×
20.07.2014
216.012.e01e

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ПОДВОДНЫМ РОБОТОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к робототехнике и может быть использовано для создания систем управления подводными роботами. Для формирования необходимых корректирующих сигналов и обеспечения полной компенсации эффектов взаимовлияния между степенями подвижности подводного робота и вязкого трения со стороны жидкости устройство для управления подводным роботом дополнительно снабжено третьим блоком умножения, четвертым сумматором, вторым усилителем, вторым движителем, третьим задатчиком сигнала, пятым сумматором, третьим усилителем, третьим движителем, первым, вторым и третьим датчиками положения, вторым и третьим датчиками скорости, четвертым блоком умножения, синусным и косинусным функциональными преобразователями. Изобретение позволяет обеспечить высокая точность управления подводным роботом в условиях существенного влияния вязкой окружающей среды. 1 ил.
Основные результаты: Устройство для управления подводным роботом, содержащее три сумматора, причем второй и третий сумматоры по первым входам соединены с первым и вторым задатчиками сигнала, соответственно, последовательно соединенные первый блок умножения, первый сумматор, второй вход которого соединен с выходом первого датчика скорости, первый усилитель и первый движитель, а также второй блок умножения, первый вход которого подключен к выходу третьего сумматора, а выход - к третьему входу первого сумматора, отличающееся тем, что в него дополнительно введены последовательно соединенные третий блок умножения, четвертый сумматор, второй усилитель и второй движитель, последовательно соединенные третий задатчик сигнала, пятый сумматор, третий усилитель и третий движитель, а также первый, второй и третий датчики положения, выходы которых соединены со вторыми входами второго, третьего и пятого сумматоров, соответственно, второй и третий датчики скорости, выходы которых, соответственно, соединены со вторым входом четвертого сумматора, третий вход которого через четвертый блок умножения подключен к выходу второго сумматора и первому входу первого блока умножения, и с третьим входом пятого сумматора, а также синусный функциональный преобразователь, выход которого подключен ко вторым входам второго и четвертого блоков умножения, а вход - к выходу третьего датчика положения и входу косинусного функционального преобразователя, выходом соединенного со вторым входом первого блока умножения и с первым входом третьего блока умножения, второй вход которого подключен к выходу третьего сумматора.

Изобретение относится к робототехнике и может быть использовано при создании систем управления подводными роботами.

Известно устройство для управления движителем подводного робота, содержащее три сумматора, два из которых по входам соединены с задатчиками, последовательно соединенные блок умножения, первый сумматор, усилитель и двигатель, соединенный непосредственно с датчиком скорости, а также блок деления и блок вычисления модуля, причем выход второго сумматора соединен с первым входом блока деления, а его второй вход - с выходом блока умножения, выход датчика скорости соединен с первым входом блока умножения, входом блока вычисления модуля и вторым входом первого сумматора, выход блока вычисления модуля соединен со вторым входом блока умножения и вторым входом третьего сумматора, выход которого соединен со вторым входом блока деления, выход которого соединен с третьим входом первого сумматора (см. пат. РФ №2147001, БИ №9, 2000 г.).

Недостатком данного устройства является то, что оно, будучи предназначенным только для отдельного движителя подводного робота (ПР), не обеспечивает качественное управление ПР в целом во многих практически важных режимах его эксплуатации.

