×
20.07.2014
216.012.e1ef

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ РАЗОГРЕВОМ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ

Вид РИД

Изобретение

№ охранного документа
0002523625
Дата охранного документа
20.07.2014
Аннотация: Изобретение относится к области управления энергетическими стационарными и транспортными установками электростанций и станций теплоснабжения с любым видом горючего, в том числе ядерного горючего, и может быть использовано в системах разогрева энергетических установок с принудительной и естественной циркуляцией теплоносителя. Формируют разность сигналов измеренной и заданной скорости изменения температуры теплоносителя, затем интегрируют эту разность сигналов и осуществляют управление регулятором разогрева по сумме сигнала управления по мощности и сигнала результата интегрирования. Дополнительно формируют характеристику отбираемой мощности, затем по этой характеристике задают сигнал, характеризующий отбираемую мощность. При формировании характеристики отбираемой мощности дополнительно учитывают величину и скорость изменения расхода используемой среды второго контура. 2 ил.
Основные результаты: Способ управления разогревом энергетической установки с заданной скоростью изменения температуры теплоносителя путем изменения мощности установки регулятором по сигналу управления, пропорционального разности сигналов измеренной мощности и заданной мощности, состоящий в том, что формируют разность сигналов измеренной и заданной скорости изменения температуры теплоносителя, затем интегрируют эту разность сигналов и осуществляют управление регулятором разогрева по сумме сигнала управления по мощности и сигнала результата интегрирования, отличающийся тем, что дополнительно формируют характеристику отбираемой мощности, затем по этой характеристике задают сигнал, характеризующий отбираемую мощность, при формировании характеристики отбираемой мощности дополнительно учитывают величину и скорость изменения расхода используемой среды второго контура.

Изобретение относится к области управления энергетическими стационарными и транспортными установками электростанций и станций теплоснабжения с любым видом горючего, в том числе ядерного горючего, и может быть использовано в системах разогрева энергетических установок с принудительной и естественной циркуляцией теплоносителя.

Известны способы управления разогревом энергетической установки с заданной скоростью изменения температуры теплоносителя путем изменения мощности установки регулятором по сигналу управления, пропорционального разности измеренной и заданной температуры [Африкантов И.И. Судовые атомные паропроизводящие установки. Изд. «Судостроение», 1965. Стр. 239], а также по сигналу разности измеренной и заданной скорости изменения температуры теплоносителя [Африкантов И.И. Судовые атомные паропроизводящие установки. Изд. «Судостроение», 1965. Стр. 246].

Недостатком известных способов является слабая устойчивость при возникновении возмущений в системе регулирования по мощности установки, расходу питательной воды или циркуляции теплоносителя.

Наиболее близким по технической сущности является способ управления разогревом энергетической установки с заданной скоростью изменения температуры теплоносителя путем изменения мощности установки регулятором по сигналу управления, пропорционального разности сигналов измеренной и заданной мощности, при этом заданная мощность равна сумме сигнала, который равен величине расхода питательной воды, и сигнала заданной мощности разогрева, обеспечивающей заданную скорость разогрева, формируют разность сигналов измеренной и заданной скорости изменения температуры теплоносителя, интегрируют ее и осуществляют управление регулятором разогрева по сумме сигнала управления по разности сигналов мощностей с сигналом результата интегрирования [Патент на изобретение №2190266 РФ. Способ управления разогревом энергетической установки] (Прототип).

Недостатком известного способа является ухудшение качества переходного процесса при изменении расхода питательной воды до образования перегретого пара в установке. Ухудшение качества переходного процесса объясняется следующим. Разогрев установки происходит, когда мощность установки превышает отбираемую мощность. Скорость изменения температуры теплоносителя пропорциональна разности между мощностью установки и отбираемой мощностью. В энергетической установке с перегретым паром отбираемая мощность (с учетом тепловых потерь) определяется расходом питательной воды. Но в процессе разогрева установки пар становится перегретым только при температуре свыше 200°C (точнее 201.4°C при давлении 1.6 МПа), до этого пар начиная со 100°C находится на линии насыщения. Теплоотдача жидкости к насыщенному пару выше, чем к ненасыщенному. Соответственно, пока пар находится на линии насыщения, отбираемая мощность будет ниже значения, определяемого расходом питательной воды. Следовательно, при одном и том же расходе питательной воды, в зависимости от фазового состояния теплоносителя второго контура, отбираемая мощность будет различаться. Пока пар не станет перегретым, отбираемая мощность будет ниже заданного уровня, что приведет к увеличению скорости разогрева. В результате чего при изменении расхода питательной воды до перегрева пара выше линии насыщения увеличивается перерегулирование и время перерегулирования по мощности установки, скорости изменения температуры и перемещению рабочего органа регулятора. Это снижает безопасность и ресурс установки.

