×
20.07.2014
216.012.e1a4

Результат интеллектуальной деятельности: КОМПОЗИТНЫЙ ЭЛЕКТРОДНЫЙ МАТЕРИАЛ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области катализа, а именно каталитическим активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств для получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных топливных элементов (ТОТЭ). Изобретение относится к композитному электродному материалу для электрохимических устройств, содержащему металлическую составляющую в виде двухкомпонентного сплава никеля с алюминием и керамическую оксидную составляющую, при этом в качестве двухкомпонентного сплава используют никель, плакированный алюминием, при содержании алюминия 3-15 мас.%, а в качестве оксидной составляющей - оксид алюминия, при этом состав материала характеризуется массовым отношением металлической составляющей к оксидной в соответствии с формулой yNiAl-(100-y)AlO, где x=85÷97; y=30÷60. Техническим результатом изобретения является получение пористого несущего электрода для электрохимических устройств с улучшенной термодинамической и механической стабильностью, каталитической активностью, высокими электрическими характеристиками. 2 ил., 1 табл.
Основные результаты: Композитный электродный материал для электрохимических устройств, содержащий металлическую составляющую в виде двухкомпонентного сплава никеля с алюминием и керамическую оксидную составляющую, отличающийся тем, что в качестве двухкомпонентного сплава используют никель, плакированный алюминием, при содержании алюминия 3-15 мас.%, а в качестве оксидной составляющей - оксид алюминия, при этом состав материала характеризуется массовым отношением металлической составляющей к оксидной в соответствии с формулой yNiAl-(100-y)AlO, где x=85÷97; y=30÷60.

Изобретение относится к области катализа, а именно каталитическим активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств для получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных топливных элементов (ТОТЭ).

Известно, что в качестве анодных материалов в ТОТЭ чаще всего используют никельсодержащие композиционные смеси. Дисперсный никель является сильным катализатором реакций разложения углеводородов. Кроме того, было доказано, что никель проявляет удовлетворительную электрохимическую активность в реакциях окисления как водорода, так и угарного газа. Однако металлический никель при высоких температурах обладает морфологической нестабильностью (ползучестью и укрупнением металлической составляющей во время эксплуатации) и несоответствием в значениях коэффициента термического расширения (КТР) с твердыми электролитами. Плохая адгезия никеля в аноде ТОТЭ приводит к агломерации частиц и снижению удельной поверхности границы раздела фаз. Поэтому большинство разработчиков сегодня используют Ni-YSZ кермет (где YSZ - иттрий-стабилизированный кубический ZrO2) [Т. Kawada and J. Mizusaki, Current electrolytes and catalysts, in: Handbook of Fuel Cells-Fundamentals, Technology and Application, Eds.: W. Vielstich et al., Vol.4: Fuel Cell Technology and Applications, Wiley and Sons, Chichester, England, 2003, p.987]. Композитный анод совместим по КТР с YSZ электролитом и электролитами на основе CeO2, LaGaO3 и BaCeO2, обладает хорошими электрокаталитическими свойствами.

Эффективность и долговечность анода существенно возрастают, если синтез анода проводить не напрямую из металлического никеля, а из смеси NiO+YSZ [S. Kim, H. Moon, S. Hyun, J. Moon, J. Kim, H. Lee. Ni-YSZ cermet anode fabricated from NiO-YSZ composite powder for high-performance and durability of solid oxide fuel cells // Solid State lonics 178 (2007), p.1304-1309]. В таком материале в процессе эксплуатации оксид никеля восстанавливается до металла, при этом подавляется спекаемость никелевых частиц, приводящая к морфологической нестабильности кермета, а термическое расширение анода становится близким таковому для электролита. Меньшие размеры никелевых и YSZ частиц в составе кермета позволяют создать стабильно работающий электрод.

