×
20.07.2014
216.012.de0b

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ МНОГОКОМПОНЕНТНЫХ ГАЗОВЫХ СМЕСЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к приготовлению многокомпонентных газовых смесей и может быть использовано в лазерной технике, химической промышленности, в частности для приготовления смеси из перфторалкилиодида и буферных газов и последующего заполнения различных рабочих емкостей. Способ включает напуск в рабочую емкость компонентов. Часть компонентов напускают при непрерывном контроле парциального давления. Исходя из соотношения количества компонентов (в процентах от общего объема смеси) и суммарного давления смеси, рассчитывают массы отдельных компонентов. Для приготовления смеси используют промежуточный предварительно вакуумированный баллон с известным объемом и массой. Первоначально в баллон напускают рабочую компоненту, которая находится в жидкой фазе, с его последующим взвешиванием, а напуск в баллон второй и последующих газовых компонентов проводят при непрерывном контроле парциального давления напускаемого газа с учетом коэффициента сжимаемости. Массы второй и последующих газовых компонентов контролируют с помощью взвешивания баллона с приготовленной в нем смесью, далее выпускают предварительно приготовленную смесь из баллона в вакуумированную рабочую емкость. Технический результат состоит в повышении производительности. 1 ил.
Основные результаты: Способ приготовления многокомпонентных газовых смесей путем напуска в рабочую емкость компонентов, причем часть компонентов напускают при непрерывном контроле парциального давления, отличающийся тем, что исходя из соотношения количества компонентов (в % от общего объема смеси) и суммарного давления смеси рассчитывают массы отдельных компонентов, для приготовления смеси используют промежуточный предварительно вакуумированный баллон с известным объемом и массой, причем первоначально в баллон напускают рабочую компоненту, которая находится в жидкой фазе с его последующим взвешиванием, а напуск в баллон второй и последующих газовых компонентов проводят при непрерывном контроле парциального давления напускаемого газа с учетом коэффициента сжимаемости, массы второй и последующих газовых компонентов контролируют с помощью взвешивания баллона с приготовленной в нем смесью, далее выпускают предварительно приготовленную смесь из баллона в вакуумированную рабочую емкость.

Изобретение относится к приготовлению многокомпонентных газовых смесей и может быть использовано в лазерной технике, химической промышленности, в частности для приготовления смеси из перфторалкилиодида и буферных газов и последующего заполнения различных рабочих емкостей.

Известен способ приготовления многокомпонентных газовых смесей (патент RU №2097117, опубл. 27.11.97) путем смешивания входящих в них компонентов, причем компоненты вводят в рабочую емкость при непрерывном контроле давления Рсм и температуры Тсм до их совпадения со значениями заданной термодинамической характеристики Рсм=F(Tсм), где Рсм - давление насыщенных паров, Тсм - температура смеси.

Недостаток данного способа - невозможность приготовления газовой смеси в том случае, если некоторые из компонентов в зависимости от температуры могут переходить в жидкое состояние, что не позволяет производить напуск при непрерывном контроле парциального давления.

Наиболее близким к предлагаемому способу по технической сущности является изобретение по патенту RU №2310825, опубл. 20.11.2007. Способ приготовления многокомпонентной смеси для градуировки газоанализаторов в массовых единицах концентрации анализируемого компонента (рабочее вещество) заключается во введении заданного количества рабочего вещества в предварительно провакуумированную герметичную рабочую емкость, смешении его с газом-разбавителем и вытеснении полученной смеси к градуируемому газоанализатору. К герметичной рабочей емкости подключают с возможностью изолирования от нее колбу известной вместимости, которую предварительно вакуумируют и измеряют массу, рассчитывают величину давления, обеспечивающего достижение заданной массовой концентрации рабочего вещества при температуре, равной температуре окружающей среды. Рабочее вещество вводят в совмещенный объем рабочей емкости и колбы до рассчитанного давления, затем колбу отсоединяют от емкости и взвешивают ее, определяя массу колбы с рабочим веществом, после чего рассчитывают истинное значение массовой концентрации. После определения массовой концентрации в рабочую емкость добавляют газ-разбавитель при контроле парциального давления.

Недостатком данного способа является то, что приготовление смеси при напуске компонентов непосредственно в рабочую емкость потребует большого количества времени, поскольку переход компонента из жидкой в газовую фазу достаточно длительный. В случае контроля заполнения по изменению парциального давления, напуск компонент должен проводиться с учетом сжимаемости газа.

Техническим результатом заявляемого способа является повышение производительности за счет уменьшения времени напуска многокомпонентной смеси в рабочую емкость.

