×
27.06.2014
216.012.d8af

ЗЕРКАЛЬНЫЙ АВТОКОЛЛИМАЦИОННЫЙ СПЕКТРОМЕТР

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Спектрометр состоит из входной щели, расположенной в фокальной плоскости объектива и смещенной в меридиональной плоскости относительно его оптической оси, объектива и диспергирующего устройства. Объектив состоит из первого вогнутого зеркала с положительной оптической силой, обращенного вогнутостью к входной щели, второго выпуклого зеркала с отрицательной оптической силой, расположенного между входной щелью и первым зеркалом и обращенного выпуклостью к первому зеркалу, третьего вогнутого зеркала с положительной оптической силой, расположенного за вторым зеркалом и обращенного вогнутостью к входной щели. Диспергирующее устройство включает диспергирующий элемент и плоское зеркало, расположенное под углом 80…90° к падающим на него лучам. Оптические поверхности по крайней мере двух зеркал являются асферическими. Центры кривизны всех зеркал расположены на оптической оси объектива. Первое и второе зеркала - внеосевые фрагменты зеркал. Третье зеркало расположено на оптической оси. Диспергирующий элемент - призма с преломляющим углом 5…30° из материала с показателем преломления 1,4…1,7 и коэффициентом дисперсии для линии е, равным 20…70. Плоское зеркало выполнено в виде отражающего покрытия на второй по ходу луча грани призмы. Технический результат - повышение технологичности, уменьшение габаритов и массы, упрощение юстировки, повышение качества изображения и исправление кривизны спектральных линий. 3 з.п. ф-лы, 4 ил., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к оптическому приборостроению, в частности может быть использовано в промышленных, авиационных и космических гиперспектральных системах.

Известны оптические системы, предназначенные для разложения оптического излучения в спектр с целью изучения его спектрального состава. Например, в [Пейсахсон И.В. Оптика спектральных приборов. Изд. 2-е, доп. и перераб., Л., «Машиностроение» (Ленингр. отд-ние), 1975, с.6] приведена принципиальная оптическая схема спектрального прибора. Он состоит из входной щели, коллимирующего объектива, диспергирующего устройства, фокусирующего объектива и приемника изображения. Недостатком таких схем является наличие двух линзовых объективов и, как следствие, большие габариты и масса.

Также известны автоколлимационные зеркальные монохроматоры [Пейсахсон И.В. Оптика спектральных приборов. Изд. 2-е, доп. и перераб., Л., «Машиностроение» (Ленингр. отд-ние), 1975, с.153], имеющие более простую конструкцию. Они содержат минимальное количество оптических деталей: вогнутое зеркало в качестве коллимирующего и фокусирующего объективов и автоколлимационную призменную диспергирующую систему. Наличие только одного зеркала не позволяет исправить аберрации системы и кривизну спектральных линий даже для узкого спектрального диапазона и малых угловых полей.

Наиболее близким к предлагаемому изобретению является зеркальный автоколлимационный спектрометр из [US, патент №6886953 В2, МКИ G02B 5/10], состоящий из входной щели, объектива и диспергирующего устройства, в котором входная щель расположена в фокальной плоскости объектива и смещена в меридиональной плоскости от его оптической оси. Объектив состоит из трех установленных последовательно по ходу луча зеркал, первого вогнутого зеркала с положительной оптической силой, обращенного вогнутостью к входной щели, второго выпуклого зеркала с отрицательной оптической силой, расположенного между входной щелью и первым зеркалом и обращенного выпуклостью к первому зеркалу, третьего вогнутого зеркала с положительной оптической силой, расположенного за вторым зеркалом и обращенного вогнутостью к входной щели, отражающие поверхности всех трех зеркал являются децентрированными по апертуре асферическими поверхностями высших порядков, также второе и третье зеркала имеют смещения и наклоны относительно оптической оси первого зеркала. Диспергирующее устройство расположено с другой относительно входной щели стороны от оптической оси и состоит из диспергирующего элемента в виде блока из двух призм из материалов с разными показателями преломления и отдельного плоского зеркала, расположенного под углом, близким 90° к падающим на него лучам. Излучение от входной щели преобразуется объективом в коллимированный пучок, который затем попадает на диспергирующий элемент, раскладывается в спектр, отражается от плоского зеркала, снова проходит через диспергирующий элемент, а затем попадает в объектив, формирующий в обратном ходе разложенное в спектр изображение входной щели на приемнике изображения. Результатом наличия в схеме децентрированных по апертуре асферических поверхностей высших порядков, имеющих децентрировки и наклоны, являются технологические сложности изготовления и повышенные требования к точности взаимного расположения оптических элементов и, как следствие, сложность механической конструкции, трудности при юстировке и контроле.