Известно также устройство для управления подводным роботом, содержащее три сумматора, причем второй и третий сумматоры по входам соединены с первым и вторым задатчиками соответственно, последовательно соединенные первый блок умножения и первый сумматор, последовательно соединенные усилитель и движитель, соединенный непосредственно с датчиком скорости, а также первый блок вычисления модуля, причем выход датчика скорости соединен с первым входом первого блока умножения, входом первого блока вычисления модуля и вторым входом первого сумматора, выход первого блока вычисления модуля соединен со вторым входом первого блока умножения, последовательно соединенные интегратор, четвертый сумматор, первый релейный элемент и второй блок умножения, второй вход которого подключен к выходу третьего сумматора, а выход - к третьему входу первого сумматора, последовательно соединенные второй блок вычисления модуля, блок извлечения квадратного корня и третий блок умножения, своим выходом соединенный со входом усилителя, а вторым входом через второй релейный элемент подключенный ко входу второго блока вычисления модуля и к выходу первого сумматора, четвертый вход которого соединен с выходом первого задатчика, причем второй вход третьего сумматора через квадратор подключен к выходу датчика скорости и второму входу четвертого сумматора, а его третий вход через третий блок вычисления модуля подключен ко входу интегратора и к выходу второго сумматора, своим вторым входом соединенного с выходом интегратора (см. пат. РФ №2230654, БИ №17, 2004 г.).

Данное устройство по своей технической сущности является наиболее близким к предлагаемому изобретению.

Недостатком данного устройства является то, что оно предназначено только для отдельного канала управления движением ПР по одной из пространственных координат. При выполнении подводным роботом сложных маневров в водной среде качество управления существенно снижается из-за сильного взаимовлияния между степенями подвижности ПР и значительных внешних воздействий (сил и моментов вязкого трения). Прототип не обеспечивает требуемую точность при отслеживании сложных траекторий, так как не учитывает совокупное влияние перечисленных отрицательных факторов на динамические свойства ПР.

Задачей, на решение которой направлено заявляемое техническое решение, является обеспечение высокой точности управления подводным роботом за счет компенсации нелинейных взаимосвязей в каналах управления и внешних воздействий, возникающих при быстром движении ПР в вязкой среде, когда одновременно изменяются несколько его пространственных координат.

Технический результат, который может быть получен при реализации заявляемого технического решения, выражается в формировании дополнительных управляющих сигналов, подаваемых на входы движителей каждого канала управления подводного робота, которые обеспечивают компенсацию отрицательного влияния на точность работы всей системы управления нелинейных взаимосвязей и внешних воздействий, возникающих при быстром движении ПР в вязкой среде по сложной траектории.

Поставленная задача решается тем, что в устройство для управления подводным роботом, содержащее три сумматора, причем второй и третий сумматоры по первым входам соединены с первым и вторым задатчиками сигнала, соответственно, последовательно соединенные первый блок умножения, первый сумматор, второй вход которого соединен с выходом первого датчика скорости, первый усилитель и первый движитель, а также второй блок умножения, первый вход которого подключен к выходу третьего сумматора, а выход - к третьему входу первого сумматора, дополнительно вводятся последовательно соединенные третий блок умножения, четвертый сумматор, второй усилитель и второй движитель, последовательно соединенные третий задатчик сигнала, пятый сумматор, третий усилитель и третий движитель, первый, второй и третий датчики положения, выходы которых соединены со вторыми входами второго, третьего и пятого сумматоров, соответственно, второй и третий датчики скорости, выходы которых, соответственно, соединены со вторым входом четвертого сумматора, третий вход которого через четвертый блок умножения подключен к выходу второго сумматора и первому входу первого блока умножения, и с третьим входом пятого сумматора, а также синусный функциональный преобразователь, выход которого подключен ко вторым входам второго и четвертого блоков умножения, а вход - к выходу третьего датчика положения и входу косинусного функционального преобразователя, выходом соединенного со вторым входом первого блока умножения и с первым входом третьего блока умножения, второй вход которого подключен к выходу третьего сумматора.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналога и прототипа свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения позволяют обеспечить неизменно высокую точность работы системы управления ПР в условиях сильного взаимовлияния между его степенями подвижности при учете дополнительных воздействий со стороны вязкой среды.

На фиг.1 представлена блок-схема предлагаемого устройства для управления подводным роботом.

