×
20.07.2014
216.012.deb1

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ИЗОТОПНОГО СОСТАВА МОЛЕКУЛЯРНОГО ЙОДА В ГАЗАХ

Вид РИД

Изобретение

№ охранного документа
0002522795
Дата охранного документа
20.07.2014
Аннотация: Изобретение относится к области измерительной техники и может быть использовано в атомной энергетике и для охраны окружающей среды. Осуществляют прокачку анализируемой смеси газов через исследуемую ячейку, возбуждают в ней флуоресцентное излучение перестраиваемыми полупроводниковыми лазерами с длинами волн, соответствующими линиям с максимальным поглощением изотопов I и I и диоксида азота, определяют концентрации изотопов I, I и диоксида азота в анализируемой смеси по формулам, учитывающим состав буферных газов. Изобретение обеспечивает повышение чувствительности определения концентрации изотопов молекулярного йода. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может найти применение в атомной энергетике, охране окружающей среды при детектировании йода-129 и йода-127 на уровне предельно допустимых концентраций (ПДК) в естественной атмосфере, а также на территории деятельности предприятий ядерно-топливного цикла в процессе переработки облученного ядерного топлива.

В способе дистанционного определения концентрации радионуклидов в воздушном выбросе радиационно-опасных предприятий и устройстве для его осуществления [1] описаны слишком общие принципы определения концентрации радионуклидов, среди которых не упоминаются изотопы йода. Указано, что устройство дистанционного зондирования в качестве детектора содержит полупроводниковый детектор.

Существует способ детектирования йода и устройство для его осуществления [2] с помощью масс-спектрометрии индуктивно-связанной плазмы. При реализации этого способа образец почвы нагревается в атмосфере газа аргона для получения газовой фазы образца, и образец в газовой фазе вводится в реакционную ячейку масс-спектрометра индуктивно-связанной плазмы. Масс-спектрометрия выполняется со сравнительно низкой чувствительностью по отношению к йоду-127 и относительно высокой чувствительностью по сравнению с йодом-129. Главным недостатком данного метода является невозможность проводить измерения в реальном масштабе времени, поскольку требуется предварительная подготовка исследуемых образцов.

С точки зрения обеспечения возможности мониторинга йода-129 и йода-127 в атмосфере в реальном масштабе времени одним из наиболее перспективных методов является метод лазерной флуоресценции. Исследования показали, что гелий-неоновый лазер обладает существенными преимуществами по сравнению с другими типами лазеров:

меньшей шириной линии излучения, большей интенсивностью возбуждаемой флуоресценции (при равной мощности излучения), высокой надежностью и большим ресурсом работы, а также заметно более низкой стоимостью. Например, в способе определения концентрации молекулярного йода и устройстве для его реализации [3] определение концентраций изотопов молекулярного йода в исследуемой ячейке производится посредством измерений сигналов флуоресценции от исследуемой ячейки при двух различных температурах ее стенок в диапазоне (-20)-(+450)°С. Эффект изобретения состоит в повышении точности определения концентрации изотопа 129I при одновременном определении концентрации изотопа 127I, а также сокращении объема оборудования и упрощения процесса измерений. Основными составными частями устройства являются гелий-неоновый лазер, исследуемая и реперная (с известной концентрацией молекулярного йода 127I2) ячейки, интерференционные светофильтры, фотоэлектронные умножители, детектор сигналов флуоресценции, термостат с регулируемой температурой.

