×
10.07.2014
216.012.dbad

Результат интеллектуальной деятельности: КАПЛЕУЛОВИТЕЛЬ ДЛЯ ЦЕНТРОБЕЖНОГО КОМПРЕССОРА

Вид РИД

Изобретение

№ охранного документа
0002522015
Дата охранного документа
10.07.2014
Аннотация: Группа изобретений относится к центробежному компрессору и, в частности, к каплеуловителям для удаления жидкости из компрессора, а также к способу повышения эффективности работы центробежного компрессора в газотурбинных двигателях. Устройство для улавливания капель жидкости, расположенное в рабочем колесе компрессора, содержит первое отверстие, расположенное на поверхности рабочего колеса и выполненное с обеспечением приема капель жидкости, и канал, расположенный ниже указанного отверстия и проточно с ним сообщающийся. При этом канал выполнен с обеспечением направления капель жидкости из первого отверстия и из рабочего колеса компрессора. Центробежный компрессор, расположенный в газотурбинном двигателе, содержит центробежное рабочее колесо, которое содержит вращающиеся выполненные за одно целое лопатки, каждая из которых имеет корневую часть и концевую часть и которые выполнены с обеспечением сжатия воздуха в центробежном гравитационном поле, и устройства для улавливания капель жидкости. Согласно способу повышения эффективности центробежного компрессора с помощью удаления капель жидкости осуществляют размещение устройства для улавливания капель жидкости в части центробежного рабочего колеса, эффективной для улавливания капель жидкости в месте их соударения с центробежным рабочим колесом, после этого производят улавливание капель жидкости в отверстии указанного устройства и удаление капель жидкости из центробежного компрессора путем их направления из отверстия в канал указанного устройства. Техническим результатом является предотвращение скопления жидкости и образования более крупных капель или жидкой пленки на поверхности рабочего колеса центробежного компрессора, что устраняет риск повышения эрозионного воздействия и снижения эффективности компрессора. 4 н. и 16 з.п. ф-лы, 8 ил.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится в целом к центробежным компрессорам и, в частности, к каплеуловителям для удаления жидкости из компрессора. Данное изобретение также относится к центробежным компрессорам, содержащим такие устройства, и к способам повышения эффективности компрессоров при помощи этих устройств.

Компрессор, как правило, используется для повышения давления рабочей текучей среды путем подвода мощности от электрической машины или турбины и приложения сжимающего усилия к рабочей среде. Рабочей текучей средой может являться воздух, газ, хладагент или подобное вещество. Компрессоры, как правило, подразделяются на объемные компрессоры, динамические компрессоры и турбокомпрессоры в зависимости от используемого в них способа сжатия.

Объемные компрессоры используются, как правило, для повышения давления рабочей текучей среды путем уменьшения объема. Одним из типов объемного компрессора является центробежный компрессор. Центробежные компрессоры работают путем ускорения рабочей текучей среды (например, газа) с помощью вращающихся лопаток и последующего ограничения выходящего газа с обеспечением его сжатия.

На надежность компрессора сильное влияние могут оказывать загрязняющие вещества во входящем газе, такие как жидкие или твердые частицы. Механические неисправности центробежных компрессоров могут во многих случаях вызываться жидкоаэрозольным загрязнением (например, каплями жидкости) поступающего газа. Капли жидкости могут накапливаться в потоке газа из-за конденсации газа при его столкновении с поверхностями внутри компрессора. На фиг.1 показана часть известного центробежного компрессора 10 и характер потока газо-жидкостных капель в таких компрессорах. Как показано на фиг.1, капли 12 сначала сталкиваются в компрессоре с поверхностью рабочего колеса 14, в частности, с лопатками рабочего колеса. Капли 12 соударяются с вращающимся рабочим колесом, сталкиваются друг с другом и образуют более крупные капли. Хотя часть более крупных капель может продолжать двигаться в направлении газового потока компрессора, остальная часть этих капель прилипает к вращающейся поверхности рабочего колеса. Более вероятно, что далее более крупная капля сольется с новыми каплями, сталкивающимися с поверхностью. Таким образом, капли укрупняются, их испарение затруднено и их эрозионное воздействие возрастает. Объем жидкой фазы в компрессоре может возрастать, и КПД компрессора пропорционально снижается. Жидкая пленка, которая образуется на поверхности лопаток или корпуса из-за осаждения капель, может стать нестабильной и также может приводить к образованию капель большого размера, которые потенциально могут быть очень вредными с точки зрения эрозии. С течением времени увеличенный объем жидкой фазы и связанные с ней загрязняющие вещества будут вызывать коррозию и разрушение компрессора, приводя к поломке или по меньшей мере к частой остановке для осмотра и ремонта.

