×
27.07.2014
216.012.e528

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА

Вид РИД

Изобретение

Аннотация: Использование: для определения концентрации элемента в веществе сложного химического состава. Сущность изобретения заключается в том, что выполняют облучение пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, при этом установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения. Технический результат: обеспечение возможности определения концентрации элементов в пробах различного химического и вещественного состава, имеющих различную структуру и плотность, без идентификации фазового состава, но с предварительной коррекцией фона. 9 ил.
Основные результаты: Способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, отличающийся тем, что установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения, вида: (Z - аналитический параметр для элемента i; E - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(E) - измеренная интенсивность характеристического излучения, соответствующая энергии E; I(E) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента E; I(E) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, I(E) - рассчитанная интенсивность фона некогерентно рассеянного излучения),где интенсивность фона характеристического излучения по всему диапазону энергий в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента рассчитывают по формуле: (E - значение энергии края поглощения аналитической линии i-го элемента, ΔE - разрешающая способность детектора спектрометра, I - интенсивность характеристического излучения в точке спектра с энергией E+ΔE).

Изобретение относится к способу определения концентрации элемента (элементов), основанному на измерении характеристического рентгеновского излучения в веществах сложного химического и фазового состава, имеющих различную структуру и плотность.

Изобретение относится к методам неразрушающего контроля элементного состава вещества и реализуется в методах волнового и энергодисперсионного рентгенофлуоресцентного анализа.

Флуоресцентная эмиссия рентгеновских лучей является одним из наиболее мощных средств обнаружения и количественного определения элементов практически в любом фазовом состоянии сложного вещественного состава [Юинг Г. Инструментальные методы химического анализа. М.: Мир, 1989, 608 с.]. Учитывая, что структура и плотность матрицы влияет на интенсивность характеристической линии элемента, для определения концентрации элемента в образце сложного химического и фазового состава необходим набор стандартных образцов, имеющих фазовую структуру, идентичную структуре анализируемого образца, что не всегда технически и аналитически выполнимо.

Известен способ определения тяжелых металлов в породах и рудах по их характеристическому рентгеновскому излучению, возбуждаемому гамма-квантами рентгеновской трубки или другого источника излучения. Для уточнения влияния плотности матрицы, сокращения количества измерений и упрощения методики их проведения в условиях естественного залегания пород и руд производят одновременное измерение интенсивностей вторичного излучения в двух участках спектра, расположенных по разные стороны от К (L)-края поглощения искомого элемента (SU 171482, опубл. 26.05.1965).

Содержание искомого элемента находят по величине отношения интенсивностей в двух указанных участках спектра вторичного излучения. С целью определения нескольких элементов производят одновременное измерение интенсивностей вторичного излучения в участках спектра, расположенных по разные стороны от К (L)-краев поглощения каждого элемента. Недостатком указанного способа является нелинейная зависимость интенсивности вторичного рентгеновского излучения от концентрации элемента, что снижает точность анализа, а следовательно, недостаточно достоверная информация об анализируемом веществе.

Известен способ определения концентрации элемента и кристаллической фазы, куда входит определяемый элемент, в веществе сложного химического состава, включающий облучение пробы анализируемого вещества монохроматическим рентгеновским излучением, регистрацию интенсивности когерентно рассеянного определяемой кристаллической фазой первичного излучения. В способе предусматривается одновременная или последовательная регистрация интенсивности когерентно рассеянного излучения с интенсивностью некогерентного рассеянного первичного излучения этой же пробой, а затем по отношению указанных интенсивностей устанавливается концентрация определяемой фазы (RU 2255328, опубл. 27.06.2005).

Данный способ объединяет два направления: рентгеноспектральный и рентгенофазовый анализ. В рентгеноспектральном анализе определяется концентрация того или иного элемента, в рентгенофазовом анализе определяется концентрация той или иной фазы. Для реализации метода использовалось совершенно разное оборудование, основанное на разных физических принципах - рентгеновские спектрометры для рентгеноспектрального анализа и рентгеновские дифрактометры для рентгенофазового анализа. Способ позволяет снизить влияние химического и фазового состава пробы на ошибку измерения, однако не позволяет получить точную информацию о количестве анализируемого элемента, входящего в определяемую фазу.

