×
20.07.2014
216.012.e259

СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПЕРЕХОДНЫХ ТЕПЛОВЫХ ХАРАКТЕРИСТИК СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области приборостроения и может быть использовано для измерения температуры активной области светоизлучающих диодов. Заявлен cпособ измерения переходных тепловых характеристик светоизлучающих диодов (СИД), при котором инжекционный ток подают в виде последовательности импульсов нарастающей длительности с периодом между импульсами, достаточными для остывания активной области и не менее времени считывания сигнала с выхода фотоприемной линейки. Далее на СИД подают постоянный инжекционный ток и измеряют спектр излучения в заданные моменты времени в течение цикла измерения вплоть до полного разогрева СИД. В устройстве для реализации способа последовательно соединены генератор инжекционного тока, светоизлучающий диод, электрооптический затвор, монохроматор и приемно-преобразовательный блок, включающий в качестве фотоприемного устройства многоэлементную фотоприемную линейку, первый и второй генераторы импульсов, АЦП и микроконтроллер. Управляющие выходы микроконтроллера соединены с входом генератора инжекционного тока и с входом первого генератора импульсов, выход которого соединен с управляющими входами электрооптического затвора и второго генератора импульсов, выходы которого соединены с управляющими входами фотоприемного устройства и АЦП. Технический результат - повышение точности определения переходных тепловых характеристик светоизлучающих диодов. 2 н.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Примененные сокращения:

СИД - светоизлучающий диод или светодиод,

ПТХ - переходная тепловая характеристика,

ТЧП - температурочувствительный параметр,

АЦП - аналого-цифровой преобразователь,

ФПУ - фотоприемное устройство или фотоприемник.

Изобретение относится к электронной технике и может быть использовано для измерения температуры активной области полупроводниковых светоизлучающих диодов (СИД) как на этапах их разработки и производства, так и на входном контроле потребителя или при выборе режимов эксплуатации.

Задачей контроля тепловых свойств полупроводниковых приборов является определение параметров их тепловой эквивалентной схемы. В приближении одномерной тепловой схемы задача сводится к определению набора значений тепловых сопротивлений (RTi) и теплоемкостей (CTi) или тепловых постоянных времени (τTi= RTi·CTi) отдельных элементов и слоев материалов, составляющих конструкцию полупроводникового изделия. Указанные параметры могут быть определены по переходной тепловой характеристике (ПТХ) полупроводникового изделия, которая представляет собой зависимость температуры p-n перехода (активной области) полупроводникового изделия от времени после подачи на полупроводниковое изделие ступеньки греющей мощности единичной величины.

Известен способ измерения переходных тепловых характеристик полупроводниковых приборов с p-n переходами по кривой остывания (см. Давидов П.Д. Анализ и расчет тепловых режимов полупроводниковых приборов, М.: Энергия - 1967. стр.33). При этом способе исследуемый полупроводниковый прибор разогревается до установившихся тепловых режимов, затем заданную разогревающую электрическую мощность отключают, пропускают малый прямой ток через контролируемый p-n переход и измеряют изменение температуры p-n перехода по изменению температурочувствительного параметра (ТЧП), в качестве которого чаще всего используется прямое падение напряжения на контролируемом p-n переходе при малом прямом токе. Недостатками известного способа является большое время измерения, обусловленное необходимостью предварительного разогрева полупроводникового прибора до установившегося теплового режима и последующего охлаждения до температуры окружающей среды. Время измерения ПТХ этим способом практически в два раза превышает длительность ПТХ.