Наиболее близким техническим решением является способ определения концентрации молекулярного йода в газах [4]. В данном способе промодулированным излучением перестраиваемого по частоте гелий-неонового лазера облучают ячейку, содержащую исследуемый газ, первую реперную ячейку, содержащую газ с известной концентрацией изотопа 1291, вторую реперную ячейку, содержащую газ со смесью изотопов 129I и 127I при относительном содержании изотопа 129I порядка 40-60%, третью реперную ячейку, содержащую газ с известной концентрацией изотопа 127I, регистрируют сигналы флуоресценции от исследуемой и реперных ячеек при облучении их лазерным излучением в двух диапазонах частот, первый из которых соответствует частотам ν10-(0,8-1,0 ГГц), а второй ν20+(1,2-2,2 ГГц), где ν0 - частота центра неотстроенного контура усиления 20Ne, рассчитывают искомые концентрации по системе уравнений, описанной в АС 1744605, при этом осуществляют прокачку анализируемой смеси газов через исследуемую ячейку при давлениях 50-100 Торр, измеряют давление газа в исследуемой ячейке и интенсивности лазерного излучения до и после попадания в исследуемую ячейку, определяют относительное содержание диоксида азота в исследуемой ячейке и вычисляют концентрации изотопов 129I и 127I в анализируемой смеси по формулам, учитывающим состав буферных газов.

Основным недостатком способа определения концентрации молекулярного йода в газах [4] является небольшие возможности перестройки длины волны в пределах контура усиления 20Ne гелий-неонового лазера. В настоящее время появились новые источники лазерного излучения, использование которых при детектировании методом лазерной флуоресценции позволит существенно повысить точность определения концентраций йода-129 и йода-127.

В предлагаемом изобретении для достижения чувствительностей, необходимых для детектирования йода-129 и йода-127 на уровне ПДК в естественной атмосфере, в качестве источника возбуждения флуоресценции предлагается использовать частотно-перестраиваемый в диапазоне длин волн 630-640 нм полупроводниковый лазер или несколько таких лазеров. Выбор данного спектрального диапазона обусловлен тем, что проведенные авторами изобретения предварительные исследования показали, что, во-первых, именно в этом диапазоне йод-129 и йод-127 имеют линии поглощения, значения сечений поглощения которых более чем на порядок превышают соответствующие значения на длине волны излучения He-Ne лазера 632.8 нм, во-вторых, многие из линий поглощения этих изотопов практически не перекрываются, что позволяет ожидать существенного повышения селективности детектирования йода-129 на фоне йода-127.

Анализ патентной документации позволил установить следующие тенденции в использовании нескольких лазеров (в частности полупроводниковых) для детектирования газовых составляющих атмосферы [5-7]. Способ детектирования заключается в цикличном во времени или одновременном измерении поглощения излучения анализируемой газовой смесью на различных комбинациях длин волн нужного спектрального диапазона, соответствующих центрам полос поглощения компонентов исследуемой смеси. Данные комбинации выбираются исходя из необходимости наиболее точного определения концентраций газовых составляющих исследуемой смеси. Указанные в данном абзаце изобретения не позволяют определят концентрации изотопов йода.

Техническим результатом предлагаемого изобретения является повышение чувствительности определения концентрации изотопов 129I и 127I при наличии в анализируемой смеси буферных газов для измерения концентраций указанных изотопов на уровне ПДК (5·108 см-3 для 129I и 8·1010 см-3 для 127I). Технический результат достигается тем, что осуществляют модуляцию во времени излучения перестраиваемого по длине волны полупроводникового лазера в диапазоне Δλ на следующие значения λ1, λ2, λ3; λ4 либо использование четырех разных лазеров со стабилизированной длиной волны λ1, λ2, λ3; λ4, облучение этим излучением ячейки, содержащей исследуемый газ, первой реперной ячейки, содержащей газообразный йод с максимальной известной концентрацией молекулы 129I2, второй реперной ячейки, содержащей газообразный йод с максимальной известной концентрацией молекулы 129I127I, третьей реперной ячейки, содержащей газообразный йод с максимальной известной концентрацией изотопа 127I2, регистрацию сигналов флуоресценции , и (i=0, 1, 2, 3) от исследуемой и трех реперных ячеек при облучении их лазерным излучением с длинами волн λ1, λ2; λ3; при этом излучение флуоресценции проходит через абсорбционные интерференционные светофильтры, отсекающие рассеянное лазерное излучение на длинах волн λ1, λ2, λ3, λ4, анализируемую газовую смесь прокачивают через исследуемую ячейку при давлениях 50-100 Торр, измеряют давление газа в исследуемой ячейке и интенсивности лазерного излучения до и после попадания в исследуемую ячейку на длине волны λ4, соответствующей линиям поглощения диоксида азота.