Даже если в потоке на входе содержится незначительное количество воды, то по направлению потока на первой ступени в существующих центробежных компрессорах устанавливают устройства для отделения капель, предназначенные для отделения всей содержащейся воды из смеси. Однако в существующих устройствах для отделения капель нет такого способа отделения, при котором капли жидкости захватываются до того, как они могут сливаться и становиться более крупными. Это приводит к значительному эффекту промежуточного охлаждения, задержанному испарению и высокой локальной объемной части/концентрации жидкой фазы, что значительно влияет на производительность компрессора.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Здесь описаны каплеуловители для удаления капель жидкости из центробежных компрессоров. В одном варианте выполнения это устройство включает устройство для улавливания капель жидкости, расположенное в рабочем колесе компрессора. Устройство включает отверстие, расположенное на поверхности рабочего колеса и предназначенное для сбора капель жидкости, и канал, расположенный ниже указанного отверстия и проточно с ним сообщающийся, при этом канал выполнен с обеспечением направления капли жидкости из указанного отверстия и из рабочего колеса компрессора.

В другом варианте выполнения центробежный компрессор содержит центробежное рабочее колесо. Центробежное рабочее колесо содержит вращающиеся выполненные с ним за одно целое лопатки, каждая из которых имеет корневую часть и концевую часть и которые выполнены с обеспечением сжатия воздуха в центробежном гравитационном поле, и устройства для улавливания капель жидкости, расположенные на указанных вращающихся лопатках, при этом устройство для улавливания капель жидкости содержит отверстие, расположенное на поверхности рабочего колеса и предназначенное для сбора капель жидкости, и канал, который расположен ниже указанного отверстия во вращающихся лопатках и проточно сообщается с отверстием, при этом канал выполнен с обеспечением направления капель жидкости из отверстия и из центробежного компрессора.

Способ повышения эффективности центробежного компрессора путем удаления капель жидкости включает размещение устройства для улавливания капель жидкости в части центробежного рабочего колеса с обеспечением эффективного улавливания капель жидкости в месте их соударения с центробежным рабочим колесом, при этом устройство для улавливания капель жидкости содержит отверстие, расположенное на поверхности центробежного рабочего колеса, и канал, расположенный ниже отверстия в центробежном рабочем колесе и проточно сообщающийся с отверстием. Способ включает также улавливание капель жидкости в отверстии устройства для улавливания капель жидкости и удаление этих капель из центробежного компрессора путем направления капель жидкости из отверстия в указанный канал.

Описанные выше и другие признаки проиллюстрированы на следующих чертежах и в подробном описании.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На чертежах одинаковые элементы обозначены одинаковыми номерами позиций.

Фиг.1 изображает известное центробежное рабочее колесо с проиллюстрированным характером потока капель жидкости;

Фиг.2 схематически изображает продольный разрез центробежной ступени обычного промышленного компрессора;

Фиг.3 схематически изображает продольный разрез обычного газотурбинного двигателя;

Фиг.4 схематически изображает центробежное рабочее колесо, используемое с газотурбинным двигателем, показанным на Фиг.3;

Фиг.5 схематически изображает примерный вариант выполнения центробежного рабочего колеса, содержащего предложенное устройство для улавливания капель жидкости;

Фиг.6 изображает одно из примерных устройств для улавливания капель согласно фиг.5 в увеличенном масштабе;

Фиг.7 схематически изображает разрез примерного варианта выполнения каплеуловителя щелевого типа; и

Фиг.8 изображает фрагмент рабочего колеса, показанного на фиг.3, на котором показаны дополнительные полосы или канавки.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к устройству для улавливания капель жидкости (далее - "каплеуловитель"), предназначенному для удаления капель жидкости из центробежного компрессора. Описанный здесь каплеуловитель позволяет эффективно собирать капли жидкости и отводить их в каналы, которые направляют их из компрессора. Существующие принципы отделителей капель в целом основываются на уловителях или фильтрах, которые установлены на внешней окружности кожуха компрессора. Одним из недостатков этих отделителей является то, что для капель есть время для слияния и роста до выхода из рабочего колеса к внешней периферии компрессора. Задержка позволяет увеличиваться общей объемной части жидкости внутри компрессора. Другим недостатком таких отделителей является отделение крупных капель при разрушении растущей жидкой пленки на поверхности компрессора. Описанные здесь каплеуловители удаляют капли жидкости в тех точках, где ожидается их соударение с поверхностью рабочего колеса до того, как произойдет слияние. Сливающиеся капли сразу же удаляются с поверхности при помощи каплеуловителей таким образом, что отсутствует вероятность ускорения жидкости в компрессоре для последующего образования новых капель. В результате общая объемная часть жидкой фазы в компрессоре может поддерживаться в приемлемом минимальном диапазоне, сохраняя, таким образом, рабочие условия, близкие к проектным условиям.