Задачей изобретения является повышение качества переходного процесса, безопасности и ресурса установки.

Поставленная задача и получаемый технический результат реализуются предложенной совокупностью существенных признаков.

Способ управления разогревом энергетической установки с заданной скоростью изменения температуры теплоносителя путем изменения мощности установки регулятором по сигналу управления, пропорционального разности сигналов измеренной мощности и заданной мощности, состоящий в том, что формируют разность сигналов измеренной и заданной скорости изменения температуры теплоносителя, затем интегрируют эту разность сигналов и осуществляют управление регулятором разогрева по сумме сигнала управления по мощности и сигнала результата интегрирования, причем дополнительно формируют характеристику отбираемой мощности, затем по этой характеристике задают сигнал, характеризующий отбираемую мощность, при формировании характеристики отбираемой мощности дополнительно учитывают величину и скорость изменения расхода используемой среды второго контура.

Предложенное решение поясняют иллюстративные материалы, где:

Фиг.1 - схемное решение примера реализации предлагаемого способа;

Фиг.2 - результат математического моделирования переходных процессов разогрева по способу прототипа (кривая 1 - алгоритм с интегратором, где заданная мощность равна сумме сигнала, который равен величине расхода питательной воды, и сигнала заданной мощности разогрева) и предлагаемого способа (кривая 2 - алгоритм с интегратором, где заданная мощность равна сумме сигнала фактически отбираемой мощности и сигнала заданной мощности разогрева).

На фигурах позициями обозначены используемые элементы и воздействующие факторы.

1 - регулятор;

2, 3, 5 и 6 - алгебраические сумматоры;

4 - интегратор;

7 - K1Nи - сигнал измеренной мощности;

8 - K1Nу - сигнал, характеризующий отбираемую мощность;

9 - K1Nур - сигнал заданной мощности разогрева;

10 - Δу - сигнал управления;

11 - - сигнал измеренной температуры;

12 - - сигнал заданной температуры остановки разогрева;

13 - - сигнал остановки разогрева по температуре ;

14 - - сигнал скорости изменения измеренной температуры;

15 - - сигнал заданной скорости изменения температуры;

16 - Δс - сигнал на входе интегратора 4 ( равный разности между заданной и измеренной скоростью разогрева);

17 - Δи - сигнал результата интегрирования ( сигнал коррекции уровня мощности установки по скорости разогрева);

18 - формирователь характеристики задатчика отбираемой мощности;

19 - сигнал расхода питательной воды.

На представленных на фиг.2 трех графиках в осях: мощность - время (а), скорость разогрева - время (б), температура на выходе из активной зоны - время (в):

Кривая 1 - характеризует процессы в прототипе (алгоритм с интегратором, где заданная мощность равна сумме сигнала, который равен величине расхода питательной воды, и сигнала заданной мощности разогрева).

Кривая 2 - характеризует процессы в предлагаемом способе (алгоритм с интегратором, где заданная мощность равна сумме сигнала фактически отбираемой мощности и сигнала заданной мощности разогрева).

Пример реализации предлагаемого способа управлением разогревом энергетической установки показан на фиг.1 с пояснениями в описании, где использованы следующие обозначения:

1 - регулятор, 2, 3, 5 и 6 - алгебраические сумматоры; 4 - интегратор; 7 - K1Nи - сигнал измеренной мощности; 8 - K1Ny - сигнал отбираемой мощности; 9 - K1Nур - сигнал заданной мощности разогрева; 10 - Δу - сигнал управления; 11 - - сигнал измеренной температуры; 12 - - сигнал заданной температуры остановки разогрева; 13 - - сигнал остановки разогрева по температуре ; 14 - - сигнал скорости изменения измеренной температуры; 15 - - сигнал заданной скорости изменения температуры; 16 - Δс - сигнал на входе интегратора 4 ( равный разности между заданной и измеренной скоростью разогрева); 17 - Δи - сигнал результата интегрирования ( сигнал коррекции уровня мощности установки по скорости разогрева); 18 - формирователь характеристики задатчика отбираемой мощности; 19 - сигнал расхода питательной воды.