Согласно изобретению диапазон длин волн Δλ охватывает максимумы поглощения молекулы йода 129I2, молекулы 129I127I, молекулы йода 127I2, лежащие между 632,0 и 636,8 нм; при этом длина волны λ1 соответствует максимуму поглощения изотопа 129I2, λ2 - максимуму поглощения смеси изотопов 129I127I, λ3 - максимуму поглощения изотопа 127I2, λ4 - максимуму поглощения диоксида азота, которые не перекрываются между собой. Пропускание абсорбционных интерференционных светофильтров поддерживают минимальным в области спектра от 630 до 640 нм и максимальным в области спектра от 640 до 800 нм. Расчет искомых концентраций осуществляют по системе уравнений:

где , и - сигналы флуоресценции от исследуемой и трех реперных ячеек при облучении их лазерным излучением с длинами волн λ1, λ2, λ3;

α, β, γ - градуировочные коэффициенты;

ni, Xi, Yi, Zi - полная концентрация молекулярного йода и относительные содержания молекул 129I2, 129I127I и 127I2 в смесях соответствующих ячеек.

Последующие вычисления осуществляются с использований следующих уравнений:

;

где n(129I2), n(129I127I), n(127I2) - концентрации молекул 129I2, 129I127I и 127I2 соответственно, ε - относительное содержание диоксида азота в исследуемой ячейке.

Согласно изобретению относительное содержание диоксида азота ε в исследуемой ячейке определяют исходя из сигналов с фотодетекторов, пропорциональных интенсивностям лазерного излучения на длине волны λ4 до исследуемой ячейки и после. Расчет значения ε в зависимости от длины волны λ4 осуществляют по уравнениям:

,

если λ4 лежит в диапазоне от 440 до 442 нм,

,

если λ4 лежит в диапазоне от 509 до 511 нм,

,

если λ4 лежит в диапазоне от 632 до 634 нм,

,

если λ4 лежит в диапазоне от 634 до 637 нм,

где l - длина исследуемой ячейки;

p - полное давление газа в исследуемой ячейке;

I0 - интенсивность лазерного излучения до исследуемой ячейки на длине волны λ4;

I - интенсивность лазерного излучения после исследуемой ячейки на длине волны λ4;

Согласно изобретению длину волны λ1 выбирают в диапазоне от 634.4257 до 634.4267 нм, или от 636.7213 до 636.7223 нм, или от 636.3343 до 636.3353 нм, или от 632.6169 до 632.6179 нм, или от 632.2412 до 632.2422 нм; λ2 выбирают в диапазоне от 633.1377 до 633.1387 нм, или от 633.1389 до 633.1399 нм, или от 636.6012 до 636.6022 нм, или от 634.4253 до 634.4253 нм, или от 636.7173 до 636.7183 нм, или от 636.3324 до 636.3334 нм, или от 636.3356 до 636.3366 нм, или от 635.4807 до 635.4817 нм, или от 635.1258 до 635.1268 нм, или от 632.9102 до 632.9112 нм, или от 632.6156 до 632.6166 нм, или от 632.2443 до 632.2453 нм, или от 632.6619 до 632.6629 нм; λ3 выбирают в диапазоне от 632.3201 до 632.3211 нм, или от 635.2098 до 635.2108 нм, или от 635.2148 до 635.2158 нм, или от 632.0018 до 632.0028 нм.

Авторами предлагаемого изобретения для условий наилучшего детектирования (давление в исследуемой ячейке 50-100 Торр) был проведен расчет спектров поглощения и флуоресценции изотопов молекулярного йода, методика которого изложена в [8]. В расчетах использовались известные данные о значениях энергий колебательно-вращательных состояний молекулярного йода [9] и коэффициентов Франка-Кондона [10], форме линий поглощения [11-13], параметрах столкновительного уширения [14], столкновительного сдвига линий поглощения [14], излучательных временах жизни возбужденных состояний и временах спонтанной предиссоциации [15-17]. Всего было проанализировано несколько сотен линий поглощения каждого из изотопов йода с целью обнаружения оптимальных спектральных диапазонов и конкретных рабочих длин волн излучения лазера (или лазеров) для детектирования йода-129 и йода-127 методом лазерной флуоресценции.