Известен аналог пористого композитного материала анодной подложки для среднетемпературных твердооксидных топливных элементов [В.А. Садыков и др. Дизайн среднетемпературных твердооксидных топливных элементов на пористых подложках из деформационно упрочненного Ni-Al-сплава. Электрохимия, 2011, т.47, №4, с.517-523 - прототип]. На поверхность пеносплава методом детонационного напыления или из суспензий наносят тонкие (~1 мкм) слои композита NiO/YSZ (YSZ - (Y2O3)0.08(ZrO2)0.92) с последующей термообработкой в восстановительной атмосфере для увеличения прочности сцепления покрытия с носителем. Анодный композит готовят путем смешения и размола в энергонапряженной планетарной мельнице порошков NiO и YSZ. Из смеси оксидов прессуют таблетки и спекают на воздухе при 1200°C. Порошок анодного композита получают дроблением с последующим размолом на планетарной мельнице и далее разделяют его на фракции с использованием сит и седиментации из суспензий в изопропаноле. Слои NiO/YSZ наносят из суспензии, полученной ультразвуковым диспергированием в изопропаноле с добавлением поливинилбутираля. Подложка из данного анодного композита с градиентной пористостью на основе деформационно-упрочненного Ni-Al-пеносплава обладает высокой коррозионной устойчивостью и стабильностью в течение непродолжительных испытаний (~100 часов) в интервале температур 600-800°C. Электропроводность данного состава составляет 100-200 См/см2 после восстановления водородом в интервале температур 25-600°C.

Основным недостатком данного материала является технологическая сложность его получения, многоступенчатость, ограниченная применимость только для планарных конструкций.

В настоящее время за рубежом основное внимание уделяется тонкопленочным технологиям изготовления электрохимических устройств, позволяющим увеличить их мощность благодаря снижению омического сопротивления пленочного электролита. Метод изготовления пористых электродных подложек из Ni-кермета для подобных устройств выбирается в зависимости от их формы. Для использования в планарных конструкциях пористый электрод получают методом литья с последующим ламинированием слоем электролита и последующим обжигом при температуре 1350-1400°C. Получение электродов для трубчатых конструкций осуществляется методом экструзии с последующим утильным обжигом для удаления органических добавок и высокотемпературным обжигом. Задача получения пористого электрода произвольной формы может быть решена с использованием плазменного напыления, позволяющего получить пористую электродную подложку достаточно быстро (время изготовления от 50 секунд) и без применения высокотемпературных обжигов.

Задача настоящего изобретения состоит в разработке коммерчески доступного состава пористого каталитического композитного электродного материала с высокой термодинамической стабильностью, электропроводностью и механической прочностью, который может быть получен методом плазменного напыления, без применения высокотемпературных обжигов, для применения в электрохимических устройствах получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных топливных элементах.

Технический результат, достигаемый при реализации заявляемого изобретения, заключается в разработке композитного электродного материала, обладающего повышенной устойчивостью в восстановительной атмосфере при сохранении или повышении механической прочности и уровня общей электропроводности и меньшей стоимостью по сравнению с керметом на основе Ni-YSZ.

Для достижения указанного технического результата предложен композитный электродный материал (кермет) для электрохимических устройств, характеризующийся массовым отношением металлической фазы к оксидной фазе в соответствии с формулой yNixAl100-x-(100-y)YSZ и/или yNixAl100-x-(100-y)Al2O3, где х=85÷100; у=30÷60.

При этом в качестве металлической фазы используют порошок никеля, плакированного алюминием, при содержании Al 3-15(мас.%).

Это позволяет защитить Ni при напылении в окислительной атмосфере за счет образования тонкой окисной либо шпинельной пленки, которая в свою очередь в восстановительной атмосфере переходит в Al2O3. Причем частицы Al2O3 могут более эффективно подавлять ползучесть и укрупнение никеля во время службы, чем YSZ частицы. Данный состав кермета обладает большей термостабильностью, лучшим соответствием по КТР с материалами электролита.

Используемые в изобретении порошки металлического Ni и NiAl сплава, свойства которых описаны в работе [С.М. Пикалов, В.А. Полухин, И.А. Кузнецов. Корреляция электромагнитных и механических характеристик функциональных плазменных покрытий и критерий неразрушающего контроля их качества // М.: Известия Академии наук, Металлы №6, 1995. С.146-152], широко применяются в практике газоплазменного порошкового напыления особопрочных и термостойких покрытий с добавлением соответствующих оксидов, выпускаются отечественной промышленностью и относительно недороги. Образцы электродных композитных материалов №(Al)-Al2O3 и Ni(Al)-YSZ были получены плазменным напылением на воздухе на вращающуюся металлическую оправку с антиадгезионным покрытием из соответствующих комбинаций металлических и оксидных порошков, предварительно смешанных в необходимых пропорциях.