Устройство для управления подводным роботом содержит три сумматора 1, 2 и 3, причем второй 2 и третий 3 сумматоры по первым входам соединены с первым 4 и вторым 5 задатчиками сигнала, соответственно, последовательно соединенные первый блок 6 умножения, первый сумматор 1, второй вход которого соединен с выходом первого датчика 7 скорости, первый усилитель 8 и первый движитель 9, а также второй блок 10 умножения, первый вход которого подключен к выходу третьего сумматора 3, а выход - к третьему входу первого сумматора 1, последовательно соединенные третий блок 11 умножения, четвертый сумматор 12, второй усилитель 13 и второй движитель 14, последовательно соединенные третий задатчик 15 сигнала, пятый сумматор 16, третий усилитель 17 и третий движитель 18, первый 19, второй 20 и третий 21 датчики положения, выходы которых соединены со вторыми входами второго 2, третьего 3 и пятого 16 сумматоров, соответственно, второй 22 и третий 23 датчики скорости, выходы которых, соответственно, соединены со вторым входом четвертого сумматора 12, третий вход которого через четвертый блок 24 умножения подключен к выходу второго сумматора 2 и первому входу первого блока 6 умножения, и с третьим входом пятого сумматора 16, а также синусный функциональный преобразователь 25, выход которого подключен ко вторым входам второго 10 и четвертого 24 блоков умножения, а вход - к выходу третьего датчика 21 положения и входу косинусного функционального преобразователя 26, выходом соединенного со вторым входом первого блока 6 умножения и с первым входом третьего блока 11 умножения, второй вход которого подключен к выходу третьего сумматора 3, объект управления 27.

На чертеже введены следующие обозначения: xвх, yвх, φвх - входные сигналы, задающие траекторию движения подводного робота и угол курса; X, Y, φ - линейные и угловая координаты ПР; εX, εY - ошибки (величины рассогласований) по координатам x и y, соответственно; υx, υy - проекции линейной скорости поступательного движения ПР на оси связанной с ним системы координат (СК); ω - угловая скорость вращательного движения ПР; - усиливаемые сигналы в каждом канале управления ПР; ux, uy, uφ -сигналы управления движителями 9, 14 и 18, соответственно.

Устройство работает следующим образом.

Сигналы ошибок εx и εy с сумматоров 2 и 3, а также задающий входной сигнал φвх с задатчика 15, после коррекции в сумматорах и блоках 1, 6, 11, 12 и 16, усиливаясь, поступают на движители 9, 14 и 18, соответственно, приводя во вращение гребные винты и осуществляя в результате движение подводного робота в заданной плоскости с соответствующим изменением линейных x, y и угловой φ координат в абсолютной СК. При этом проекции υx и υy линейной скорости движения ПР на оси связанной СК, а также его угловая скорость ω зависят от величин поступающих сигналов ux, uy, uφ, от сил и моментов вязкого трения, возникающих при движении ПР в жидкости, и от взаимовлияния между каналами управления по отдельным координатам.

Наличие указанных факторов приводит к снижению точности работы традиционных систем управления в большинстве режимов эксплуатации подводного робота.

При наличии динамического взаимовлияния между указанными тремя каналами управления и нейтральной плавучести ПР, динамика его движения в заданной плоскости описывается нелинейной системой, состоящей из трех дифференциальных уравнений второго порядка каждое:

где m, J - масса и момент инерции ПР (с учетом присоединенных массы и момента инерции жидкости), kf, km - коэффициенты вязкого трения при поступательном и вращательном движении ПР, ky1, ky2, ky3 - коэффициенты усиления усилителей мощности 8, 13 и 17, соответственно, kd1, kd2, kd3 - коэффициенты усиления движителей 9, 14 и 18, соответственно.

Очевидно, что качественно управлять всеми режимами работы нелинейной многосвязной системы (1) при использовании традиционной линейной коррекции невозможно.