Как упоминалось, описанные здесь каплеуловители могут применяться в любом центробежном компрессоре, предназначенном для сжатия газообразной текучей среды. Пример такого компрессора можно найти, например, в газотурбинном двигателе или промышленном компрессоре. Как явствует из чертежей в целом и в частности из Фиг.5, изображения даны для описания отдельного варианта выполнения описанного здесь каплеуловителя и не ограничиваются им.

Фиг.2 является схематическим разрезом центробежной ступени обычного промышленного компрессора. В частности на чертеже изображена проточная часть при проходе газа через центробежную секцию 100 внутри промышленного компрессора. Из входного отверстия 102 воздух проходит через диффузор 104. Воздух направляется через диффузор и проходит по криволинейной траектории через обратный канал 106 по направлению к центробежному рабочему колесу 108. Лопатка рабочего колеса выводит воздух в наружном направлении и затем сжимает воздух до его входа в зону сгорания (не показана). В рабочем колесе 108 объем воздуха заключен в самом рабочем колесе и гильзах 110 центробежной ступени. В соответствии с нижеприведенным более подробным обсуждением колесо 108 промышленного компрессора может преимущественно включать описываемые здесь каплеуловители, позволяющие эффективно собирать капли жидкости и предотвращать их слияние на лопатках рабочего колеса и возможное снижение производительности компрессора.

На Фиг.3 показано другое применение, в котором преимущественно могут применяться описанные здесь каплеуловители. На Фиг.3 показан схематический продольный разрез примерного газотурбинного двигателя. Далее описание ведется применительно к центробежным компрессорам, используемым в газотурбинных двигателях. Однако подразумевается, что компрессоры и соответственно описанные здесь каплеуловители могут преимущественно использоваться в любой установке или процессе, где присутствие капель жидкости в компрессоре вредно для эффективности и/или срока службы, например, в описанных выше промышленных компрессорах.

На Фиг.3 показан проточный газовый тракт через центральную часть газотурбинного двигателя 18 с обычным осецентробежным компрессором 20. Из входного отверстия 21 воздух проходит через ряд осевых ступеней из вращающихся лопаток 24 и неподвижных лопаток 22. Эти вращающиеся осевые ступени направляют воздух вперед и таким образом эффективно сжимают его. После прохождения воздуха через осевую часть компрессора 20 центробежное рабочее колесо 26 выводит воздух в наружном направлении и затем сжимает воздух перед его входом в диффузор 28 и зону сгорания 30. В колесе 26 объем воздуха заключен в самом рабочем колесе и покрывающем диске 23 рабочего колеса. Сжатый воздух нагревается в зоне сгорания и поступает через турбинное сопло 32 и вращающийся ротор 34 турбины, где работа отбирается от сильно сжатого высокотемпературного газа.

На Фиг.4 представлен вид в аксонометрии обычного центробежного рабочего колеса 26, показанного на продольном разрезе Фиг.3. Вращающиеся выполненные за одно целое лопатки 38 можно охарактеризовать как скрученные листы, предназначенные для сжатия воздуха в центробежном гравитационном поле. Разделительные лопатки 40, которые являются частичной версией более крупных непрерывных лопаток 38, предотвращают избыточное рассеяние газового потока, поскольку воздушные каналы увеличиваются в размерах при увеличении внешней окружности рабочего колеса от его входа 42 к выходу 44. Следует заметить, что современные рабочие колеса в целом изготавливаются в виде единой детали.