Известен способ измерения ПТХ полупроводниковых приборов по точкам (см. 1-Технический справочник по кремниевым управляемым вентилям-тиристорам. / пер. с англ. под ред. В.А. Лабунцова и А.Ф. Свиридова. - М.: Энергия. 1964; см. 2 - Gutzwiller F., Sylvan T. Power Semiconductors Rating Under Transient and Intermittent Loads//Communications and Electronics. - 1961 - №52), заключающийся в том, что на полупроводниковый прибор подается прямоугольный импульс греющей мощности заданной величины и длительности, после окончания импульса мощности через контролируемый p-n переход пропускают малый прямой ток и измеряют изменение температуры p-n перехода по изменению прямого падения напряжения на p-n переходе до и после подачи импульса. Недостатком способа является необходимость подачи большого числа импульсов греющей мощности различной длительности (хотя бы 3-5 импульсов на декаду временного диапазона изменения тепловых постоянных времени полупроводникового прибора), при этом между окончанием одного импульса греющей мощности и подачей следующего необходимо выдержать паузу длительностью как минимум в 3-5 раз больше длительности предшествующего импульса греющей мощности. В результате общее время измерения ПТХ этим способом будет превышать длительность ПТХ в 4…6 раз.

Известен способ измерения переходной тепловой характеристики полупроводниковых изделий с p-n переходами (см. IC Thermal Measurement Method - Electrical Test Method (Single Semiconductor Device) EIA/JEDEC JESD51-1 standard//http://www.jedec.org/download/search/jesd51-1.pdf), состоящий в том, что на изделие подается ступенька греющей мощности заданной величины и в процессе разогрева в определенные по заданному алгоритму моменты времени на короткий промежуток времени (до нескольких десятков микросекунд) греющая мощность отключается, через контролируемый p-n переход пропускают малый измерительный ток и измеряется температурочувствительный параметр -падение напряжения на p-n переходе. Этот способ реализован в измерительной установке T3Ster (Thermal Transient Tester) (см. T3Ster - Thermal Transient Tester//www.mentor.com/micred).

Недостатком данного способа является большая погрешность определения температуры p-n перехода полупроводникового прибора. Она вызвана влиянием переходных электрических процессов при переключении полупроводникового прибора из режима нагрева в режим измерения (см. Сергеев В.А., Юдин В.В. Измерение тепловых параметров полупроводниковых изделий с применением амплитудно-импульсной модуляции греющей мощности//Метрология. - 2010. - №4. - С.72-78) и пространственным усреднением ТЧП по площади p-n перехода и толщине слоев полупроводниковой структуры.

Известно устройство для реализации способа определения температуры активной области светоизлучающих приборов, включающее генератор тока, к выходу которого подключен контролируемый светоизлучающий прибор, расположенные по ходу луча узкополосный оптический фильтр и приемно-преобразовательный блок, связанный с системой обработки сигналов (см. авт. свид. СССР №1586401, МКИ G01R 31/26). В известном устройстве в качестве температурочувствительного параметра используют интенсивность излучения, измеренную на длинноволновом крыле спектра излучения полупроводникового излучателя в энергетическом диапазоне, выбранном из условия:

где hν - энергия фотонов из фиксированной полосы энергий; hν1 - энергия фотонов, соответствующая максимуму полосы излучения светоизлучающего прибора при температуре активной области прибора; α - температурный коэффициент запрещенной зоны полупроводникового материала активной области светоизлучающего прибора; ΔТмакс - максимально допустимая температура перегрева активной области светоизлучающего прибора.

Температуру активной области TA.O светоизлучающего прибора при пропускании рабочего тока I определяют по формуле:

где Ф1 и Ф2 - значения интенсивностей излучения в фиксированной полосе длин волн, соответствующие двум значениям температур окружающей среды T1 и Т2 соответственно, а Ф3 и Ф4 - значения интенсивностей излучения и импульсного тока I1 и I2 соответственно, при заданных длительности tи и скважности Q импульсов, измеренные при комнатной температуре Токр.

Недостатком известного устройства является низкая точность измерения переходных тепловых характеристик СИД, связанная с нелинейностью передаточной характеристики устройства.