В заявляемом устройстве первый и третий положительные входы сумматора 1 (со стороны блоков 6 и 10 умножения, соответственно) имеют коэффициенты усиления kum/(kykd1), а его второй положительный вход (со стороны датчика 7 скорости) - коэффициент усиления (kf-ku1m)/(ky1kd1). Первый положительный и третий отрицательный входы сумматора 12 (со стороны блоков 11 и 24 умножения, соответственно) имеют коэффициенты усиления kum/(ky2kd2), а его второй положительный вход (со стороны датчика 22 скорости) - коэффициент усиления (kf-ku1m)/(ky2kd2). Первый положительный и второй отрицательный входы сумматора 16 (со стороны задатчика 15 и датчика 21 положения, соответственно) имеют коэффициенты усиления kφJ/(ky3kd3), а его третий положительный вход (со стороны датчика 23 скорости) - коэффициент усиления (km-kφ1J)/(ky3kd3). Первый положительный (со стороны задатчика 4) и второй отрицательный (со стороны датчика 19 положения) входы сумматора 2, а также первый положительный (со стороны задатчика 5) и второй отрицательный (со стороны датчика 20 положения) входы сумматора 3 имеют единичные коэффициенты усиления.

Поскольку датчики 19 и 20 положения измеряют линейные координаты x и y подводного робота в абсолютной СК, соответственно, то на выходе сумматора 2 формируется сигнал εx=xвх-x, а на выходе сумматора 3 - сигнал ε=yвх-y. Поскольку датчик 21 положения измеряет угол φ курса ПР, то с учетом преобразования его выходного сигнала в блоках 25 и 26 на выходах блоков 6, 10, 11 и 24 умножения формируются сигналы εxcosφ, εysinφ, sxcosφ и εxsinφ, соответственно.

Датчики 7 и 22 скорости измеряют величины υх и υy, соответственно. Поэтому с учетом указанных выше коэффициентов усиления входов сумматоров 1 и 12 на их выходах, соответственно, будут сформированы сигналы:

Поскольку датчик 23 скорости измеряет угловую скорость со движения ПР, то на выходе сумматора 16 с учетом коэффициентов усиления всех его входов будет сформирован сигнал:

Подставив значения из соотношений (2)-(4) в уравнения системы (1), после преобразований получим выражения, описывающие динамику движения ПР с учетом введенной коррекции:

, , ,

где ku, ku1, kφ, kφ1 - постоянные желаемые параметры.

Таким образом, заявленное устройство обеспечивает полную компенсацию воздействий на ПР со стороны вязкой среды и эффектов взаимовлияния между каналами управления каждой его координатой. Система управления подводным роботом в целом в любых режимах работы будет иметь требуемые (желаемые) динамические свойства и показатели качества, определяемые только коэффициентами ku, ku1, kφ, kφ1, задаваемыми на этапе проектирования управляющего устройства.

Устройство для управления подводным роботом, содержащее три сумматора, причем второй и третий сумматоры по первым входам соединены с первым и вторым задатчиками сигнала, соответственно, последовательно соединенные первый блок умножения, первый сумматор, второй вход которого соединен с выходом первого датчика скорости, первый усилитель и первый движитель, а также второй блок умножения, первый вход которого подключен к выходу третьего сумматора, а выход - к третьему входу первого сумматора, отличающееся тем, что в него дополнительно введены последовательно соединенные третий блок умножения, четвертый сумматор, второй усилитель и второй движитель, последовательно соединенные третий задатчик сигнала, пятый сумматор, третий усилитель и третий движитель, а также первый, второй и третий датчики положения, выходы которых соединены со вторыми входами второго, третьего и пятого сумматоров, соответственно, второй и третий датчики скорости, выходы которых, соответственно, соединены со вторым входом четвертого сумматора, третий вход которого через четвертый блок умножения подключен к выходу второго сумматора и первому входу первого блока умножения, и с третьим входом пятого сумматора, а также синусный функциональный преобразователь, выход которого подключен ко вторым входам второго и четвертого блоков умножения, а вход - к выходу третьего датчика положения и входу косинусного функционального преобразователя, выходом соединенного со вторым входом первого блока умножения и с первым входом третьего блока умножения, второй вход которого подключен к выходу третьего сумматора.
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ПОДВОДНЫМ РОБОТОМ
Источник поступления информации: Роспатент