Воздух входит в колесо 26 в зоне 42 осевого входа. Воздух, поступающий во входное отверстие, сжимается в осевых ступенях компрессора, расположенных перед центробежным рабочим колесом. Таким образом, воздух на входе перемещается в направлении, параллельном оси вращения, и является уже сильно сжатым. Внутренний проточный тракт для воздуха в рабочем колесе ограничен втулкой 27 рабочего колеса. Воздух направляется вперед и сжимается лопатками 38 рабочего колеса во всех зонах лопатки от ее корня 29 до концевой части 31. При прохождении воздуха через центробежное рабочее колесо направление потока изменяется от параллельного оси вращения до перпендикулярного оси вращения во всех направлениях. Ко времени достижения выхода 44 воздух движется в основном в наружном направлении от оси вращения и больше не перемещается вдоль этой оси. В этой точке поле потока может быть описано как центробежное, поскольку основное направление воздуха на выходе 44 из центробежного рабочего колеса является тангенциальным.

На фиг.5 изображен разрез центробежного рабочего колеса 50, включающего предложенные каплеуловители 60. Рабочее колесо 50 может быть установлено в центробежном компрессоре, показанном на фиг.2, вместо обычного рабочего колеса 26 или вместо существующих рабочих колес, включающих обычные каплеотделители. Более того, в другом варианте выполнения каплеуловители 60 могут быть расположены на рабочем колесе в сочетании с компрессором, содержащим существующие уловители на покрывающем диске или фильтры. Каплеуловители 60 могут быть расположены в любом месте вдоль поверхности рабочего колеса 50. В примерном варианте выполнения каплеуловитель 60 расположен на каждой лопатке 52 рабочего колеса в точке, где ожидается соударение с каплями жидкости. Точка, где ожидается соударение с жидкостью, может зависеть от многих переменных, например, от скорости компрессора, размера рабочего колеса, размера каждой лопатки, угла лопаток рабочего колеса, конденсации жидкости в компрессоре (например, воды) и т.п.

В данном отдельном варианте выполнения каждый каплеуловитель 60 показан размещенным у корневой части 54 каждой лопатки 50. Уловитель 60 может проходить дальше на саму лопатку, а также включить часть прилегающей поверхности втулки возле корневой части. Уловитель 60, расположенный на лопатке, включает отверстие 62 в форме щели в местах рабочего колеса 50, где ожидается соударение. Щелевое отверстие 62 хорошо подходит для обеспечения входа для капель жидкости для их протекания. Это позволяет эффективно собирать капли и отводить их в каналы (не показаны) каплеуловителя 60, которые направляют капли жидкости из компрессора.

На Фиг.6 более подробно показан один из каплеуловителей 60. Примерный вариант выполнения каплеуловителя 60 содержит 3 отдельных щелевых отверстия 62. В другом варианте выполнения возможно меньше или больше, чем три щелевых отверстия. Например, в некоторых вариантах выполнения возможно множество щелевых отверстий на данном каплеуловителе. В ином варианте выполнения необходимо только одно щелевое отверстие для одного каплеуловителя. Щелевые отверстия 62 проточно сообщаются с каналом 64, расположенным ниже отверстий внутри корпуса каплеуловителя 60 и/или самой лопатки 50 рабочего колеса. Для отдельной системы щелевые отверстии могут иметь любой размер, форму, количество и габариты, которые подходят для улавливания капель жидкости при первом соударении до того, как капли могут сливаться на поверхности рабочего колеса. Параметры щели (например, размер, форма, количество, габариты) будут зависеть от параметров потока и условий эксплуатации компрессора, на котором установлен каплеуловитель. Параметры щели должны быть заданы таким образом, чтобы эффективно собирать капли. Капли отводятся в канал, который отводит собранную жидкость из компрессорной установки. Важные факторы при определении параметров отверстия щели включают, без ограничения, размер рабочего колеса, форму лопатки, месторасположение каплеуловителя, размер компрессора, скорость компрессора, состав капель жидкости и т.п. Более того, глубина каналов должна быть достаточной для проведения капель при их входе в уловитель 60 из щелевого отверстия 62 и из компрессора, не вызывая возвращения жидкости на поверхность рабочего колеса. Каналы спроектированы таким образом, чтобы центробежная сила вращающегося рабочего колеса была достаточной для отведения капель от щелевого входа 62 по каналу 64 и из кожуха компрессора.