Наиболее близкими по совокупности существенных признаков являются способ и аппаратура для отслеживания во времени положения спектра электролюминесценции. Аппаратура включает источник инжекционного тока, монохроматор, ФЭУ и цифровой осциллограф. Основу способа измерения составляет исследование кинетики доминирующей длины волны спектра на светодиоде в зависимости от температуры нагрева активной области светодиодов, при этом положение начальной точки берется из импульсных измерений, избегая саморазогрева активной области, указывается, что длительность импульса должна быть достаточно мала, а скважность достаточно велика, (см. Луценко Е. Температура перегрева активной области коммерческих светодиодов и светодиодов с прямым жидкостным охлаждением чипа // Полупроводниковая светотехника, №2, 2011).

Известный способ для обеспечения точности измерения требует применения сложных быстродействующих фотоприемных устройств.

Технической задачей настоящего изобретения является упрощение аппаратуры, используемой при реализации предложенного способа измерения, и при этом обеспечение возможности измерения любых выбранных временных интервалов ПТХ с высоким разрешением.

Для реализации указанной задачи предложен способ измерения переходных тепловых характеристик светоизлучающих диодов,

при котором измеряют спектр излучения СИД при возбуждении короткими импульсами малой длительности без саморазогрева активной области, а также измеряют спектр излучения при постоянном токе инжекции с использованием монохроматора, осуществляют вычисление кинетики температуры активной области СИД по кинетике положения максимума спектра излучения СИД, отличающийся тем, что инжекционный ток подают в виде последовательности импульсов нарастающей длительности с периодом между импульсами, достаточными для остывания активной области и не менее времени Δτсч считывания сигнала с выхода фотоприемной линейки, а при достижении длительности импульса времени Δτсч на СИД подают постоянный инжекционный ток и измеряют спектр излучения в заданные моменты времени в течение цикла измерения вплоть до полного разогрева СИД.

В основе предлагаемого способа лежит использование линейной зависимости длины волны в максимуме спектра излучения СИД от температуры:

где KT - температурный коэффициент длины волны в максимуме спектра излучения СИД, Т0 - температура p-n перехода СИД до начала разогрева, то есть до подачи ступеньки греющей мощности (см., например, авторское свидетельство СССР №1586401, МКИ G01R 31/26. Устройство для определения температуры активной области светоизлучающих приборов; заяв. 1988, публ. 1990).

Возрастание длины волны в максимуме спектра излучения СИД с увеличением температуры p-n перехода объясняется фундаментальным явлением уменьшения ширины запрещенной зоны Eg полупроводника в активной области СИД. Температурный коэффициент этой длины волны в максимуме спектра излучения СИД является очень стабильной и независящей от внешних факторов величиной и связан с температурным коэффициентом αE ширины запрещенной зоны Eg соотношением:

где длина волны λmax0) в максимуме спектра излучения СИД определяется известным выражением:

Для GaAs, например, Eg=1,42 [эВ] и αE=-4·104 эВ/К. В этом случае λmax равна 873,2 нм и, соответственно, значение температурного коэффициента длины волны KT составляет 0,246 нм/К.

При осуществлении способа, по мере разогрева p-n перехода СИД положение максимума в спектре его излучения будет изменяться. Значение длины волны в максимуме спектра в заданные моменты времени tk запоминаются и по этим значениям определяется смещение максимума в момент времени tk от его исходного положения в момент времени t0. Исходное значение длины волны в максимуме спектра может быть определено и зафиксировано при подаче на СИД последовательности коротких (порядка нескольких микросекунд) импульсов греющего тока с большой скважностью (порядка 100), когда разогревом p-n перехода СИД можно пренебречь. Смещение максимума длины волны излучения связано, согласно (3), с изменением температуры p-n перехода СИД:

Выражение (6) и есть искомая переходная тепловая характеристика СИД.

Заявляется также

Устройство для измерения переходных тепловых характеристик светоизлучающих диодов, содержащее генератор инжекционного тока, к выходу которого подключен исследуемый светоизлучающий диод, монохроматор и расположенный по ходу луча приемно-преобразовательный блок, отличающееся тем, что в устройстве последовательно соединены генератор инжекционного тока, светоизлучающий диод, электрооптический затвор, монохроматор и приемно-преобразовательный блок, включающий в качестве фотоприемного устройства многоэлементную фотоприемную линейку, первый и второй генераторы импульсов, АЦП и микроконтроллер с возможностью вывода на компьютер измеряемого параметра, причем выход фотоприемной линейки соединен с входом АЦП, выход АЦП соединен с входом микроконтроллера, управляющие выходы микроконтроллера соединены с входом генератора инжекционного тока и с входом первого генератора импульсов, выход которого соединен с управляющими входами электрооптического затвора и второго генератора импульсов, выходы которого соединены с управляющими входами фотоприемного устройства и АЦП.