Showing 211-220 of 291 items.
27.05.2016
№216.015.436d

Аэросани-амфибия

Изобретение относится к области судостроения и касается конструкции глиссирующего судна, предназначенного для перемещения по воде, льду и снегу. Аэросани-амфибия содержат корпус с некилеватым днищем, кабину, двигатель с воздушным винтом и аэродинамические рули. Передняя часть корпуса выполнена...
Тип: Изобретение
Номер охранного документа: 0002585208
Дата охранного документа: 27.05.2016
27.08.2016
№216.015.4f86

Лигноцеллюлозный полимерный композиционный материал

Изобретение относится к производству лигноцеллюлозных полимерных композиционных материалов и изделий на их основе и может быть использовано для получения строительных, конструкционных и отделочных материалов, а также для изготовления мебели, товаров бытового и промышленного назначения....
Тип: Изобретение
Номер охранного документа: 0002595655
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.514f

Соевый соус

Изобретение относится к пищевой промышленности и может быть использовано при производстве соевого соуса с функциональными свойствами. Соевый соус содержит термически обработанные семена сои и поджаренные измельченные семена пшеницы в соотношении 1:1, плесневые грибы культуры Aspergillus oryzae...
Тип: Изобретение
Номер охранного документа: 0002596028
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.5450

Самонастраивающийся электропривод манипуляционного робота

Изобретение относится к самонастраивающейся системе управления электроприводом. Самонастраивающийся электропривод манипуляционного робота содержит электродвигатель, редуктор, датчики положения и скорости, сумматоры, блоки умножения, задатчики сигнала, квадраторы, дифференциатор и функциональные...
Тип: Изобретение
Номер охранного документа: 0002593735
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.54fe

Устройство для очистки нефтесодержащих и сточных вод

Изобретение относится к системам очистки воды и может быть использовано для очистки нефтесодержащих и сточных вод. Устройство для очистки нефтесодержащих и сточных вод содержит ступени очистки, соединенные последовательно вдоль потока очищаемой воды и отделенные между собой посредством...
Тип: Изобретение
Номер охранного документа: 0002593304
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5613

Установка для очистки нефтесодержащих и сточных вод

Изобретение относится к системам очистки воды и может быть использовано для очистки нефтесодержащих и сточных вод. Установка для очистки нефтесодержащих и сточных вод содержит по меньшей мере две ступени очистки, соединенные последовательно вдоль потока очищаемой воды и разделенные между собой...
Тип: Изобретение
Номер охранного документа: 0002593257
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5c46

Способ определения общих и полициклических ароматических углеводородов в компонентах экосистемы

Изобретение относится к области экологической аналитической химии. Способ включает отбор проб массой 2-4 г, их сушку, измельчение и двухкратную экстракцию целевых компонентов дихлорметаном при воздействии на пробу ультразвуковых колебаний, фильтрование объединенного экстракта и упаривание...
Тип: Изобретение
Номер охранного документа: 0002589897
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6003

Способ получения гречишного солода

Изобретение относится к способу получения гречишного солода. Способ предусматривает подготовку зерна гречихи, солодоращение, томление свежепроросшего солода под пленкой при постепенном повышении температуры до 45˚С в течение 24 ч, ступенчатую сушку в течение 5-6 ч при температуре 50±3˚С, а...
Тип: Изобретение
Номер охранного документа: 0002590720
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.657a

Способ получения формованной композитной мембраны

Изобретение относится к технологии получения композитной формованной мембраны на основе неорганических природных силикатов и может быть использовано в химической, пищевой, фармацевтической и других отраслях промышленности, где существует необходимость в очистке растворов, требующих...
Тип: Изобретение
Номер охранного документа: 0002592529
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66ed

Самонастраивающийся электропривод

Изобретение относится к самонастраивающейся системе управления электроприводом. Самонастраивающийся электропривод содержит последовательно соединенные первый сумматор, корректирующее устройство, усилитель, электродвигатель, связанный непосредственно с датчиком скорости и через редуктор - с...
Тип: Изобретение
Номер охранного документа: 0002592036
Дата охранного документа: 20.07.2016
Showing 211-220 of 303 items.
10.04.2016
№216.015.3023