После напыления, а также после восстановления в аргоне и водороде при 1350°C в течение 2 часов (DMAX-2500 в CuKα излучении в интервале 10°≤2θ≤120°) проводили рентгенофазовый анализ полученных материалов. Обнаружено, что после напыления Ni присутствует в образцах в металлической фазе (Таблица 1).

Общую электропроводность образцов измеряли четырехзондовым методом в водороде в интервале температур 600-900°C. Установлено, что при массовом соотношении Ni/Al электропроводность композитного материала увеличивается в ряду Ni-Ni85Al15-Ni95Al5. В зависимости от оксидного компонента электропроводность увеличивается в ряду YSZ-Al2O3. По сравнению с электропроводностью аналога электропроводность материала увеличивается более чем в 6 раз (при 600°C 200 См/см2 (аналог) и 1364 См/см2 (Таблица 1, электропроводность Al2O3+Ni95Al2).

На Рис.1 представлены микрофотографии поверхности напыленных покрытий составов YSZ+Ni и Al2O3+Ni95Al2 (Auriga Crossbeam Workstation, Carl Zeiss). Установлено, что в керамической матрице Al2O3 металлический компонент более мелкодисперсный и распределен равномерно, что приводит к улучшению контакта между частицами и увеличению электропроводности.

Измерения термического расширения образцов проводили с помощью кварцевой дилатометрической ячейки и дилатометра Tesatronic TT60 в аргоне. На Рис.2 представлена зависимость относительного термического расширения от температуры составов YSZ+Ni и Al2O3+Ni95Al5. Из данных по температурному расширению был рассчитан КТР материала. Расширение Al2O3+Ni95Al5 в температурном интервале 25-900°C равномерное, и КТР составляет 10,6×10-6 К-1, что близко по значению к КТР материалов твердых электролитов (10-12×10-6 К-1). Расширение YSZ+Ni неравномерное, и КТР составляет соответственно 8,4×10-6 К-1 (25-630°C); 31,3×10-6 К-1 (630-730°C); 58,6×10-6 К-1 (730-900°C).

Таким образом, разработан композиционный материал, обладающий повышенной устойчивостью в восстановительной атмосфере, с высоким уровнем общей электропроводности и механической прочности, пригодный для использования в качестве несущих подложек для электрохимических устройств, в частности высоко- и среднетемпературных ТОТЭ, электролизерах и электрохимических преобразователях.

Таблица 1
Электрические и структурные свойства керметов, полученных методом плазменного напыления
Состав кермета Электропров-ть, См/см2 Фазовые изменения, вес.%
После напыления После отжига в аргоне при 1350°C После отжига в водороде при 1350°C
600°C 900°C
Al2O3+Ni85Al15 126 101 58,3 Ni; 0,7 NiO; 41,0 Al2O3 34,7 Ni; 16,7 NiAl2O4; 48,7 Al2O3 35,4 Ni; 40,7 Al2O3
Al2O3+Ni95Al5 1364 1134 56,5 Ni; 8,3 NiO; 35,1 Al2O3 39,7 Ni; 23,0 NiAl2O4; 37,3 Al2O3 46,2 Ni; 53,8 Al2O3
YSZ+Ni85Al15 119 104 43,1 Ni; 6,9 NiO; 29,6 YSZ; 20,4 Al2O3,2 61,7 Ni; 3,7 NiO; 34,5 YSZ 64,0 Ni; 3,5 NiO; 32,5 YSZ
YSZ+Ni95Al5 644 536 54,0 Ni; 5,6 NiO; 40,5 YSZ 57,3 Ni; 6,9 NiO; 35,8 YSZ 54,7 Ni; 45,3 YSZ
Al2O3+Ni 105 85 11,2 Ni; 0,5 NiO; 88,3 (Al2O3)1.333 28,9 Ni; 71,1 Al2O3 13,1 Ni; 86,9 Al2O3
YSZ+Ni 156 127 55,4 Ni; 1,9 NiO; 42,8 YSZ 45,8 Ni; 54,2 YSZ 43,4 Ni; 56,6 YSZ