Для пояснения изобретения на фиг.1 показана структурная схема устройства, реализующего способ, а на фиг.2 - эпюры измерительных воздействий и сигналов.

Устройство, реализующее способ (фиг.1), содержит последовательно соединенные генератор инжекционного тока 1, исследуемый СИД 2, электрооптический затвор 3, монохроматор 4, приемно-преобразовательный блок (на фиг.1 обведен пунктирной линией), включающий в качестве ФПУ многоэлементную фотоприемную линейку 5, АЦП 6, микроконтроллер 7, первый и второй генераторы импульсов 8 и 9. Выход фотоприемной линейки 5 соединен с входом АЦП, выход АЦП соединен с входом микроконтроллера 7, управляющие выходы микроконтроллера соединены с входом генератора инжекционного тока 1 и с входом первого генератора импульсов 8, выход которого соединен с управляющими входами электрооптического затвора 3 и второго генератора импульсов 9, выходы которого соединены с управляющими входами фотоприемной линейки 6 и АЦП.

При этом исследуемый СИД располагается перед входной щелью монохроматора таким образом, чтобы указанная щель находилась на линии, соответствующей максимуму диаграммы направленности исследуемого СИД. Фоточувствительная поверхность многоэлементной фотоприемной линейки 5 располагается напротив выходной щели монохроматора, так что направление щели точно перпендикулярно фоточувствительной поверхности ФПУ, а оптическая ось выходной щели проходит через центр ФПУ перпендикулярно плоскости ее фоточувствительной поверхности.

Предложенное устройство позволяет применить в качестве ФПУ стандартную многоэлементную фотоприемную линейку в отличие от описанных в прототипе быстродействующих дорогостоящих стрик-камер или специальных быстрых ПЗС-камер и при этом обеспечивается измерение ПТХ с высоким разрешением.

Время считывания сигналов пикселей современных многоэлементных фотоприемных линеек с числом пикселей до 1000 составляет порядка 0,1-1 мс.

Для обеспечения измерения ПТХ на начальном участке нагрева СИД вплоть до длительностей импульса инжекционного тока порядка 1 мс предлагается использовать стробоскопический принцип преобразования. Он заключается в том, что на исследуемый СИД подается последовательность импульсов инжекционного тока нарастающей длительности tик, начиная с длительности tио (порядка 10 мкс) и с паузами между импульсами длительностью tпк не менее 10 tик+Δτсч мс. За время паузы 10 tик происходит остывание активной области СИД практически до температуры корпуса, а время Δτсч необходимо для считывания информации с многоэлементной фотоприемной линейки.

Излучение СИД поступает через электрооптический затвор 3 на входную щель монохроматора 4, преобразующего оптический спектр в пространственное распределение интенсивности излучения. Преобразованное излучение поступает на многоэлементную фотоприемную линейку 5, осуществляющую преобразование пространственного спектра в электрический сигнал таким образом, что пространственной координате соответствует определенный момент времени в выходном сигнале фотоприемной линейки.

Для получения спектра излучения, соответствующего заданному моменту времени от начала подачи инжекционного тока, используется электрооптический затвор, который открывается на короткий интервал времени в конце импульса инжекционного тока. Длительность данного интервала времени в процессе измерения ПТХ не изменяется и определяет длительность засветки многоэлементной фотоприемной линейки. Минимальная длительность открытого состояния электрооптического затвора определяется чувствительностью применяемой многоэлементной фотоприемной линейки.