В способе приготовления многокомпонентных газовых смесей путем напуска в рабочую емкость компонентов, причем часть компонентов напускают при непрерывном контроле парциального давления, новым является то, что исходя из соотношения количества компонентов (в % от общего объема смеси) и суммарного давления смеси рассчитывают массы отдельных компонентов, для приготовления смеси используют промежуточный предварительно вакуумированный баллон с известным объемом и массой, причем первоначально в баллон напускают рабочую компоненту, которая находится в жидкой фазе с его последующим взвешиванием, а напуск в баллон второй и последующих газовых компонентов проводят при непрерывном контроле парциального давления напускаемого газа с учетом коэффициента сжимаемости, массы второй и последующих газовых компонентов контролируют с помощью взвешивания баллона с приготовленной в нем смесью, далее выпускают предварительно приготовленную смесь из баллона в вакуумированную рабочую емкость.

Использование промежуточного баллона дает ряд преимуществ. Предварительная подготовка смеси позволит с высокой точностью получить нужную концентрацию веществ в смеси, также время напуска из промежуточного баллона мало (при заполнении больших объемов). С помощью данного способа достигается высокая однородность смеси практически сразу после напуска, что не возможно в случае последовательного заполнения больших емкостей.

Весовой метод позволяет производить напуск газовых компонентов как в жидкой, так и в газовой фазе, однако требует достаточно больших временных затрат. Способ парциальных давлений основан на законе Дальтона для идеального газа и не требует много времени, в нашем случае конечное давление велико, поэтому необходимо принимать во внимание сжимаемость реального газа. Коэффициент сжимаемости газа берется из справочной литературы.

Для отработки данного метода приготовления смеси использовались баллон из нержавеющей стали объемом ~1 литр и рабочая емкость (лазерный объем) объемом 265 л. Запас смеси в баллоне должен обеспечить в объеме рабочей емкости давление смеси на уровне 120 Торp при следующем составе: n-C3F7I (в баллоне будет находиться в жидкой фазе) и Xe (в газовой фазе) с содержанием n-C3P7I ~12% (в % от общего объема смеси). На основе этих исходных параметров рассчитывались массы компонентов, которые нужно напускать в баллон.

Исходя из соотношения количества компонентов N1:N2:…:Ni (% об.) и суммарного давления смеси PΣ (мм рт.ст.) рассчитывались массы отдельных компонентов:

где: Gi - масса i-компоненты в г;

PΣ - суммарное давление смеси (мм рт.ст.);

Ni - концентрация i-компоненты (% об.);

ρi - удельный вес i-компоненты при нормальных условиях (20°C; 101,3 КПа или 760 мм рт.ст.);

V - объем (л).

Удельный вес i-компоненты ρi берется из справочной литературы. В частности, при нормальных условиях удельный вес ксенона составляет ρXe=5,896 г/л.

После расчета массы рабочего вещества определялось количество жидкой фазы, которая подается в баллон с помощью дозатора с известной ценой деления г/л с последующим взвешиванием.

Буферные газы заполнялись в баллон при непрерывном контроле парциального давления напускаемого газа с учетом коэффициента сжимаемости.

Расчет запаса газовых компонентов в баллоне производится исходя из условия, что при перенапуске в рабочий объем лазера все компоненты будут находиться в газообразном состоянии при заданной температуре.

Массы отдельных компонентов контролировались с помощью взвешивания, точность которого составляла ±0,03 г.

По результатам взвешивания определялась концентрация отдельных компонент в смеси по формуле:

где: Mi - молекулярная масса i-компоненты.

На Фиг.1a) представлена принципиальная схема отработки напуска смеси в рабочую емкость, где:

1 - насос;

2, 3, 4, 7 - вентиль;

5 - баллон со смесью;

6 - вакуумметр образцовый;

8 - преобразователь манометрический ПМТ-4М;

9 - вакуумметр термопарный ВТ-3

и б) схематическое распределение газовой и жидкой фаз в баллоне.

С помощью данной схемы проведена экспериментальная отработка способа приготовления газовой смеси на основе перфторалкилиодида (C3F7I) и буферного газа (Xe). Суммарное давление газовой смеси в емкости равно 120 Торp, процентное содержание первой компоненты 12%. Проверка состава смеси в емкости осуществлялась методом газовой хроматографии из точки 1 и 2. Результаты исследований приведены в таблице 1.

Таблица 1
Результаты газохроматографического анализа проб газовой смеси.
Время выдержки смеси во внутреннем объеме макета после напуска точка 1/точка 2 Содержание первой компоненты в смеси, % об. Изменение состава смеси, %
Точка отбора пробы
у торца (1) по центру (2)
15/15 мин 12,3 12,2 1
10/15 мин 12,4 12,5 1
23/30 мин 12,2 12,1 1
10/15 мин 12,3 12,3 1
22/30 мин 11,7 11,6 3
200 часов 11,8 11,7 2
15/15 мин 11,5 11,3 3

Таким образом, отработан способ приготовления многокомпонентной газовой смеси в рабочей емкости, позволяющий приготавливать смеси с точностью содержания рабочего вещества на уровне ±3%.