На фиг.1 представлена зависимость интенсивности поглощения от длины волны излучения изотопов молекулярного йода в спектральной области от 632,315 до 632, 335 нм. Сплошной линией обозначены линии поглощения молекулы 129I2, пунктирной - 127I2 и точками - 129I127I, соответственно. Как видно из фиг.1 можно найти линии поглощения указанных молекул, которые не перекрываются друг с другом. Поэтому возбуждая флуоресценцию излучением лазера с длиной волны, совпадающей с максимумами поглощения этих линий, можно получать сигнал флуоресценции только от молекул одного сорта. Согласно изобретению для определения концентрации конкретной молекулы осуществляют калибровку сигнала флуоресценции по сигналу флуоресценции от реперных ячеек. Кроме этого, фиг.1 иллюстрирует то, что у молекул одного сорта линии поглощения могут перекрываться, т.е. можно найти такие значения длин волн излучения лазера, на которых поглощение данных молекул может быть еще больше.

На фиг.2 изображены пунктирной кривой отдельные линии поглощения молекулы 127I2, а сплошной линией - зависимость суммарного поглощения всех этих линий. В итоге поглощение почти в 2 раза увеличивается. Аналогичная ситуация наблюдается и для молекул 129I127I, 129I2.

Таким образом, предлагаемый способ позволяет повысить чувствительность определения концентрации молекулярного йода в газах более чем на порядок и измерять ПДК 129I и 127I в реальном масштабе времени.

Литература, принятая во внимание при составлении заявки:

1. Елохин А.П., Pay Д.Ф., Пархома П.А. Патент РФ №2299451.

2. Fujiwara Eiji, Kiho Nobuharu, Kawabata Katsuhiko, Shikino Osamu. Патент Японии №Л* 2008134135

3. Киреев С.В., Проценко Е.Д., Шнырев С.Л. Патент РФ №94039454.

4. Киреев С.В., Проценко Е.Д., Шнырев С.Л. Патент РФ №2181197.

5. Вязов И.Е., Надеждинский А.И., Понуровский Я.Я., Ставровский Д.Б. Патент РФ №2285251.

6. Киреев С.В., Подоляко Е.М., Симановский И.Г., Шнырев С.Л. Патент РФ №2441219.