Известен способ определения концентраций элемента и фазы, включающей данный элемент, в веществе сложного химического состава (патент RU 2362149, опубл. 20.07.2009 г.), выбран в качестве прототипа, описывающий способ определения концентрации элемента и фазы в веществах сложного химического состава. Отличительной особенностью способа является то, что одновременно регистрируют интенсивность характеристического излучения определяемого элемента, его определяемой фазы и интенсивность когерентно и некогерентно рассеянного (по Комптону) излучений, а затем по отношению указанных интенсивностей определяют концентрации элемента и фазы, включающей данный элемент, что позволяет учитывать влияние вещественного состава на результаты анализа (матричный эффект). Предлагаемый способ основывается на методе спектральных отношений при рентгенофлуоресцентном анализе и разработанном автором способе определения концентрации фазы при рентгенофазовом анализе.

Автор утверждает, что отношение интенсивности аналитической линии Ii к интенсивности некогерентно рассеянному излучению Inc не зависит от матрицы пробы и может использоваться как аналитический параметр Ki . Однако метод, принятый в качестве прототипа, не учитывает влияние фона характеристического излучения, возникающего вследствие облучения пробы первичным потоком гамма-квантов, что вносит существенную погрешность в нахождение концентраций определяемых элементов [Лосев Н.Ф., Смагунова А.Н. Основы рентгеноспектрального флуоресцентного анализа. М.: Химия, 1982, с.148, 208 с.].

Интенсивность фона, зависящая от структуры и состава пробы, пропорциональна интенсивности характеристического излучения, возбуждаемого первичным потоком рентгеновского излучения трубки или другого источника. В то же время интенсивность фона некогерентно рассеянного излучения пропорциональна интенсивности некогерентно рассеянных квантов первичного излучения с соответствующей энергией (длиной волны), зависящей от материала анода рентгеновской трубки [Лосев Н.Ф., Смагунова А.Н. Основы рентгеноспектрального флуоресцентного анализа. М.: Химия, 1982, с.140, с.147, с.149, 208 с.].

Влияние фона можно не учитывать только в том случае, когда химический и фазовый состав анализируемых материалов является постоянным. Если же состав проб изменяется, то при их анализе интенсивность фона для каждого образца следует измерять рядом с аналитической линией, что является трудоемкой операцией и не всегда возможно в силу конволюции спектров характеристического излучения.

Техническим результатом настоящего изобретения является возможность определения концентрации элементов в пробах различного химического и вещественного состава, имеющих различную структуру и плотность, без идентификации фазового состава, но с предварительной коррекцией фона.

Технический результат достигается тем, что способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения проводят по аналитическому параметру вида , учитывающему влияние фона характеристического излучения, что позволяет привести к линейной зависимости измеряемых величин интенсивности характеристического излучения от концентрации каждого определяемого элемента в пробе сложного химического и фазового состава и тем самым значительно повысить точность анализа.

В формуле расчета аналитического параметра Zi для i-го элемента приняты следующие обозначения: Zi - аналитический параметр для элемента i; Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei; Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i; I(Enc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc) - рассчитанная интенсивность фона некогерентно рассеянного излучения.

Нормирование скорректированной интенсивности аналитической линии к интенсивности некогерентно рассеянного излучения не зависит от матрицы пробы (вещественного состава, плотности и фазового состояния) и используется как аналитический параметр.

Для определения аналитических параметров в заявляемом способе проводят следующие операции:

1. Измеряют спектр характеристического излучения по всему диапазону энергий (длин волн), соответствующих аналитическим линиям содержащихся в пробе элементов одновременно с интенсивностью некогерентно рассеянного излучения.

2. По измеренному спектру рассчитывают интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i, по формуле:

,

где Iфона(Ei) - интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i, Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента, Emin,i - значение энергии края поглощения аналитической линии i-го элемента, ΔE - разрешающая способность детектора спектрометра, IEmin,i+ΔE - интенсивность характеристического излучения в точке спектра с энергией Emin,i+ΔE.

3. По рассчитанной в п.2 интенсивности фона определяют скорректированную интенсивность для каждого i-го элемента по формуле:

Ji=(I(Ei)-Iфона(Ei))2,

где Ji - скорректированная интенсивность аналитической линии элемента i, I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei, Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной энергии Emin,i для i-го элемента.

4. По отношению интенсивностей аналитических линий элемента и некогерентно рассеянного излучения с учетом интенсивности фона рассчитывают аналитический параметр Zi для элемента i

где I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei, Iфона(Ei) - рассчитанная интенсивность фона, кратная энергии Emin,i для i-го элемента, I(Enc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc) - рассчитанная интенсивность фона некогерентно рассеянного излучения.