Способ приготовления многокомпонентных газовых смесей путем напуска в рабочую емкость компонентов, причем часть компонентов напускают при непрерывном контроле парциального давления, отличающийся тем, что исходя из соотношения количества компонентов (в % от общего объема смеси) и суммарного давления смеси рассчитывают массы отдельных компонентов, для приготовления смеси используют промежуточный предварительно вакуумированный баллон с известным объемом и массой, причем первоначально в баллон напускают рабочую компоненту, которая находится в жидкой фазе с его последующим взвешиванием, а напуск в баллон второй и последующих газовых компонентов проводят при непрерывном контроле парциального давления напускаемого газа с учетом коэффициента сжимаемости, массы второй и последующих газовых компонентов контролируют с помощью взвешивания баллона с приготовленной в нем смесью, далее выпускают предварительно приготовленную смесь из баллона в вакуумированную рабочую емкость.
СПОСОБ ПРИГОТОВЛЕНИЯ МНОГОКОМПОНЕНТНЫХ ГАЗОВЫХ СМЕСЕЙ
Источник поступления информации: Роспатент

Showing 391-400 of 597 items.
25.08.2017
№217.015.9edb

Прибор для подрыва пиросредств

Изобретение относится к системам инициирования пиросредств. Прибор для подрыва пиросредств содержит микроконтроллер, каждый выход которого подключен к управляющему входу соответствующего релейного ключа, электровзрывные сети, источник энергии, к минусовой клемме которого подключен первый вывод...
Тип: Изобретение
Номер охранного документа: 0002606265
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a007

Мишень для получения радиоизотопа

Изобретение относится к ядерной технологии и предназначено для получения радиоактивных изотопов, применяемых в медицине. Мишень (7) для получения радиоизотопа состоит из оболочки (9), оснащенной входным (2) и выходным (3) патрубками для подвода и отвода промывной жидкости, и помещенного в...
Тип: Изобретение
Номер охранного документа: 0002606642
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a3c4

Мишень источника нейтронов

Изобретение относится к источникам нейтронов. Мишень источника нейтронов содержит мембрану (1), генерирующую нейтроны при облучении ускоренными заряженными частицами, и корпус мишени (2). При этом толщину мембраны (1) выбирают по соотношению с учетом теплопроводности мембраны, допустимого...
Тип: Изобретение
Номер охранного документа: 0002607463
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a983

Способ навигации летательных аппаратов

Изобретение относится к области навигации и может быть использовано при построении различных систем локации, предназначенных для навигации летательных аппаратов (ЛА). Достигаемый технический результат - повышение быстродействия навигации ЛА за счет оперативной обработки получаемой информации...
Тип: Изобретение
Номер охранного документа: 0002611564
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa03

Быстрый импульсный реактор с модуляцией реактивности

Изобретение относится к области преобразования ядерной энергии. Быстрый импульсный реактор содержит активную зону, корпус реактора (5), модулятор реактивности, защитный экран (4). Активная зона помещается в корпус реактора (5). Модулятор реактивности, охватывающий по всей высоте активную зону,...
Тип: Изобретение
Номер охранного документа: 0002611570
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa2f

Устройство для измерения перемещений объекта

Изобретение относится к измерительной технике и может быть использовано для измерения траектории движения транспортных средств и знакопеременных перемещений объектов. Устройство для измерения перемещений объекта содержит акселерометр 1, реверсивный счетчик 2, регистр 3, вычислитель 4. Введены...
Тип: Изобретение
Номер охранного документа: 0002611895
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aa61

Устройство комплексного контроля волоконно-оптических линий

Изобретение относится к технике связи и может использоваться для контроля волоконно-оптических линий (ВОЛП) методами интегральной рефлектометрии и прямого детектирования . Технический результат состоит в повышении качества контроля и обеспечении работы устройства в широком динамическом...
Тип: Изобретение
Номер охранного документа: 0002611588
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa7b

Термоэмиссионный преобразователь

Термоэмиссионный преобразователь относится к энергетике. Термоэмиссионный преобразователь содержит узел катода, включающий катод (6) и корпус со средствами нагрева (10), и узел анода, включающий перфорированный анод (1), корпус со средствами охлаждения (5) и каналами для пропуска пара цезия (4)...
Тип: Изобретение
Номер охранного документа: 0002611596
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aaf0

Фотоприемное устройство (варианты) и способ его изготовления

Изобретение относится к области полупроводниковой электроники, в частности к способам изготовления структур фотоэлектрических приемных устройств (ФПУ), предназначенных для преобразования светового излучения определенного спектрального диапазона в электрический сигнал. В способе изготовления...
Тип: Изобретение
Номер охранного документа: 0002611552
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.b28e