На Фиг.7 изображен опционный вариант выполнения каплеуловителя 80. Каплеуловитель 80 является уловителем щелевого типа, который эффективен при удалении капель непосредственно с поверхности лопатки. Как показано на Фиг.7, каплеуловитель 80 может представлять собой щелевидное отверстие 82 на поверхности турбинной лопатки 84. Стрелки указывают направление потока текучей среды (например, воды) по лопатке 84. Сторона входа (т.е. верхний по потоку конец) уловителя 80 изогнута вниз и одновременно проходит вниз от поверхности лопатки 84 в направлении вниз по потоку, так что капля жидкости, перемещающаяся в направлении стрелок, будет повторять изгиб уловителя и удаляется с поверхности лопатки. Каплеуловитель 80 особенно подходит для отведения недавно образовавшейся пленки с турбинной поверхности. По существу каплеуловитель 80 может быть установлен за зоной соударения капель вниз по потоку. Из-за разницы в оптимальной эффективности каплеуловитель 80 щелевого типа может преимущественно использоваться в сочетании с вышеописанным каплеуловителем 60. Каплеуловитель 60 может быть установлен непосредственно в точку соударения с каплей, поскольку для этой цели более простое отверстие каплеуловителя 60 может быть более эффективным для удаления капель, а щелевидный каплеуловитель 80 может быть расположен "ниже по потоку" за каплеуловителем 60 в зоне, которая эффективна для отведения пленки жидкости, недавно образовавшейся из капель, которые не были пойманы или не остановились "ниже по потоку" за каплеуловителем 60. На Фиг.5 черными точками показан характер потока капель 56 жидкости в компрессоре. Как описано выше, каплеуловитель 60 расположен с возможностью улавливания капель жидкости в месте, где ожидается их соударение с рабочим колесом.

Повторим, что в опционном варианте выполнения могут быть расположены дополнительные каплеуловители далее «вниз по потоку» от места, где ожидается соударение. Например, каплеуловители щелевого типа, показанные на Фиг.7, могут применяться «ниже по потоку» за каплеуловителем 60 и в сочетании с ним. Характер потока показывает, как некоторые капли жидкости захватываются в щелевом отверстии 62 при соударении с рабочим колесом. Однако каплеуловитель 60 не захватывает и не собирает все капли жидкости. Характер потока показывает, как некоторые капли 56 соударяются в зоне рабочего колеса вне каплеуловителя 60. Центробежные силы смещают эти капли на внешний периметр рабочего колеса 50. Поскольку каплеуловители 60 захватили много надвигающихся капель 56, то снижена вероятность того, что неподвижные капли соберутся на стенке и образуют пленку. Поэтому эти остающиеся капли могут слететь с рабочего колеса и могут быть пойманы опционными существующими устройствами для отделения капель, такими, как уловители и фильтры, установленные на кожухе компрессора. В другом варианте, в многоступенчатом центробежном компрессоре остающиеся капли 56 могут быть пойманы вторым набором каплеуловителей, расположенным на рабочем колесе последующей ступени. Таким образом уменьшится общая объемная часть жидкой фазы в многоступенчатом компрессоре при переходе капель жидкости от ступени к ступени, так что на выходе компрессора будет присутствовать минимальное количество жидкости. Каплеуловители каждой ступени компрессора могут иметь одни и те же размеры и места установки, или уловители могут быть размещены на различных частях лопатки и иметь размеры, которые изменяются от ступени к ступени. Например, возможно следующее. Поскольку количество капель жидкости снижается от ступени к ступени, каплеуловители последних ступеней могут иметь уменьшенные размеры и габариты по сравнению с начальными ступенями, когда капли жидкости - самые тяжелые, и в компрессоре присутствует больше всего загрязняющих веществ.

Как показано опять же на Фиг.4, центробежное рабочее колесо 26 может также опционно содержать полосы или вырезанные канавки 90, расположенные на лопатках 38, что облегчает сбор воды. Фиг.8 является увеличенным изображением части рабочего колеса 26, на которой показаны канавки 90. Полосы или канавки 90 могут быть выполнены с обеспечением отвода воды ниже от поверхности лопатки рабочего колеса - либо к щелям каплеуловителя, либо к кожуху рабочего колеса, где могут быть установлены другие устройства сбора капель. Более того, согласно изображению на Фиг.8 центробежное рабочее колесо может опционно содержать линию отвода, предназначенную для сбора потока капель жидкости от каждого каплеуловителя 60. Линия отвода может находиться ниже каплеуловителя, т.е. ниже поверхности лопатки рабочего колеса, и поэтому не видна на чертеже. Линия отвода может иметь любую подходящую форму для сбора жидкости, такую, как желоб, труба, цилиндр и т.п. Далее линия отвода может быть соединена с емкостью, расположенной снаружи кожуха компрессора, для сбора и периодического опорожнения жидкости, собранной при эксплуатации компрессора.