7. Wolfrum Jürgen, Neckel Hartmut. Европатент №EP0318752.

8. S.V. Kireev and S.L. Shnyrev, Laser Physics. 10, 800 (2000).

9. P. Luc, t Molec. Spectr. 80,41 (1980).

10. J. Tellinghuisen, 1 Chem. Educat. 58,438 (1981).

11. II. Steinfeld, J. Phys. Chem. Ref. Data. 13,445 (1984).

12. G.D. Chapman and R.R. Bunker, Chem. Phys. 57, 2951 (1972).

13. G.R. Hanes, J. LaPierre, R.R. Bunker, and K.C. Shotton, 1 Mol. Spectr. 39, 506 (1971).

14. S.V. Kireev, S.L. Shnyrev, and Yu.P. Zaspa, Opt. Spektrosk. 78, 612 (1995).

15. F.W. Dalby, C.D.D. Levy, and 1 Vanderbilde, Chem. Phys. 85, 23 (1984).

16. IP. Pique and R. Basic, J. Physiqu (Paris). 44, 347 (1983).

17. J. Vique, M. Broyer, and 1C. Lehmann, 42, 949 (1981).


СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ИЗОТОПНОГО СОСТАВА МОЛЕКУЛЯРНОГО ЙОДА В ГАЗАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ИЗОТОПНОГО СОСТАВА МОЛЕКУЛЯРНОГО ЙОДА В ГАЗАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ИЗОТОПНОГО СОСТАВА МОЛЕКУЛЯРНОГО ЙОДА В ГАЗАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ИЗОТОПНОГО СОСТАВА МОЛЕКУЛЯРНОГО ЙОДА В ГАЗАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ИЗОТОПНОГО СОСТАВА МОЛЕКУЛЯРНОГО ЙОДА В ГАЗАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ИЗОТОПНОГО СОСТАВА МОЛЕКУЛЯРНОГО ЙОДА В ГАЗАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ИЗОТОПНОГО СОСТАВА МОЛЕКУЛЯРНОГО ЙОДА В ГАЗАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ИЗОТОПНОГО СОСТАВА МОЛЕКУЛЯРНОГО ЙОДА В ГАЗАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ИЗОТОПНОГО СОСТАВА МОЛЕКУЛЯРНОГО ЙОДА В ГАЗАХ
Источник поступления информации: Роспатент

Showing 481-490 of 555 items.
08.06.2019
№219.017.7596

Понижающий конденсаторный преобразователь напряжения

Изобретение относится к электротехнике, может быть использовано для преобразования постоянного напряжения на входе в постоянное напряжение на выходе с понижением напряжения в целое число раз. Понижающий конденсаторный преобразователь напряжения содержит два ключевых элемента (1) и (2), два...
Тип: Изобретение
Номер охранного документа: 0002690839
Дата охранного документа: 06.06.2019
09.06.2019
№219.017.79bf

Устройство видеонаблюдения внутренней полости герметичных объектов

Устройство предназначено для обследования герметичных объектов большого объема и может быть использовано для обследования объектов, содержащих высокотоксичные экологически опасные продукты после подрыва в них взрывного устройства. Устройство содержит герметичный телескопический корпус,...
Тип: Изобретение
Номер охранного документа: 0002395825
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.7a81

Генератор электромагнитных импульсов

Изобретение относится к области импульсной радиотехники. Генератор электромагнитных импульсов содержит импульсный или импульсно-периодический лазер, источник напряжения, коаксиальную линию, сетчатый параболоидный анод, фотокатод, экран фотокатода, рассеиватель лазерного излучения, размещенный...
Тип: Изобретение
Номер охранного документа: 0002388100
Дата охранного документа: 27.04.2010
09.06.2019
№219.017.7c1d

Способ покусковой сепарации минерального сырья

Изобретение относится к области обогащения полезных ископаемых и, в частности его можно использовать в методах покусковой сепарации как радиоактивных, так и не радиоактивных руд. Способ покусковой сепарации минерального сырья по содержанию компонента включает покусковую подачу рудных кусков в...
Тип: Изобретение
Номер охранного документа: 0002366512
Дата охранного документа: 10.09.2009
09.06.2019
№219.017.7cf6

Способ переработки упорных руд и концентратов

Изобретение относится к способу переработки упорных руд и концентратов, содержащих золото. Способ включает обработку их хлором в присутствии воды и комплексообразователя в виде хлорида натрия с переводом золота в раствор, отделение раствора от образовавшегося осадка, промывку осадка водой с...
Тип: Изобретение
Номер охранного документа: 0002412262
Дата охранного документа: 20.02.2011
09.06.2019
№219.017.7d1f

Способ получения окислов урана из тетрафторида урана

Изобретение может быть использовано для конверсии тетрафторида обедненного урана. Тетрафторид урана в противоточном режиме контактирует с простым эфиром со строением RO, где R - Н, СН, CH, СН, СН, при температурах 450-550°С в течение 15-120 мин при мольном соотношении UF/эфир от 1÷2,64 до...
Тип: Изобретение
Номер охранного документа: 0002414428
Дата охранного документа: 20.03.2011
19.06.2019
№219.017.86eb

Контейнер для водорода и его изотопов

Изобретение относится к средствам для очистки, хранения и подачи газов преимущественно водорода и его изотопов, а также гелия, аргона и других газов. Контейнер включает водоохлаждаемый герметичный корпус, выполненный в виде обечайки цилиндрической формы с фланцем, размещенной внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002383955
Дата охранного документа: 10.03.2010
19.06.2019
№219.017.8883