Ядерная энергетическая установка с системой очистки теплоносителя

Изобретение относится к атомной технике. Ядерная энергетическая установка (ЯЭУ) содержит интегральный реактор с корпусом и крышкой, не менее трех контуров циркуляции теплоносителя, промежуточный (9) и технологический (14) теплообменник, трубопроводы подвода и отвода теплоносителя от...
Тип: Изобретение
Номер охранного документа: 0002614048
Дата охранного документа: 22.03.2017
Showing 391-400 of 451 items.
25.08.2017
№217.015.9edb

Прибор для подрыва пиросредств

Изобретение относится к системам инициирования пиросредств. Прибор для подрыва пиросредств содержит микроконтроллер, каждый выход которого подключен к управляющему входу соответствующего релейного ключа, электровзрывные сети, источник энергии, к минусовой клемме которого подключен первый вывод...
Тип: Изобретение
Номер охранного документа: 0002606265
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a007

Мишень для получения радиоизотопа

Изобретение относится к ядерной технологии и предназначено для получения радиоактивных изотопов, применяемых в медицине. Мишень (7) для получения радиоизотопа состоит из оболочки (9), оснащенной входным (2) и выходным (3) патрубками для подвода и отвода промывной жидкости, и помещенного в...
Тип: Изобретение
Номер охранного документа: 0002606642
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a3c4

Мишень источника нейтронов

Изобретение относится к источникам нейтронов. Мишень источника нейтронов содержит мембрану (1), генерирующую нейтроны при облучении ускоренными заряженными частицами, и корпус мишени (2). При этом толщину мембраны (1) выбирают по соотношению с учетом теплопроводности мембраны, допустимого...
Тип: Изобретение
Номер охранного документа: 0002607463
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a983

Способ навигации летательных аппаратов

Изобретение относится к области навигации и может быть использовано при построении различных систем локации, предназначенных для навигации летательных аппаратов (ЛА). Достигаемый технический результат - повышение быстродействия навигации ЛА за счет оперативной обработки получаемой информации...
Тип: Изобретение
Номер охранного документа: 0002611564
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa03

Быстрый импульсный реактор с модуляцией реактивности

Изобретение относится к области преобразования ядерной энергии. Быстрый импульсный реактор содержит активную зону, корпус реактора (5), модулятор реактивности, защитный экран (4). Активная зона помещается в корпус реактора (5). Модулятор реактивности, охватывающий по всей высоте активную зону,...
Тип: Изобретение
Номер охранного документа: 0002611570
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa2f

Устройство для измерения перемещений объекта

Изобретение относится к измерительной технике и может быть использовано для измерения траектории движения транспортных средств и знакопеременных перемещений объектов. Устройство для измерения перемещений объекта содержит акселерометр 1, реверсивный счетчик 2, регистр 3, вычислитель 4. Введены...
Тип: Изобретение
Номер охранного документа: 0002611895
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aa61

Устройство комплексного контроля волоконно-оптических линий

Изобретение относится к технике связи и может использоваться для контроля волоконно-оптических линий (ВОЛП) методами интегральной рефлектометрии и прямого детектирования . Технический результат состоит в повышении качества контроля и обеспечении работы устройства в широком динамическом...
Тип: Изобретение
Номер охранного документа: 0002611588
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa7b

Термоэмиссионный преобразователь

Термоэмиссионный преобразователь относится к энергетике. Термоэмиссионный преобразователь содержит узел катода, включающий катод (6) и корпус со средствами нагрева (10), и узел анода, включающий перфорированный анод (1), корпус со средствами охлаждения (5) и каналами для пропуска пара цезия (4)...
Тип: Изобретение
Номер охранного документа: 0002611596
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aaf0

Фотоприемное устройство (варианты) и способ его изготовления

Изобретение относится к области полупроводниковой электроники, в частности к способам изготовления структур фотоэлектрических приемных устройств (ФПУ), предназначенных для преобразования светового излучения определенного спектрального диапазона в электрический сигнал. В способе изготовления...
Тип: Изобретение
Номер охранного документа: 0002611552
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.b28e

Ядерная энергетическая установка с системой очистки теплоносителя

Изобретение относится к атомной технике. Ядерная энергетическая установка (ЯЭУ) содержит интегральный реактор с корпусом и крышкой, не менее трех контуров циркуляции теплоносителя, промежуточный (9) и технологический (14) теплообменник, трубопроводы подвода и отвода теплоносителя от...
Тип: Изобретение
Номер охранного документа: 0002614048
Дата охранного документа: 22.03.2017
+ добавить свой РИД