При эксплуатации способ удаления жидкости и загрязняющих веществ из центробежного компрессора может включать размещение каплеуловителя на поверхности рабочего колеса, при этом каплеуловитель размещают в месте, которое эффективно для улавливания капель жидкости в точке их соударения с поверхностью рабочего колеса. Каплеуловитель может включать щелевое отверстие, предназначенное для приема капель жидкости, и канал, проточно сообщающийся со щелевым отверстием и выполненный с обеспечением отвода капель жидкости из щелевого отверстия и из компрессора.

Описанный здесь каплеуловитель имеет четкие преимущества по сравнению с существующими отделителями капель, особенно теми, которые размещены на внешней периферии компрессоров. Описанный каплеуловитель позволяет эффективно собирать капли жидкости и отводить их в каналы, которые отводят их из компрессора до того, когда капли начнут сливаться и расти. Описанные здесь каплеуловители удаляют капли жидкости в тех местах, где ожидается соударение капель с поверхностью рабочего колеса до того, как произойдет слияние, сразу же удаляя капли с поверхности таким образом, что отсутствует вероятность ускорения жидкости в компрессоре для последующего образования новых капель. В результате общая объемная часть жидкой фазы в компрессоре может поддерживаться в приемлемом минимальном диапазоне, сохраняя, таким образом, рабочие условия близкими к проектным условиям для компрессора и снижая повреждение, повышая эффективность и поддерживая срок службы компрессора.

Раскрытые здесь диапазоны являются охватывающими и могут комбинироваться (например, диапазоны "до приблизительно 25% по весу, или, более точно, от приблизительно 5% по весу до приблизительно 25% по весу" включают крайние значения и все промежуточные значения диапазона "от приблизительно 5% по весу до приблизительно 25% по весу", и т.д.). "Комбинация, сочетание" включают смеси, компаунды, сплавы, продукты реакции и т.п. Более того, используемые здесь термины "первый", "второй" и подобные не обозначают какой-либо порядок, количество или значимость, но, однако, используются для того, чтобы отличать один элемент от другого. Используемые здесь термины в единственном числе не обозначают ограничение количества, а обозначают наличие по меньшей мере одного упомянутого элемента. Наречие "приблизительно", используемое в связи с величиной, включает указанное значение и имеет смысл, продиктованный контекстом (например, включает погрешность, связанную с измерением отдельной величины). Используемые в скобках окончания множественного числа включают как единственное число, так и множественное число определяемого им термина, включая, таким образом, один или более соответствующий элемент (например, краситель(и)) включает один или несколько красителей). Во всем описании ссылка на «один вариант выполнения», «другой вариант выполнения», «вариант выполнения» и т.д. означает, что отдельный элемент (например, признак, конструкция и/или характеристика), описанный в связи с одним вариантом выполнения, включается по меньшей мере в один описанный здесь вариант выполнения и может присутствовать или не присутствовать в других вариантах выполнения. Кроме этого необходимо понять, что описанные элементы могут комбинироваться любым подходящим способом в различных вариантах выполнения.

Хотя изобретение описано со ссылкой на предпочтительный вариант выполнения, понятно, что могут быть сделаны различные изменения, и элементы могут быть заменены эквивалентами, не выходя за пределы объема изобретения. Кроме того, в принципы изобретения могут быть внесены многие модификации для адаптации особой ситуации или материала, не выходя за пределы его (изобретения) существенного объема. Поэтому изобретение не ограничивается отдельным вариантом выполнения, описанным как наилучший продуманный способ осуществления данного изобретения, но включает все варианты выполнения в пределах объема прилагаемой формулы изобретения.


КАПЛЕУЛОВИТЕЛЬ ДЛЯ ЦЕНТРОБЕЖНОГО КОМПРЕССОРА
КАПЛЕУЛОВИТЕЛЬ ДЛЯ ЦЕНТРОБЕЖНОГО КОМПРЕССОРА
КАПЛЕУЛОВИТЕЛЬ ДЛЯ ЦЕНТРОБЕЖНОГО КОМПРЕССОРА
КАПЛЕУЛОВИТЕЛЬ ДЛЯ ЦЕНТРОБЕЖНОГО КОМПРЕССОРА
КАПЛЕУЛОВИТЕЛЬ ДЛЯ ЦЕНТРОБЕЖНОГО КОМПРЕССОРА
КАПЛЕУЛОВИТЕЛЬ ДЛЯ ЦЕНТРОБЕЖНОГО КОМПРЕССОРА
КАПЛЕУЛОВИТЕЛЬ ДЛЯ ЦЕНТРОБЕЖНОГО КОМПРЕССОРА
КАПЛЕУЛОВИТЕЛЬ ДЛЯ ЦЕНТРОБЕЖНОГО КОМПРЕССОРА
Источник поступления информации: Роспатент