Используя вместо измеряемых величин интенсивности характеристического излучения аналитический параметр Zi, получаем линейную зависимость аналитического параметра Zi от содержания i-го элемента в пробе:

Zi=aiCi+bi,

где ai и bi - коэффициенты пропорциональности, определяемые методом наименьших квадратов при построении калибровочных зависимостей для i-го элемента, Ci - концентрация элемента i в пробе.

Таким образом, вместо уравнения, связывающего интенсивность характеристического излучения i-го элемента с его концентрацией, используется зависимость аналитического параметра Zi от концентрации i-го элемента, что позволяет получить предельную линейную зависимость, устраняя влияние других элементов, входящих в пробу вещества сложного состава.

На фиг.1 приведена зависимость интенсивности I линии La элемента церия от его концентрации в растворе, на фиг.2 - линейная зависимость аналитического параметра Z для тех же образцов.

На фиг.2 видно, что введение параметра Z позволяет провести линеаризацию зависимости измеряемых величин от концентрации, что существенно повышает точность рентгенофлуоресцентного анализа.

На фиг.3 приведены зависимости интенсивности некогерентно рассеянного излучения от концентрации Ce в растворах и в твердой фазе (порошки). Изменение интенсивности некогерентно рассеянного излучения в растворах и порошках учитывается эквивалентным выражением, что показывает возможность учета влияния матрицы для проб различной структуры.

Техническая реализация предлагаемого способа осуществима на энергодисперсионных спектрометрах и спектрометрах с волновой дисперсией. При этом в качестве регистрирующего устройства могут использоваться полупроводниковые детекторы, кристаллы-сцинтилляторы, газоразрядные трубки и pin-диоды.

Сущность заявляемого изобретения и его преимущества могут быть пояснены следующими примерами конкретного выполнения.

Пример 1. Количественное определение фосфата церия в концентрате фосфатов редкоземельных элементов. Используемое оборудование: энергодисперсионный рентгеновский спектрометр РЕАН; условия измерения - Uycк - 40 кВ, Iанод - 100 мкА; материал анода - Мо; время экспозиции - 100 с; среда измерения - воздух; детектор некогерентно рассеянного излучения Si-pin-диод (16,57 кэВ).

Приготовлен массив градуировочных проб разбавлением химически чистого CePO4 продуктом моноаммонийфосфата (МАФ) дигидратного сернокислотного производства фосфорной кислоты с диапазоном концентраций по церию: 0,1-11,0%, 11-53,6%.

Объект анализа - гомогенизированный порошок разбавленного фосфата церия, спрессованный в таблетки диаметром 15 мм под давлением 20 т/см2, толщина образцов - более 2 мм, искомый элемент-аналит - церий. Полученные зависимости интенсивности Lα линии церия от концентрации элемента (%) и интенсивности некогерентно рассеянного излучения от концентрации Ce (%) представлены фиг.4 и 5.

Введение аналитического параметра Zi с учетом интенсивности фона для Lα линии церия позволяет получить линейные зависимости как для низких, так и для высоких концентраций данного элемента, представленные на фиг.6.

Пример 2. Количественное определение редкоземельных элементов (РЗЭ) в модельных смесях. Используемое оборудование: рентгеновский спектрометр «Спектроскан G»; условия измерения - Uуск - 40 кВ, Iанод - 100 мкА; материал анода - Ag; время экспозиции - 5 с; среда измерения - воздух; (16,57 кэВ); длина волны некогерентного рассеяния - 605 mÅ.

Приготовлен массив градуировочных проб разбавлением химически чистых нитратов РЗЭ продуктом МАФ. Объект анализа - гомогенизированный порошок разбавленных нитратов РЗЭ, спрессованный в таблетки диаметром 15 мм под давлением 20 т/см2, толщина образцов - более 2 мм. Элементы-аналиты - La, Er, Eu с диапазоном концентраций по лантану: 0,04-3%; по эрбию: 0,03-1%; по европию: 0,1-4%.

Использование аналитического параметра Zi с учетом интенсивности фона позволяет получить линейные зависимости для каждого элемента-аналита: лантана, эрбия и европия, от их концентрации в совместном присутствии. Полученные линейные зависимости аналитического параметра Zi от концентрации для характеристических линий Lα La, Lα Er и Lα Eu представлены на фиг.7, 8, 9.

Изобретение может быть использовано в различных отраслях промышленности для решения следующих задач:

- определение элементного состава руд, минералов, промышленных и товарных продуктов горнодобывающей промышленности;

- определение элементного состава природных и сточных вод, промышленных технологических растворов;

- исследование продуктов лабораторного и промышленного синтеза неорганических структур.

Способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, отличающийся тем, что установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения, вида: (Z - аналитический параметр для элемента i; E - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(E) - измеренная интенсивность характеристического излучения, соответствующая энергии E; I(E) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента E; I(E) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, I(E) - рассчитанная интенсивность фона некогерентно рассеянного излучения),где интенсивность фона характеристического излучения по всему диапазону энергий в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента рассчитывают по формуле: (E - значение энергии края поглощения аналитической линии i-го элемента, ΔE - разрешающая способность детектора спектрометра, I - интенсивность характеристического излучения в точке спектра с энергией E+ΔE).
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
Источник поступления информации: Роспатент

Showing 131-140 of 172 items.
10.12.2015
№216.013.9843

Способ получения поверхностно-наноструктурированного металлического материала

Изобретение относится к технологии получения металлических материалов с модифицированной поверхностью. Способ получения поверхностно-наноструктурированного металлического материала включает восстановление металла из исходного металлсодержащего твердого материала путем обработки парами...
Тип: Изобретение
Номер охранного документа: 0002570599
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9873

Способ получения судового маловязкого топлива

Изобретение относится к способу получения судового маловязкого топлива, включающему перегонку нефти с выделением дизельной фракции и каталитическую гидроочистку. Причем при перегонке нефти выделяют фракции, 95% которых выкипают в пределах от 180 до 220°C и от 220 до 360°C, эти фракции смешивают...
Тип: Изобретение
Номер охранного документа: 0002570647
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.98a6

Способ возведения закладочного массива при разработке месторождений в условиях многолетней мерзлоты

Изобретение относится к горной промышленности и может быть использовано при разработке месторождений с закладкой выработанного пространства в условиях многолетней мерзлоты. Техническим результатом является сокращение периода обезвоживания закладочной пульпы и повышение прочности получаемого...
Тип: Изобретение
Номер охранного документа: 0002570698
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9b00

Способ определения толщины наклепанного слоя

Изобретение относится к методам испытания металлов, в частности к методам определения толщины наклепанного слоя металлических деталей, и может быть применено в дробеструйной обработке рабочих поверхностей. Сущность: осуществляют поверхностное пластическое деформирование до получения остаточного...
Тип: Изобретение
Номер охранного документа: 0002571305
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a3e5

Устройство компенсации высших гармоник и коррекции несимметрии сети

Использование: в области электротехники. Технический результат - снижение коэффициентов искажения синусоидальности формы кривых тока и напряжения сети. В устройстве компенсации высших гармоник и коррекции несимметрии сети, содержащем инвертор, накопительный конденсатор, выходной сглаживающий...
Тип: Изобретение
Номер охранного документа: 0002573599
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bcae

Способ выявления источника высших гармоник

Изобретение относится к электротехнике и электроэнергетике, а именно к способам оценки качества электроэнергии. Способ может быть использован в системах электроснабжения промышленных предприятий с неизменной нагрузкой для определения источника нелинейных искажений как со стороны питающей сети,...
Тип: Изобретение
Номер охранного документа: 0002573706
Дата охранного документа: 27.01.2016
27.02.2016
№216.014.bef8

Способ захоронения токсичных и радиоактивных отходов

Изобретение относится к технологиям обращения с токсичными и радиоактивными технологиями и может быть использовано при разработке месторождений с закладкой выработанного пространства. По мере возведения саркофагов из шин внутренний зазор между ними и контейнерами для скрепления заполняют...
Тип: Изобретение
Номер охранного документа: 0002576331
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.bffc

Способ повышения извлечения платиноидов из нетрадиционного платиносодержащего сырья

Изобретение относится к области обогащения полезных ископаемых и может быть использовано в горно-обогатительной промышленности при обогащении платиносодержащих нетрадиционных руд. Способ обогащения руд, содержащих металлы платиновой группы, включает измельчение и кондиционирование материала с...
Тип: Изобретение
Номер охранного документа: 0002576715
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c042

Устройство бесперебойного электроснабжения

Использование: в области электроэнергетики. Техническим результатом является обеспечение двухступенчатого автоматического ввода резерва при поддержании необходимого уровня заряда аккумуляторных батарей. Устройство содержит резервный генератор, блок развязки с энергосистемой, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002576664
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c38e