Композитный электродный материал для электрохимических устройств, содержащий металлическую составляющую в виде двухкомпонентного сплава никеля с алюминием и керамическую оксидную составляющую, отличающийся тем, что в качестве двухкомпонентного сплава используют никель, плакированный алюминием, при содержании алюминия 3-15 мас.%, а в качестве оксидной составляющей - оксид алюминия, при этом состав материала характеризуется массовым отношением металлической составляющей к оксидной в соответствии с формулой yNiAl-(100-y)AlO, где x=85÷97; y=30÷60.
КОМПОЗИТНЫЙ ЭЛЕКТРОДНЫЙ МАТЕРИАЛ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
КОМПОЗИТНЫЙ ЭЛЕКТРОДНЫЙ МАТЕРИАЛ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
Источник поступления информации: Роспатент

Showing 21-30 of 106 items.
27.06.2014
№216.012.d86e

Способ получения промежуточной заготовки из иридия

Изобретение относится к металлургии благородных металлов и может быть использовано при изготовлении заготовок для изделий из иридия приданием заготовке предварительной требуемой формы ковкой. Осуществляют горячую ковку слитка нелегированного иридия, в качестве которого используют иридий...
Тип: Изобретение
Номер охранного документа: 0002521184
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.df2e

Электролизер для тонкослойного электролитического рафинирования металлического свинца

Изобретение относится к тонкослойному рафинированию легкоплавких цветных металлов, в частности сортового свинца. Электролизер для тонкослойного электролитического рафинирования металлического свинца содержит вертикально помещенную в корпус электролизера пористую керамическую диафрагму,...
Тип: Изобретение
Номер охранного документа: 0002522920
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e8d1

Способ переработки оксидных железосодержащих материалов

Способ переработки оксидных железосодержащих материалов относится к горной, металлургической и строительной промышленности и может быть использован при переработке техногенных отвалов, например, шлаков и шламов черной и цветной металлургии с получением железосодержащего концентрата и...
Тип: Изобретение
Номер охранного документа: 0002525394
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.e957

Способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале

Изобретение относится к способу получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % KWO, 25 мол. % LiWO и 45 мол. % WO, с использованием...
Тип: Изобретение
Номер охранного документа: 0002525543
Дата охранного документа: 20.08.2014
20.09.2014
№216.012.f66d

Способ комплексной переработки красных шламов

Изобретение относится к способу комплексной переработки красного шлама - отходов глиноземного производства, содержащего гематит, шамозит, гетит, магнетит, алюмосиликаты, для получения железосодержащего концентрата и алюмосиликатного продукта и изготовления строительных материалов. Способ...
Тип: Изобретение
Номер охранного документа: 0002528918
Дата охранного документа: 20.09.2014
20.11.2014
№216.013.07c2

Способ изготовления коррозионностойкого электрода

Изобретение относится к способу изготовления коррозионностойкого электрода, включающему изготовление биметаллической основы электрода, содержащей титановый корпус с медным сердечником внутри. Далее подготовку наружной поверхности титанового корпуса и нанесение на нее активирующего покрытия....
Тип: Изобретение
Номер охранного документа: 0002533387
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0fab

Способ внепечной обработки стали кальцием

Изобретение относится к области черной металлургии, в частности к способам внепечной обработки стали кальцием. Сталь выпускают из сталеплавильного агрегата в ковш, подавая в него раскислители, легирующие и шлакообразующие материалы, а также кальцийсодержащий материал, и продувают нейтральным...
Тип: Изобретение
Номер охранного документа: 0002535428
Дата охранного документа: 10.12.2014
27.12.2014
№216.013.13f8

Способ получения пористого проницаемого керамического изделия

Способ включает плазменное напыление частиц однородного по крупности керамического материала на основе оксида алюминия на удаляемую оправку. Напыление ведут путем формирования монослоев за счет соударения напыляемых частиц керамического материала с поверхностью оправки под углом менее 45°,...
Тип: Изобретение
Номер охранного документа: 0002536536
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1447

Способ переработки сульфидных и смешанных молибденсодержащих концентратов

Изобретение относится к области цветной металлургии и может быть использовано для извлечения молибдена и рения из сульфидных и смешанных молибденсодержащих концентратов. Способ переработки сульфидных и смешанных молибденсодержащих концентратов включает смешивание концентратов с добавкой оксида...
Тип: Изобретение
Номер охранного документа: 0002536615
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1832