Showing 111-120 of 353 items.
10.04.2016
№216.015.2ea9

Герметизированный узел статора и двигатель (варианты)

Изобретение относится к герметизированным узлам статора, предназначенным для применения в двигателях с электрическим приводом, таких как двигатель компрессора с электроприводом. Технический результат - снижение потерь на вихревые токи. Герметизированный узел статора включает статор, содержащий...
Тип: Изобретение
Номер охранного документа: 0002580948
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f68

Теплоотводы с с-образными коллекторами и милликанальным охлаждением

Изобретение имеет отношение в общем к силовой электронике, а более конкретно, к усовершенствованному охлаждению для силовой электроники. Заявленный теплоотвод (60, 70) для охлаждения по меньшей мере одного корпуса (20) электронного устройства включает нижнюю крышку (12), верхнюю крышку (14) и...
Тип: Изобретение
Номер охранного документа: 0002580374
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3055

Способ и система для контроля качества пара

Изобретение относится к системам для контроля пара и определения распределения размеров капель. Способ определения качества влажного пара, находящегося внутри паровой турбины, включает излучение оптическим датчиком (52, 54) множества длин волн через влажный пар, измерение с помощью...
Тип: Изобретение
Номер охранного документа: 0002580380
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.320a

Паровая турбина низкого давления

Концевые бандажи (411) на лопатках (419) последней ступени конденсационной паровой турбины (410) могут создавать значительное препятствие и образовывать завихрение у стенки паронаправляющей (423, 424) диффузора (300), что приводит к отрыву потока пара от указанной стенки паронаправляющей....
Тип: Изобретение
Номер охранного документа: 0002580913
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.36b7

Цикл ренкина, объединенный с абсорбционным холодильником

Изобретение относится к энергетике. Система получения энергии включает работающий на диоксиде углерода цикл Ренкина для извлечения тепла, объединенный с циклом абсорбционного холодильника. Цикл Ренкина включает конденсатор и десорбер. Конденсатор цикла Ренкина объединен с испарителем цикла...
Тип: Изобретение
Номер охранного документа: 0002581685
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36f2

Уплотнительный узел и способ его изготовления

Уплотнительный узел для турбомашины содержит по меньшей мере одну дугообразную пластину, поджимающий элемент и по меньшей мере один сегмент уплотнительного кольца. Сегмент уплотнительного кольца содержит по меньшей мере один барьер, который ограничивает окружной поток текучей среды, проходящей...
Тип: Изобретение
Номер охранного документа: 0002581534
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3cf2

Паротурбинная установка (варианты) и корпус паровой турбины

Изобретение относится к энергетике. Паротурбинная установка, содержащая паровую турбину, имеющую первый впускной канал и второй впускной канал для приема поступающего пара, первый паропровод и второй паропровод, функционально присоединенные соответственно к первому клапану и второму клапану и...
Тип: Изобретение
Номер охранного документа: 0002583178
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d8a

Способ и устройство для тестирования силовых электрических устройств

Изобретение относится к тестированию силовых электрических устройств. Заявленное устройство для тестирования узла преобразователя полной мощности содержит: устройство для подачи электроэнергии от электрической сети; выпрямитель, соединенный с указанным устройством для подачи электроэнергии от...
Тип: Изобретение
Номер охранного документа: 0002583233
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.4011

Компрессорная установка (варианты) и способ придания параметров потоку газа

В настоящем изобретении предложена компрессорная установка для влажного газа, которая может содержать компрессор для влажного газа с впускной частью. Вблизи впускной части может быть расположено сопло с переменным поперечным сечением. Изобретение направлено на минимизацию влияния эрозии и...
Тип: Изобретение
Номер охранного документа: 0002584395
Дата охранного документа: 20.05.2016
10.06.2016
№216.015.4561

Армированная волокнами лопатка компрессора из сплава al-li и способ ее изготовления

Легкая лопатка компрессора из композиционного материала с металлической матрицей. Лопатка включает плетеную ткань, погруженную в легкий алюминиево-литиевый сплав. Лопатки изготавливают путем создания множества волоконных жгутов посредством скручивания волосков или волокон. Затем жгуты сплетают...
Тип: Изобретение
Номер охранного документа: 0002586033
Дата охранного документа: 10.06.2016
Showing 111-120 of 295 items.
10.02.2016
№216.014.c48a

