетами по формуле (1) добавили 458 кг поваренной соли NaCl. После нагрева смеси гидрофуза с солью до 85°C продукт переместили в отстойную емкость большого объема (56 м3), в которой после отстоя в течение 12 часов началось разделение гидрофуза, отобрали частично масло, фосфатидный концентрат и воду. Во вторую партию гидрофуза объемом 9,4 м3 и коэффициентом водонасыщения Квгф=0,71, параметром pHгф 3,4, значением изоэлектрического состояния его белков pHиз4,1 в соответствии с расчетами по формуле (1) добавили 603 кг поваренной соли NaCl. После нагрева смеси гидрофуза с солью до 90°C продукт переместили в ту же отстойную емкость, перемешали, и через 5 часов отстоя началось разделение гидрофуза, отобрали частично масло, фосфатидный концентрат и воду. В третью партию гидрофуза объемом 9,8 м3 и коэффициентом водонасыщения Квгф=0,68, параметром pHгф 3,5, значением изоэлектрического состояния его белков pHиз4,2 в соответствии с расчетами по формуле (1) добавили 607 кг поваренной соли NaCl. После нагрева смеси гидрофуза с солью до 85°C продукт переместили в ту же отстойную емкость, перемешали, и через 4 часа отстоя началось разделение гидрофуза, отобрали частично масло, фосфатидный концентрат и воду. Разделение на фракции в одной и той же емкости осуществляется многократно.

Применение данного способа позволяет повысить эффективность извлечения фосфатидов из гидрофуза, уменьшить энергозатраты, а также улучшить экологию производства и окружающей среды за счет исключения химических реагентов - кислот и щелочей.

Способ переработки сильнокислого гидрофуза, включающий его разделение на фракции введением в него активатора, перемешивание смеси, отстаивание, отличающийся тем, что предварительно определяют исходный объем гидрофуза, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков, причем, если значение водородного показателя исходного гидрофуза pH <3,7, то в гидрофуз вводят активатор в виде кристаллической поваренной соли, вес которой определяют по формуле: где V - объем гидрофуза, м;K- коэффициент водонасыщения гидрофуза, доли единицы;pH - водородный показатель исходного гидрофуза;pH - изоэлектрическое состояние белков исходного гидрофуза;γ - удельный вес поваренной соли, кг/м.затем компоненты смеси в реакторе перемешивают, после этого нагревают до температуры 85-90°C и переливают в широкую емкость большого объема, отстаивают в течение 2÷18 часов для естественного протекания реакции разделения на фракции, после чего частично извлекают фракции: масло, воду и фосфатидный концентрат; затем в последующих объемах исходных гидрофузов аналогично определяют необходимые параметры, а процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного гидрофуза pH <3,7, на фракции осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции, причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов.
Источник поступления информации: Роспатент

Showing 171-180 of 541 items.
20.06.2015
№216.013.56d2

Обжиговая качающаяся печь

Изобретение относится к промышленности строительных материалов, а именно к наклонным обжиговым печам барабанного типа. Обжиговая качающаяся печь, например для обжига керамзита, содержит установленный на роликоопорах футерованный корпус с секторными вырезами, горелочные устройства и привод....
Тип: Изобретение
Номер охранного документа: 0002553756
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56d4

Головка для расточки корпусных отверстий, предназначенная для крепления в шпинделе вертикально-сверлильного станка

Головка содержит корпус с коническим хвостовиком, держатель, механизм регулировки вылета головки резца и резцы с вершинами, направленными в противоположные стороны. При этом корпус выполнен с двумя выфрезерованными пазами и приваренными над ними симметрично с одного края и с другого края...
Тип: Изобретение
Номер охранного документа: 0002553758
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.5aa2

Способ обеззараживания животноводческих помещений от возбудителей стафилококкоза

Изобретение относится к ветеринарной медицине, а именно к ветеринарной санитарии. Способ обеззараживания животноводческих помещений от стафилококка заключается в их обработке озоно-воздушной смесью с концентрацией озона в воздухе помещений 6-12 мг/м в течение 60-120 минут. Изобретение позволяет...
Тип: Изобретение
Номер охранного документа: 0002554743
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5e78

Устройство для очистки семян от сора

Изобретение относится к сельскохозяйственному машиностроению, а именно к машинам для очистки семян от сора. Устройство для очистки семян от сора содержит барабан, загрузочное и разгрузочное приспособления, привод вращения. Барабан выполнен коническим и перфорированным по периметру в виде...
Тип: Изобретение
Номер охранного документа: 0002555725
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e7a

Свая забивная

Изобретение относится к строительству, а именно к фундаментостроению. Для облегчения погружения ствола в грунт, упрощения изготовления и расширения технологических возможностей в свае забивной, включающей винтовой ствол, винтовой ствол выполнен по периметру в виде многозаходной винтовой...
Тип: Изобретение
Номер охранного документа: 0002555727
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e83

Бетоносмеситель непрерывного действия

Изобретение относится к устройствам для приготовления растворов и бетонных смесей. Для повышения производительности в бетоносмесителе непрерывного действия, содержащем конусообразный корпус и загрузочно-разгрузочное приспособления, корпус выполнен волнообразной формы по периметру и снабжен...
Тип: Изобретение
Номер охранного документа: 0002555736
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5ed1