Шаг изменения длительности импульсов инжекционного тока определяется необходимой точностью измерения ПТХ СИД и характерными тепловыми постоянными времени СИД. Наименьшая тепловая постоянная времени τТкр определяется толщиной кристалла и температуропроводностью материала подложки. Обычно тепловая постоянная времени τТкр не меньше 250-300 мкс. На начальном участке ПТХ СИД можно измерять сдвиг максимума спектра через интервалы времени, изменяющиеся по логарифмической шкале, например 10, 20, 50, 100, 200, 500 мкс и т.д. После того, как длительность импульса инжекционного тока достигнет 1 мс, что становится сравнимо со временем, необходимым для считывания сигнала с выхода многоэлементной фотоприемной линейки, на СИД подается постоянный инжекционный ток. И далее регистрируется спектр излучения СИД в заданные моменты времени с логарифмическим шагом (например 2 мс, 5 мс, 10 мс, 20 мс, 50 мс) вплоть до полного прогрева всей конструкции СИД, то есть до 30-40 мин.

Устройство работает следующим образом.

Микроконтроллер 7 формирует управляющие импульсы U8 для запуска генератора импульсов инжекционного тока 1. Импульсы U1 с его выхода поступают на вход исследуемого СИД 2 и вызывают его разогрев в течение импульса U1. Оптическое излучение U2 на выходе СИД 2 поступает на вход электрооптического затвора 3. Момент включения (пропускания) электрооптического затвора 3 определяется моментом подачи на него импульса U9 с выхода первого генератора импульсов 8, запускаемого управляющим импульсом U7 с выхода микроконтроллера 7. Ограниченная по длительности, соответствующей моменту времени, задаваемому импульсом U9, часть оптического излучения U3, прошедшая через электрооптический затвор 3, поступает на вход монохроматора 4. В монохроматоре 4 происходит преобразование оптического спектра излучения в пространственный спектр U4, который поступает на вход многоэлементной фотоприемной линейки 5. В результате работы электрооптического затвора на выходе фотоприемной линейки 5 формируется сигнал U5, соответствующий спектру излучения СИД 2 в момент времени, соответствующий моменту подачи импульса U9, синхронный с импульсом U10 второго генератора 9. Изменение во времени амплитуды электрического сигнала U5 на выходе фотоприемной линейки 5 повторяет форму спектра U4. Второй генератор импульсов 9 формирует сигнал U10, который определяет момент начала передачи электрического сигнала с выхода линейки 5, и сигнал U11, который определяет частоту последовательного опроса пикселей линейки 5. Аналого-цифровой преобразователь 6 осуществляет преобразование сигнала U5 с выхода фотоприемной линейки 5 в цифровую форму U6. Моменты выборок аналого-цифрового преобразователя 6 задаются импульсами U11. Сигнал U6 с выхода аналого-цифрового преобразователя 6 поступает на вход микроконтроллера 7. Микроконтроллер осуществляет обработку сигнала U6 и передачу информации о спектре излучения СИД в виде сигнала U12 на внешнее устройство, например на компьютер.


СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПЕРЕХОДНЫХ ТЕПЛОВЫХ ХАРАКТЕРИСТИК СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПЕРЕХОДНЫХ ТЕПЛОВЫХ ХАРАКТЕРИСТИК СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ
Источник поступления информации: Роспатент

Showing 1-10 of 92 items.
10.06.2013
№216.012.46b2

Устройство для люминесцентной диагностики новообразований

Изобретение относится к медицинской технике, а именно к аппаратуре медицинского и фотобиологического назначения, предназначено для осуществления процесса люминесцентной диагностики рака на основе использования ряда редкоземельных металлокомплексов порфиринов и направлено на повышение...
Тип: Изобретение
Номер охранного документа: 0002483678
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4af0

Способ ранней электроэнцефалографической диагностики болезни паркинсона

Изобретение относится к медицине. Регистрируют электроэнцефалограмму (ЭЭГ) в фоновом режиме, вычисляют спектрограммы посредством вейвлет преобразования с материнской функцией Морле. Определяют частотные диапазоны ведущих ритмов ЭЭГ путем нахождения значений координат минимумов по частоте...
Тип: Изобретение
Номер охранного документа: 0002484766
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5e53