Разогрев по предлагаемому способу производится следующим образом.

Перед началом процесса разогрева устанавливаются: заданная скорость разогрева, скорость изменения температуры (15). Формирователь характеристики задатчика отбираемой мощности (18) преобразует сигнал расхода питательной воды (19) в сигнал отбираемой мощности (8). Сигнал заданной мощности на выходе алгебраического сумматора (6), равный сумме сигналов отбираемой мощности K1Nу (8) и заданной мощности разогрева K1Nур (9), устанавливающей заданную скорость изменения температуры (15), подается на вход алгебраического сумматора 5, с выхода которого сигнал управления Δу=K1Nу+K1Nур-K1Nи (10) поступает на вход автоматического регулятора 1. Под воздействием регулятора 1 в энергетической установке увеличивается мощность. Когда сигнал измеренной мощности K1Nи (7) станет равным заданному значению K1Nу+K1Nур, сигнал управления будет равен нулю, Δу=0. Это приведет к разогреву теплоносителя со скоростью изменения температуры, соответствующей установленной в энергетической установке мощности. Если скорость разогрева теплоносителя не будет равна заданной, это будет означать, что поступающий на вход алгебраического сумматора 3 сигнал измеренной скорости изменения температуры (14) не будет равен сигналу заданной скорости изменения температуры (15). В этом случае разность этих сигналов Δс (16) поступит на вход интегратора 4, с выхода которого сигнал результата интегрирования Δи (17) поступит на вход алгебраического сумматора 5. Если скорость увеличения температуры (14) меньше заданной (15), то сигнал Δи (17) на выходе интегратора 4 будет иметь такой же знак, как у сигнала заданной мощности разогрева. В результате чего сигнал управления Δу (10), поступающий на вход регулятора 1, станет равен алгебраической сумме сигналов K1Nу (8), K1Nур (9), K1Nи (7) и Δи (17). Под воздействием регулятора мощность установки будет увеличиваться до момента, когда сигнал управления Δу (10) станет равным нулю, а сигнал результата интегрирования Δи=const. Наступит установившийся режим регулирования заданной скорости разогрева. При этом сигнал измеренной мощности, K1Nи (7), будет равен сумме сигналов K1Nу+K1Nур и сигнала результата интегрирования, Δи (17), то есть K1Nи=K1Nу+K1Nур+Δи. В энергетической установке установится значение генерируемой мощности, превышение которой над отбираемой мощностью обеспечивает заданную скорость изменения температуры (15).

Если скорость увеличения температуры (14) окажется меньше заданной (15), тогда по сравнению с первым случаем поступающий на вход интегратора 4 сигнал Δс (16) изменит свой знак. Соответственно изменит свой знак сигнал Δи на выходе интегратора 4 и будет противоположен знаку сигнала заданной мощности разогрева K1Nур (9). Регулятор 1 будет уменьшать мощность установки до наступления равенств: Δу=0, K1Nи=K1Nу+K1Nур-Δи, Δи=const, . Интегратор 4 позволяет установить скорость изменения температуры равной заданному значению путем изменения, коррекции мощности установки.

Синхронизация отбора и генерации мощности в установке позволяет уменьшить величину и время перерегулирования по измеренной мощности, скорости изменения температуры и перемещению рабочего органа регулятора, повышает устойчивость процесса регулирования, уменьшает значения термических напряжений в конструкциях энергоустановки в течение всего процесса разогрева. В результате повышается безопасность и ресурс установки.