Устройство вибрационное для смешивания сыпучих материалов

Изобретение относится к устройствам для смешивания сыпучих материалов. Устройство содержит упруго установленную на основании, снабженную приводом рабочую камеру. Камера выполнена пустотелой с волнообразной винтовой поверхностью. Камера смонтирована из жестко соединенных поочередно друг с другом...
Тип: Изобретение
Номер охранного документа: 0002555814
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5fca

Установка вибрационная для смешивания сыпучих материалов

Изобретение относится к сельскому хозяйству, а именно к устройствам для смешивания кормов. Установка содержит упруго установленную на основании, снабженную приводом рабочую камеру. Камера выполнена пустотелой с криволинейной винтовой поверхностью. Камера смонтирована из жестко соединенных по...
Тип: Изобретение
Номер охранного документа: 0002556063
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.64e5

Регулятор расхода воды для диафрагмовых водовыпусков

Изобретение относится к гидротехнике и может быть использовано для регулирования расхода воды на трубчатых и диафрагмовых водовыпусках. Регулятор расхода воды для диафрагмовых водовыпусков содержит водовыпускную трубу прямоугольного сечения с седлом, перекрываемым запорным органом, выполненным...
Тип: Изобретение
Номер охранного документа: 0002557376
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.651b

Устройство для обработки почвы

Изобретение относится к сельскохозяйственному машиностроению и может быть использовано для обработки почвы на различных агрофонах и при различной плотности. Устройство включает прямоугольную сварную раму с системами навески, регулировки глубины обработки почвы, крепления рабочих органов и...
Тип: Изобретение
Номер охранного документа: 0002557430
Дата охранного документа: 20.07.2015
Showing 171-180 of 700 items.
10.08.2014
№216.012.e854

Способ рафинации растительного масла (варианты)

Изобретение относится к масложировой промышленности и может быть использовано для очистки растительных масел. Способ предусматривает гидратацию раствором электролита, отделение фосфатидной эмульсии от масла, нейтрализацию электролизатом воды с рН>7 с добавлением соли с получением...
Тип: Изобретение
Номер охранного документа: 0002525269
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eabc

Устройство для приготовления краски

Изобретение относится к устройствам для приготовления продукции во встряхивающих, качающихся и вибрирующих устройствах и может быть применено в лакокрасочной промышленности. Устройство содержит снабженный амортизаторами, установленный с возможностью пространственного движения в трех взаимно...
Тип: Изобретение
Номер охранного документа: 0002525900
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.f026

Способ некорневой обработки озимой пшеницы

Изобретение относится к области сельского хозяйства. Способ включает некорневую обработку микроудобрением в фазе кущения для повышения урожайности в дозе 2,0 кг/га на 250 л воды. Обработку проводят на фоне питания NPK и ранневесенней подкормки аммиачной селитрой - N. Для повышения качества...
Тип: Изобретение
Номер охранного документа: 0002527297
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f2dc

Способ стабилизации производительности озонатора и устройство для его осуществления

Изобретение относится к технологии стабилизации производительности озонаторов и может быть использовано на промышленных и сельскохозяйственных предприятиях для обработки воздушных и водных сред. Для стабилизации производительности озонатора согласно изобретению в качестве расхода сырья...
Тип: Изобретение
Номер охранного документа: 0002527994
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f2e7

Початкоотделяющий аппарат

Изобретение относится к области сельскохозяйственного машиностроения и может применяться в кукурузоуборочных машинах. Початкоотделяющий аппарат состоит из пары встречно вращающихся вальцов. Над вальцами размещены початкоотделяющие пластины и контуры подающих цепей с лапками. Цепные контуры...
Тип: Изобретение
Номер охранного документа: 0002528005
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f2e9

Устройство для непрерывной мойки сыпучих материалов

Изобретение относится к оборудованию для мойки сыпучих материалов и может быть использовано в пищевой, строительной и других отраслях народного хозяйства. Устройство содержит загрузочный и разгрузочный лотки, ванну с жидкостью и установленный в ней приводной перфорированный барабан....
Тип: Изобретение
Номер охранного документа: 0002528007
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f2f5

Станок шлифования семян

Станок для шлифования семян содержит шлифовальный барабан, внутренняя поверхность которого покрыта слоем резины, бункер- дозатор и выгрузной лоток. Шлифовальный барабан изготовлен в виде контейнера, упруго установленного на основании с вибровозбудителем и смонтированного из соединенных в...
Тип: Изобретение
Номер охранного документа: 0002528019
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f2fa

Способ получения органического удобрения и система для его осуществления

Изобретения относятся к сельскому хозяйству. Способ получения органического удобрения включает использование отходов спиртового производства лютерной воды и барды, прессование последней для отделения фугата от органической массы, получение рабочей смеси путем смешивания фугата с лютерной водой,...
Тип: Изобретение
Номер охранного документа: 0002528024
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f2fe

Способ переработки слабокислого гидрофуза

Изобретение относится к масложировой промышленности. Способ включает разделение гидрофуза на фракции введением в него активатора, перемешивание смеси и отстаивание. При этом предварительно определяют объем V, коэффициент водонасыщения К, водородный показатель исходного гидрофуза pH и...
Тип: Изобретение
Номер охранного документа: 0002528028
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f2ff

Многофункциональный плуг для основной обработки почвы

Изобретение относится к области сельскохозяйственного машиностроения, в частности к устройствам для основной обработки почвы. Многофункциональный плуг для основной обработки почвы содержит раму с опорными регулируемыми по высоте колесами, систему навески. Рама содержит неподвижно размещенный...
Тип: Изобретение
Номер охранного документа: 0002528029
Дата охранного документа: 10.09.2014
+ добавить свой РИД