Способ получения пористого слоя оксида алюминия на изолирующей подложке

Изобретение относится к области получения структур, используемых, например, для изготовления полевых транзисторов и элементов памяти, необходимых для применения в микроэлектронике, системотехнике. Предложен способ получения пористых слоев оксида алюминия на изолирующих подложках. Способ...
Тип: Изобретение
Номер охранного документа: 0002489768
Дата охранного документа: 10.08.2013
27.10.2013
№216.012.7b03

Устройство для измерения турбулентных пульсаций скорости потока жидкости

Устройство относится к электроизмерениям и может быть использовано для исследования турбулентности в потоке слабо электропроводящей жидкости, например морской или пресной воды. Устройство содержит диэлектрический корпус обтекаемой формы с установленными на нем измерительными электродами,...
Тип: Изобретение
Номер охранного документа: 0002497153
Дата охранного документа: 27.10.2013
20.11.2013
№216.012.837f

Мультибарьерная гетероструктура для генерации мощного электромагнитного излучения суб- и терагерцового диапазонов

Изобретение относится к приборным структурам для генерации мощного электромагнитного излучения суб- и терагерцового диапазонов, которые применяются в компактных и мощных импульсных генераторах, детекторах и смесителях субтерагерцового и терагерцового диапазона частот. Изобретение обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002499339
Дата охранного документа: 20.11.2013
10.01.2014
№216.012.95ae

Автоматизированная система реконструкции 3d распределения нейронов по серии изображений срезов головного мозга

Изобретение направлено на построение 3D модели при использовании минимального количества изображений гистологических срезов (слоев) с использованием средств приведения изображений к виду, удобному для распознавания специфических нейронов и последующей реконструкции их трехмерных распределений....
Тип: Изобретение
Номер охранного документа: 0002504012
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9892

Способ исследования теплофизических свойств жидкостей и устройство для его осуществления

Изобретение относится к области тепловых исследований свойств жидкостей и может быть использовано для исследования динамических процессов термостимулированной структурной перестройки жидкостей. Заявлен способ исследования теплофизических свойств жидкостей, при котором в металлической кювете с...
Тип: Изобретение
Номер охранного документа: 0002504757
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98bd

Способ формирования радиопортрета объекта методом параллельной обработки с частотным разделением

Изобретение относится к области радиовидения и может быть применено: для обнаружения предметов в миллиметровом диапазоне волн под одеждой человека, в таможенном контроле грузов, в радиоастрономии для картографирования области неба и протяженных небесных объектов, в дистанционном зондировании...
Тип: Изобретение
Номер охранного документа: 0002504800
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9e44

Способ получения металл-полимерного композитного материала для радиотехнической аппаратуры

Изобретение относится к получению металл-полимерных композиционных материалов, предназначенных для применения в радиотехнической аппаратуре в качестве радиопоглощающих и экранирующих материалов. Способ включает высокоскоростное термическое разложение металлсодержащих соединений с образованием...
Тип: Изобретение
Номер охранного документа: 0002506224
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a3ea

Частотно-избирательное устройство для обработки сигналов на поверхностных акустических волнах

Изобретение относится к радиотехнике и акустоэлектронике и может быть использовано в устройствах измерительной техники и в радиосвязи. Достигаемый технический результат - повышение разрешающей способности частотно-избирательного устройства для обработки сигналов на ПАВ в процессе...
Тип: Изобретение
Номер охранного документа: 0002507677
Дата охранного документа: 20.02.2014
Showing 1-10 of 48 items.
10.06.2013
№216.012.46b2

Устройство для люминесцентной диагностики новообразований

Изобретение относится к медицинской технике, а именно к аппаратуре медицинского и фотобиологического назначения, предназначено для осуществления процесса люминесцентной диагностики рака на основе использования ряда редкоземельных металлокомплексов порфиринов и направлено на повышение...
Тип: Изобретение
Номер охранного документа: 0002483678
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4af0