Способ производства йогурта

Изобретение относится к молочной промышленности. Способ получения йогурта включает пастеризацию молока, охлаждение до температуры заквашивания, внесение закваски, сквашивание, охлаждение, внесение наполнителя из растительного сырья, перемешивание, упаковывание в тару, в качестве наполнителя...
Тип: Изобретение
Номер охранного документа: 0002580226
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3048

Ротор электромашины

Изобретение относится к области электротехники, в частности к электромашиностроению, и может быть использовано при проектировании электрогенераторов и электродвигателей с высокой частотой вращения. Технический результат - повышение прочности ротора электромашины при высоких окружных скоростях,...
Тип: Изобретение
Номер охранного документа: 0002580932
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30cb

Способ струйной обработки материалов

Изобретение относится к струйной резке заготовки. Обеспечивают выталкивание текучей среды из сопла на обрабатываемую заготовку с обеспечением формирования режущей струи. В качестве текучей среды используют расплавленный легкоплавкий сплав, гидростатическое давление которого повышают перед...
Тип: Изобретение
Номер охранного документа: 0002580268
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30df

Ротор электромашины

Изобретение относится к области электротехники, в частности к электромашиностроению, и может быть использовано при проектировании электрогенераторов и электродвигателей с высокой частотой вращения. Технический результат: увеличение индукции на полюсах, снижение моментов инерции ротора, снижение...
Тип: Изобретение
Номер охранного документа: 0002580676
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.322b

Водогрейный котел

Изобретение может быть использовано в системах теплоснабжения производственных и жилых зданий. Котел содержит цилиндрический корпус с топкой и соосную с ней конвективную камеру. На переднем фронте топки на ее продольной оси установлена горелка, а у заднего фронта топки установлен рассекатель...
Тип: Изобретение
Номер охранного документа: 0002580253
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.325d

Ротор электромашины

Изобретение относится к области электротехники, в частности к электромашиностроению, и может быть использовано при проектировании электрогенераторов и электродвигателей с высокой частотой вращения. Технический результат: повышение прочности ротора, снижение моментов инерции ротора, снижение...
Тип: Изобретение
Номер охранного документа: 0002580931
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.37a7

Носовая оконечность корпуса судна

Изобретение относится к области судостроения и может быть использовано для проектирования корпусов судов с возможностью осуществления погрузочно-разгрузочных операций на необорудованном побережье, десантных кораблей, в решении задач освоения ресурсов шельфа. Предложена носовая оконечность...
Тип: Изобретение
Номер охранного документа: 0002582750
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.386f

Способ струйной обработки материалов

Изобретение относится к области струйной обработки материалов. Осуществляют формирование обрабатывающей струи, подаваемой из сопла на обрабатываемую заготовку. В качестве текучей среды используют расплавленный легкоплавкий сплав, гидростатическое давление которого повышают перед формированием...
Тип: Изобретение
Номер охранного документа: 0002582412
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.388b

Способ изготовления изделий из лигноцеллюлозных полимерных композиционных материалов

Изобретение относится к производству лигноцеллюлозных полимерных композиционных материалов и изделий на их основе. Выполняют сушку компонентов, их подготовку и смешение, формирование изделий при нагревании термопластичного полимера. В качестве матрицы используют термопластичный полимер в...
Тип: Изобретение
Номер охранного документа: 0002582498
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39d2

Водогрейный котел

Изобретение относится к системам теплоснабжения производственных и жилых зданий. Котел содержит цилиндрический корпус с топкой и соосной с ней конвективной камерой. Топка и конвективная камера размещены последовательно в корпусе котла, жестко скрепленного с основанием. Экранная поверхность...
Тип: Изобретение
Номер охранного документа: 0002582441
Дата охранного документа: 27.04.2016
+ добавить свой РИД