Способ реэкстракции плутония из органического раствора трибутилфосфата

Изобретение относится к области регенерации плутония из отработанного ядерного топлива (ОЯТ) водными методами. На операциях отделения плутония от урана и на операции аффинажа плутония в качестве его восстановителя используется карбогидразид CO(NH) в концентрации от 0.2 до 1.0 моль/л. Нижний...
Тип: Изобретение
Номер охранного документа: 0002410774
Дата охранного документа: 27.01.2011
20.06.2019
№219.017.8d12

Способ организации естественной циркуляции жидкометаллического теплоносителя ядерного реактора на быстрых нейтронах

Изобретение относится к области ядерной техники и может быть использовано при организации естественной циркуляции жидкометаллического теплоносителя в контуре ядерного реактора на быстрых нейтронах. Для создания движущего напора циркуляции жидкометаллического теплоносителя в контуре ядерного...
Тип: Изобретение
Номер охранного документа: 0002691755
Дата охранного документа: 18.06.2019
22.06.2019
№219.017.8eae

Комплекс стрельбовой дистанционно-управляемый дым-2

Изобретение относится к системам предупреждения и воздействия, осуществляющим организацию обороны объекта. Комплекс содержит стационарно установленную и дистанционно-управляемую стрельбовую установку (СУ). В состав СУ входят блок телевизионный, блок тепловизионный, громкоговоритель, устройство...
Тип: Изобретение
Номер охранного документа: 0002692196
Дата охранного документа: 21.06.2019
Showing 401-408 of 408 items.
20.01.2018
№218.016.1365

Аэродромная тележка-погрузчик

Изобретение относится к обслуживанию авиационной техники. Аэродромная тележка - погрузчик содержит ходовую часть (1), механизм (26) поперечного перемещения, механизм (10) подъема. Механизм поперечного перемещения имеет неподвижную раму (25) с закрепленными на ней катками (43), внутреннюю...
Тип: Изобретение
Номер охранного документа: 0002634518
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.148a

Устройство для нанесения покрытий на подложки в вакууме

Изобретение относится к технологии нанесения нанопленок в вакууме и может быть использовано в производстве изделий микроэлектроники. Устройство содержит вакуумную камеру, магнетрон с кольцевой зоной эрозии мишени и связанные кинематически с реверсивным электроприводом вакуумный ввод с...
Тип: Изобретение
Номер охранного документа: 0002634833
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1c7c

Термоядерный реактор

Изобретение относится к термоядерной технике и используется при создании энергетических термоядерных установок типа токамак. Термоядерный реактор содержит вакуумный корпус и соединенные с ним посредством гибких опор модули бланкета. Гибкие опоры дополнительно выполняют функции электрических...
Тип: Изобретение
Номер охранного документа: 0002640407
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1db9

Способ уничтожения конфиденциальной информации, хранимой в микросхемах памяти электронных приборов

Изобретение относится к вычислительной технике. Технический результат заключается в уничтожении конфиденциальной информации, хранимой в микросхемах памяти электронных приборов с целью ее защиты от несанкционированного доступа. Способ уничтожения конфиденциальной информации, хранимой в...
Тип: Изобретение
Номер охранного документа: 0002640725
Дата охранного документа: 11.01.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.342b

Способ иммобилизации жидких высокосолевых радиоактивных отходов

Изобретение относится к области ядерной энергетики, в частности к обращению с жидкими радиоактивными отходами (ЖРО) с целью их последующего длительного хранения и/или захоронения. Способ иммобилизации ЖРО в фосфатном компаунде включает регулирование уровня рН отходов, введение в полученный...
Тип: Изобретение
Номер охранного документа: 0002645737
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
13.06.2019
№219.017.82af

Способ определения компонентного состава природного газа в реальном масштабе времени

Изобретение относится к области абсорбционной спектроскопии и может быть использовано для компонентного анализа природного газа и газовых смесей на его основе в реальном масштабе времени. Способ заключается в цикличном во времени или одновременном измерении поглощения излучения анализируемым...
Тип: Изобретение
Номер охранного документа: 0002441219
Дата охранного документа: 27.01.2012
+ добавить свой РИД