Неподвижная сопловая лопатка паровой турбины и диафрагма паровой турбины

Неподвижная сопловая лопатка паровой турбины содержит аэродинамическую часть, а также внутреннюю и наружную боковые стенки, каждая из которых выполнена за одно целое с одной из сторон аэродинамической части. Каждая боковая стенка, внутренняя и наружная, имеет сторону нагнетания с дугообразной...
Тип: Изобретение
Номер охранного документа: 0002574106
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c62f

Многоступенчатая паровая турбина, охлаждающий контур для многоступенчатой паровой турбины и осевая вставка для охлаждающего контура первых ступеней паровой турбины

Изобретение относится к энергетике. Охлаждающий контур для многоступенчатой паровой турбины, содержащей барабанный ротор с лопатками, установленными в тангенциальных охватывающих пазах пазового замка для по меньшей мере одной ступени, содержащий внешний источник охлаждающего пара, барабанный...
Тип: Изобретение
Номер охранного документа: 0002578016
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c87f

Теплоутилизационная система (варианты) и способ продувки остаточных выхлопных газов из теплоутилизационной системы

Изобретение относится к энергетике. Теплоутилизационная система содержит клапанную систему, выполненную с возможностью переключения между положением рекуперации сбросного тепла, при котором обеспечивается направление входящего выхлопного газа через внутреннее пространство выхлопной секции...
Тип: Изобретение
Номер охранного документа: 0002578549
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2c1e

Система контроля генератора и способ пассивного контроля генератора

Изобретение относится к способам и системам для пассивного контроля коллекторного узла генератора. Один из способов (300) включает прием (302) вычислительным устройством сигналов от трансформатора тока, установленного вокруг возбуждающего кабеля, который соединен с коллекторным узлом...
Тип: Изобретение
Номер охранного документа: 0002579150
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c5d

Эллиптическое уплотнение

Изобретение относится к эллиптическому уплотнению. Эллиптическое уплотнение предназначено для использования с ротором и корпусом статора ротационной машины. Эллиптическое уплотнение содержит уплотнительные сегменты, имеющие истираемое покрытие. Уплотнительные сегменты с истираемым покрытием...
Тип: Изобретение
Номер охранного документа: 0002579428
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2ea9

Герметизированный узел статора и двигатель (варианты)

Изобретение относится к герметизированным узлам статора, предназначенным для применения в двигателях с электрическим приводом, таких как двигатель компрессора с электроприводом. Технический результат - снижение потерь на вихревые токи. Герметизированный узел статора включает статор, содержащий...
Тип: Изобретение
Номер охранного документа: 0002580948
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f68

Теплоотводы с с-образными коллекторами и милликанальным охлаждением

Изобретение имеет отношение в общем к силовой электронике, а более конкретно, к усовершенствованному охлаждению для силовой электроники. Заявленный теплоотвод (60, 70) для охлаждения по меньшей мере одного корпуса (20) электронного устройства включает нижнюю крышку (12), верхнюю крышку (14) и...
Тип: Изобретение
Номер охранного документа: 0002580374
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3055

Способ и система для контроля качества пара

Изобретение относится к системам для контроля пара и определения распределения размеров капель. Способ определения качества влажного пара, находящегося внутри паровой турбины, включает излучение оптическим датчиком (52, 54) множества длин волн через влажный пар, измерение с помощью...
Тип: Изобретение
Номер охранного документа: 0002580380
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.320a

Паровая турбина низкого давления

Концевые бандажи (411) на лопатках (419) последней ступени конденсационной паровой турбины (410) могут создавать значительное препятствие и образовывать завихрение у стенки паронаправляющей (423, 424) диффузора (300), что приводит к отрыву потока пара от указанной стенки паронаправляющей....
Тип: Изобретение
Номер охранного документа: 0002580913
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.36b7

Цикл ренкина, объединенный с абсорбционным холодильником

Изобретение относится к энергетике. Система получения энергии включает работающий на диоксиде углерода цикл Ренкина для извлечения тепла, объединенный с циклом абсорбционного холодильника. Цикл Ренкина включает конденсатор и десорбер. Конденсатор цикла Ренкина объединен с испарителем цикла...
Тип: Изобретение
Номер охранного документа: 0002581685
Дата охранного документа: 20.04.2016
+ добавить свой РИД