Забойный скребковый зарубной конвейер

Изобретение относится к горной промышленности, в частности к средствам механизации для транспортирования горной массы из очистных забоев. Техническим результатом является обеспечение устойчивости положения самих скребков конвейера, осуществление выравнивания почвы, облегчение монтажа и...
Тип: Изобретение
Номер охранного документа: 0002574090
Дата охранного документа: 10.02.2016
Showing 131-140 of 221 items.
10.03.2015
№216.013.3133

Устройство для перемещения поезда метрополитена после его аварийной остановки до ближайшей станции метрополитена

Устройство состоит из последовательно размещенных друг относительно друга вдоль рельсового пути замкнутых на приводном (1) и натяжном (2) блоках с отклоняющими блоками (3, 4) стальных проволочных канатов (5), обе ветви которых расположены на шпалах (6) рельсового пути между рельсами (7)....
Тип: Изобретение
Номер охранного документа: 0002544063
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3ffc

Способ разработки нефтяной залежи с глиносодержащим коллектором

Изобретение относится к нефтедобывающей промышленности и, в частности, к внутриконтурному заводнению пластов и поддержанию пластового давления при разработке нефтяных залежей с глиносодержащим коллектором. Технический результат - повышение нефтеотдачи пластов за счет увеличения их охвата....
Тип: Изобретение
Номер охранного документа: 0002547868
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ffd

Способ консервации и изоляции техногенных месторождений

Изобретение относится к области экологии и рационального природопользования, а именно к способам гидроизоляции площадок кучного выщелачивание и хранилищ отходов, в частности к созданию экранов хвостохранилищ, шламонакопителей, полигонов твердых бытовых отходов и насыпных массивов,...
Тип: Изобретение
Номер охранного документа: 0002547869
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fff

Состав для повышения нефтеотдачи пластов

Изобретение относится к нефтедобывающей промышленности, в частности к составам для повышения нефтеотдачи пластов. Состав для повышения нефтеотдачи пластов, включающий загуститель и моющий агент, содержит в качестве загустителя смесь рапсового и пальмового масел, в качестве моющего агента -...
Тип: Изобретение
Номер охранного документа: 0002547871
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4001

Способ воздействия на угольный пласт через скважины, пробуренные из горных выработок

Изобретение относится к горной промышленности и может быть использовано для дегазации угольных пластов. Техническим результатом является повышение эффективности дегазации угольного пласта. Предложен способ воздействия на угольный пласт через скважины, пробуренные из горных выработок, включающий...
Тип: Изобретение
Номер охранного документа: 0002547873
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4186

Способ извлечения мелких частиц благородных металлов из россыпей

Изобретение относится к области обогащения полезных ископаемых, в частности к обогащению песков и техногенных отвалов россыпных месторождений золота и металлов платиновой группы (МПГ) гравитационными методами. Способ извлечения мелких частиц благородных металлов из россыпей включает...
Тип: Изобретение
Номер охранного документа: 0002548272
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.41d7

Способ извлечения катионов еu из водно-солевых растворов

Изобретение относится к способу извлечения катионов европия (III) из бедного или техногенного сырья с помощью жидкостной экстракции. Способ извлечения катионов европия (III) включает жидкостную экстракцию из водно-солевых растворов с использованием в качестве экстрагента изооктилового спирта....
Тип: Изобретение
Номер охранного документа: 0002548353
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4204

Устройство для фильтрации и отбора проб жидкостей в сосудах под давлением

Изобретение относится к устройству для фильтрации и отбора проб жидкостей в сосудах под давлением и может быть использовано в обогатительно-металлургической и химической областях промышленности, в частности в качестве средств контроля химического состава раствора в автоклавах, резервуарах,...
Тип: Изобретение
Номер охранного документа: 0002548398
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.42d3

Способ определения пространственного распределения в керновом материале эффективного порового пространства

Использование: для определения пространственного распределения в керновом материале эффективного порового пространства. Сущность изобретения заключается в том, что в образец керна закачивают контрастное рентгеновское вещество, сканируют образец посредством рентгеновской томографии, получают...
Тип: Изобретение
Номер охранного документа: 0002548605
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43b1

Устройство для определения величины коэффициента сопротивления движению шахтных вагонеток

Изобретение относится к испытаниям транспортных средств, в частности шахтных вагонеток. Устройство содержит наклонный, при испытании, рабочий участок рельсового пути с фиксированным углом его наклона и примыкающими к нему горизонтальными участками рельсового нуги. Рабочий участок рельсового...
Тип: Изобретение
Номер охранного документа: 0002548827
Дата охранного документа: 20.04.2015
+ добавить свой РИД