На фиг.2 на трех графиках в осях: мощность - время (а), скорость разогрева - время (б), температура на выходе из активной зоны - время (в), показан результат математического моделирования переходных процессов разогрева по способу прототипа, кривая 1, и предлагаемого способа, кривая 2, где заданная мощность равна сумме сигнала фактически отбираемой мощности и сигнала заданной мощности разогрева. Величины и время изменения измеренной мощности N, температуры t° и скорости ее изменения dt°/dt в предлагаемом способе меньше, чем в прототипе.

Способ управления разогревом энергетической установки с заданной скоростью изменения температуры теплоносителя путем изменения мощности установки регулятором по сигналу управления, пропорционального разности сигналов измеренной мощности и заданной мощности, состоящий в том, что формируют разность сигналов измеренной и заданной скорости изменения температуры теплоносителя, затем интегрируют эту разность сигналов и осуществляют управление регулятором разогрева по сумме сигнала управления по мощности и сигнала результата интегрирования, отличающийся тем, что дополнительно формируют характеристику отбираемой мощности, затем по этой характеристике задают сигнал, характеризующий отбираемую мощность, при формировании характеристики отбираемой мощности дополнительно учитывают величину и скорость изменения расхода используемой среды второго контура.
СПОСОБ УПРАВЛЕНИЯ РАЗОГРЕВОМ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ
СПОСОБ УПРАВЛЕНИЯ РАЗОГРЕВОМ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ
Источник поступления информации: Роспатент

Showing 91-100 of 259 items.
20.12.2015
№216.013.9a64

Реактор конверсии метана

Изобретение относится к установкам получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном Н и СО, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки...
Тип: Изобретение
Номер охранного документа: 0002571149
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a3ee

Термоэлектрическая батарея

Изобретение относится к области термоэлектрического приборостроения и может быть использовано при изготовлении термоэлектрических устройств, основанных на эффекте Пельтье или Зеебека, прежде всего термоэлектрических генераторов электрической энергии, а также холодильных термоэлектрических...
Тип: Изобретение
Номер охранного документа: 0002573608
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c33e

Способ изготовления защитного диэлектрического слоя

Изобретение относится к способам получения тонкопленочных материалов, в частности тонких пленок на основе оксида европия(III), и может быть использовано для защиты функционального слоя EuO. Способ изготовления защитного диэлектрического слоя EuO для полупроводниковой пленки, полученной на...
Тип: Изобретение
Номер охранного документа: 0002574554
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c8df

Способ изготовления наноструктурированной мишени для производства радиоизотопа молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Мо), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). В заявленном способе производство радиоизотопа молибден-99 по реакции Мо(n,γ)Мо, осуществляемой в потоке тепловых нейтронов...
Тип: Изобретение
Номер охранного документа: 0002578039
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c8fb

Микротвэл ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к микросферическому топливу с керамическими защитными покрытиями, и может быть использовано в ядерных реакторах, применяемых как для транспорта, так и в стационарных энергоустановках, в частности в сверхвысокотемпературных...
Тип: Изобретение
Номер охранного документа: 0002578680
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c9f3

Способ защиты от окисления биполярных пластин и коллекторов тока электролизеров и топливных элементов с твердым полимерным электролитом

Изобретение относится к способу защиты от окисления биполярных пластин топливных элементов и коллекторов тока электролизеров с твердым полимерным электролитом (ТПЭ), заключающемуся в предварительной обработке металлической подложки, нанесении на обработанную металлическую подложку...
Тип: Изобретение
Номер охранного документа: 0002577860
Дата охранного документа: 20.03.2016
20.04.2016
№216.015.3472

Способ изготовления сверхпроводящих многосекционных оптических детекторов

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде...
Тип: Изобретение
Номер охранного документа: 0002581405
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3605

Структура полупроводник-на-изоляторе и способ ее получения

Изобретение относится к твердотельной электронике. Изобретение заключается в том, что на изоляторе формируют поверхностный слой полупроводника. В изоляторе на расстоянии от поверхностного слоя полупроводника, меньшем длины диффузии носителей заряда, возникающих при облучении внешним...
Тип: Изобретение
Номер охранного документа: 0002581443
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3891

Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах

Изобретение относится к диагностике профилей (распределения плотности тока по сечению пучка) пучков ионов и атомов в мегаваттных квазистационарных (десятки и сотни секунд) инжекторах, предназначенных для нагрева плазмы и поддержания тока в термоядерных установках типа токамак. Способ измерения...
Тип: Изобретение
Номер охранного документа: 0002582490
Дата охранного документа: 27.04.2016
27.08.2016
№216.015.506f

Способ изготовления и модификации электрохимических катализаторов на углеродном носителе

Изобретение относится к области электрохимии, а именно к способам модификации электрохимических катализаторов на углеродном носителе, применяемых для электролизеров или топливных элементов с твердым полимерным электролитом (ТПЭ). Техническим результатом заявленного изобретения является...
Тип: Изобретение
Номер охранного документа: 0002595900
Дата охранного документа: 27.08.2016
Showing 91-100 of 150 items.
20.11.2015
№216.013.8ffe

Способ разложения карбонатов

Изобретение может быть использовано в химической, горнодобывающей промышленности. Способ разложения карбонатов включает измельчение исходного сырья, разложение карбонатов за счет подвода внешней энергии, отвод конверсионного газа, охлаждение целевого продукта. В качестве карбонатов используют...
Тип: Изобретение
Номер охранного документа: 0002568478
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9a64

Реактор конверсии метана

Изобретение относится к установкам получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном Н и СО, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки...
Тип: Изобретение
Номер охранного документа: 0002571149
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a3ee

Термоэлектрическая батарея

Изобретение относится к области термоэлектрического приборостроения и может быть использовано при изготовлении термоэлектрических устройств, основанных на эффекте Пельтье или Зеебека, прежде всего термоэлектрических генераторов электрической энергии, а также холодильных термоэлектрических...
Тип: Изобретение
Номер охранного документа: 0002573608
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c33e

Способ изготовления защитного диэлектрического слоя

Изобретение относится к способам получения тонкопленочных материалов, в частности тонких пленок на основе оксида европия(III), и может быть использовано для защиты функционального слоя EuO. Способ изготовления защитного диэлектрического слоя EuO для полупроводниковой пленки, полученной на...
Тип: Изобретение
Номер охранного документа: 0002574554
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c8df

Способ изготовления наноструктурированной мишени для производства радиоизотопа молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Мо), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). В заявленном способе производство радиоизотопа молибден-99 по реакции Мо(n,γ)Мо, осуществляемой в потоке тепловых нейтронов...
Тип: Изобретение
Номер охранного документа: 0002578039
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c8fb

Микротвэл ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к микросферическому топливу с керамическими защитными покрытиями, и может быть использовано в ядерных реакторах, применяемых как для транспорта, так и в стационарных энергоустановках, в частности в сверхвысокотемпературных...
Тип: Изобретение
Номер охранного документа: 0002578680
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c9f3

Способ защиты от окисления биполярных пластин и коллекторов тока электролизеров и топливных элементов с твердым полимерным электролитом

Изобретение относится к способу защиты от окисления биполярных пластин топливных элементов и коллекторов тока электролизеров с твердым полимерным электролитом (ТПЭ), заключающемуся в предварительной обработке металлической подложки, нанесении на обработанную металлическую подложку...
Тип: Изобретение
Номер охранного документа: 0002577860
Дата охранного документа: 20.03.2016
20.04.2016
№216.015.3472

Способ изготовления сверхпроводящих многосекционных оптических детекторов

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде...
Тип: Изобретение
Номер охранного документа: 0002581405
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3605

Структура полупроводник-на-изоляторе и способ ее получения

Изобретение относится к твердотельной электронике. Изобретение заключается в том, что на изоляторе формируют поверхностный слой полупроводника. В изоляторе на расстоянии от поверхностного слоя полупроводника, меньшем длины диффузии носителей заряда, возникающих при облучении внешним...
Тип: Изобретение
Номер охранного документа: 0002581443
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3891

Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах

Изобретение относится к диагностике профилей (распределения плотности тока по сечению пучка) пучков ионов и атомов в мегаваттных квазистационарных (десятки и сотни секунд) инжекторах, предназначенных для нагрева плазмы и поддержания тока в термоядерных установках типа токамак. Способ измерения...
Тип: Изобретение
Номер охранного документа: 0002582490
Дата охранного документа: 27.04.2016
+ добавить свой РИД