Способ ранней электроэнцефалографической диагностики болезни паркинсона

Изобретение относится к медицине. Регистрируют электроэнцефалограмму (ЭЭГ) в фоновом режиме, вычисляют спектрограммы посредством вейвлет преобразования с материнской функцией Морле. Определяют частотные диапазоны ведущих ритмов ЭЭГ путем нахождения значений координат минимумов по частоте...
Тип: Изобретение
Номер охранного документа: 0002484766
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5e53

Способ получения пористого слоя оксида алюминия на изолирующей подложке

Изобретение относится к области получения структур, используемых, например, для изготовления полевых транзисторов и элементов памяти, необходимых для применения в микроэлектронике, системотехнике. Предложен способ получения пористых слоев оксида алюминия на изолирующих подложках. Способ...
Тип: Изобретение
Номер охранного документа: 0002489768
Дата охранного документа: 10.08.2013
27.10.2013
№216.012.7b03

Устройство для измерения турбулентных пульсаций скорости потока жидкости

Устройство относится к электроизмерениям и может быть использовано для исследования турбулентности в потоке слабо электропроводящей жидкости, например морской или пресной воды. Устройство содержит диэлектрический корпус обтекаемой формы с установленными на нем измерительными электродами,...
Тип: Изобретение
Номер охранного документа: 0002497153
Дата охранного документа: 27.10.2013
20.11.2013
№216.012.837f

Мультибарьерная гетероструктура для генерации мощного электромагнитного излучения суб- и терагерцового диапазонов

Изобретение относится к приборным структурам для генерации мощного электромагнитного излучения суб- и терагерцового диапазонов, которые применяются в компактных и мощных импульсных генераторах, детекторах и смесителях субтерагерцового и терагерцового диапазона частот. Изобретение обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002499339
Дата охранного документа: 20.11.2013
10.01.2014
№216.012.95ae

Автоматизированная система реконструкции 3d распределения нейронов по серии изображений срезов головного мозга

Изобретение направлено на построение 3D модели при использовании минимального количества изображений гистологических срезов (слоев) с использованием средств приведения изображений к виду, удобному для распознавания специфических нейронов и последующей реконструкции их трехмерных распределений....
Тип: Изобретение
Номер охранного документа: 0002504012
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9892

Способ исследования теплофизических свойств жидкостей и устройство для его осуществления

Изобретение относится к области тепловых исследований свойств жидкостей и может быть использовано для исследования динамических процессов термостимулированной структурной перестройки жидкостей. Заявлен способ исследования теплофизических свойств жидкостей, при котором в металлической кювете с...
Тип: Изобретение
Номер охранного документа: 0002504757
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98bd

Способ формирования радиопортрета объекта методом параллельной обработки с частотным разделением

Изобретение относится к области радиовидения и может быть применено: для обнаружения предметов в миллиметровом диапазоне волн под одеждой человека, в таможенном контроле грузов, в радиоастрономии для картографирования области неба и протяженных небесных объектов, в дистанционном зондировании...
Тип: Изобретение
Номер охранного документа: 0002504800
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9e44

Способ получения металл-полимерного композитного материала для радиотехнической аппаратуры

Изобретение относится к получению металл-полимерных композиционных материалов, предназначенных для применения в радиотехнической аппаратуре в качестве радиопоглощающих и экранирующих материалов. Способ включает высокоскоростное термическое разложение металлсодержащих соединений с образованием...
Тип: Изобретение
Номер охранного документа: 0002506224
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a3ea

Частотно-избирательное устройство для обработки сигналов на поверхностных акустических волнах

Изобретение относится к радиотехнике и акустоэлектронике и может быть использовано в устройствах измерительной техники и в радиосвязи. Достигаемый технический результат - повышение разрешающей способности частотно-избирательного устройства для обработки сигналов на ПАВ в процессе...
Тип: Изобретение
Номер охранного документа: 0002507677
Дата охранного документа: 20.02.2014
+ добавить свой РИД