Состав шихты для изготовления оксидно-металлического инертного анода

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих,...
Тип: Изобретение
Номер охранного документа: 0002537622
Дата охранного документа: 10.01.2015
Showing 21-30 of 117 items.
20.07.2014
№216.012.df2e

Электролизер для тонкослойного электролитического рафинирования металлического свинца

Изобретение относится к тонкослойному рафинированию легкоплавких цветных металлов, в частности сортового свинца. Электролизер для тонкослойного электролитического рафинирования металлического свинца содержит вертикально помещенную в корпус электролизера пористую керамическую диафрагму,...
Тип: Изобретение
Номер охранного документа: 0002522920
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e8d1

Способ переработки оксидных железосодержащих материалов

Способ переработки оксидных железосодержащих материалов относится к горной, металлургической и строительной промышленности и может быть использован при переработке техногенных отвалов, например, шлаков и шламов черной и цветной металлургии с получением железосодержащего концентрата и...
Тип: Изобретение
Номер охранного документа: 0002525394
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.e957

Способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале

Изобретение относится к способу получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % KWO, 25 мол. % LiWO и 45 мол. % WO, с использованием...
Тип: Изобретение
Номер охранного документа: 0002525543
Дата охранного документа: 20.08.2014
20.09.2014
№216.012.f66d

Способ комплексной переработки красных шламов

Изобретение относится к способу комплексной переработки красного шлама - отходов глиноземного производства, содержащего гематит, шамозит, гетит, магнетит, алюмосиликаты, для получения железосодержащего концентрата и алюмосиликатного продукта и изготовления строительных материалов. Способ...
Тип: Изобретение
Номер охранного документа: 0002528918
Дата охранного документа: 20.09.2014
20.11.2014
№216.013.07c2

Способ изготовления коррозионностойкого электрода

Изобретение относится к способу изготовления коррозионностойкого электрода, включающему изготовление биметаллической основы электрода, содержащей титановый корпус с медным сердечником внутри. Далее подготовку наружной поверхности титанового корпуса и нанесение на нее активирующего покрытия....
Тип: Изобретение
Номер охранного документа: 0002533387
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0fab

Способ внепечной обработки стали кальцием

Изобретение относится к области черной металлургии, в частности к способам внепечной обработки стали кальцием. Сталь выпускают из сталеплавильного агрегата в ковш, подавая в него раскислители, легирующие и шлакообразующие материалы, а также кальцийсодержащий материал, и продувают нейтральным...
Тип: Изобретение
Номер охранного документа: 0002535428
Дата охранного документа: 10.12.2014
27.12.2014
№216.013.13f8

Способ получения пористого проницаемого керамического изделия

Способ включает плазменное напыление частиц однородного по крупности керамического материала на основе оксида алюминия на удаляемую оправку. Напыление ведут путем формирования монослоев за счет соударения напыляемых частиц керамического материала с поверхностью оправки под углом менее 45°,...
Тип: Изобретение
Номер охранного документа: 0002536536
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1447

Способ переработки сульфидных и смешанных молибденсодержащих концентратов

Изобретение относится к области цветной металлургии и может быть использовано для извлечения молибдена и рения из сульфидных и смешанных молибденсодержащих концентратов. Способ переработки сульфидных и смешанных молибденсодержащих концентратов включает смешивание концентратов с добавкой оксида...
Тип: Изобретение
Номер охранного документа: 0002536615
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1832

Состав шихты для изготовления оксидно-металлического инертного анода

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих,...
Тип: Изобретение
Номер охранного документа: 0002537622
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1869

Комплексный сплав для микролегирования и раскисления стали на основе железа

Изобретение относится к области металлургии, в частности к ферросплавному производству, и может быть использовано в сталеплавильном производстве для микролегирования и раскисления металлического железоуглеродистого расплава бором. Комплексный сплав содержит, мас.%: бор 0,5-2,0, хром 20-35,...
Тип: Изобретение
Номер охранного документа: 0002537677
Дата охранного документа: 10.01.2015
+ добавить свой РИД