Задачей данного изобретения является создание зеркального автоколлимационного спектрометра с повышенными эксплуатационными характеристиками.

Технический результат - создание зеркального автоколлимационного спектрометра с повышенной технологичностью, малыми габаритами и массой, простого в юстировке, обеспечивающего высокое качество изображения и исправление кривизны спектральных линий во всем рабочем спектральном диапазоне.

Это достигается тем, что в зеркальном автоколлимационном спектрометре, состоящем из входной щели, объектива и диспергирующего устройства, входная щель расположена в фокальной плоскости объектива и смещена в меридиональной плоскости относительно его оптической оси, объектив состоит из трех установленных последовательно по ходу луча зеркал, первого вогнутого зеркала с положительной оптической силой, обращенного вогнутостью к входной щели, второго выпуклого зеркала с отрицательной оптической силой, расположенного между входной щелью и первым зеркалом и обращенного выпуклостью к первому зеркалу, третьего вогнутого зеркала с положительной оптической силой, расположенного за вторым зеркалом и обращенного вогнутостью к входной щели, диспергирующее устройство расположено с другой стороны относительно оптической оси по отношению к входной щели и включает в себя диспергирующий элемент и плоское зеркало, расположенное под углом, находящемся в интервале 80…90° к падающим на него лучам, в отличие от известного, оптические поверхности по крайней мере двух зеркал объектива являются асферическими поверхностями не более чем второго порядка, а центры кривизны всех зеркал расположены на оптической оси объектива, причем первое и второе зеркала представляют собой внеосевые фрагменты зеркал, а третье зеркало расположено на оптической оси объектива, диспергирующий элемент выполнен в виде призмы с преломляющим углом 5…30° из материала с показателем преломления 1,4…1,7 и коэффициентом дисперсии для линии е 20…70, а плоское зеркало выполнено в виде отражающего покрытия, нанесенного на вторую по ходу луча грань призмы.

Кроме того, в зеркальном автоколлимационном спектрометре отражающая поверхность одного из зеркал объектива может быть выполнена сферической, а третье зеркало объектива может быть выполнено симметричным относительно оптической оси зеркалом или в виде децентрированного по апертуре фрагмента.

На фиг.1 представлена принципиальная оптическая схема зеркального автоколлимационного спектрометра, у которого третье зеркало объектива симметрично относительно оптической оси. На фиг.2 представлена принципиальная оптическая схема зеркального автоколлимационного спектрометра с третьим зеркалом объектива, выполненным в виде децентрированного по апертуре фрагмента. На фиг.3 приведена модуляционная передаточная функция зеркального автоколлимационного спектрометра для средней и граничных длин волн рабочего спектрального диапазона для центральной точки входной щели. На фиг.4 приведена модуляционная передаточная функция зеркального автоколлимационного спектрометра для средней и граничных длин волн рабочего спектрального диапазона для крайней точки входной щели.

Зеркальный автоколлимационный спектрометр (фиг.1) состоит из входной щели 1, первого зеркала 2, второго зеркала 3, третьего зеркала 4 и призмы 5 с отражающим покрытием 6. Входная щель 1 длиной 20 мм расположена в фокальной плоскости объектива перпендикулярно меридиональной плоскости и смещена относительно оптической оси. Зеркала 2, 3 и 4 образуют объектив с эксцентрично расположенным полем изображения. Первое зеркало 2 выполнено в виде внеосевого фрагмента вогнутого сферического зеркала с положительной оптической силой, обращенного вогнутостью к входной щели 1, второе зеркало 3 выполнено в виде внеосевого фрагмента выпуклого эллипсоида с отрицательной оптической силой, расположенного между входной щелью 1 и первым зеркалом 2, и обращено выпуклостью к первому зеркалу 2, третье зеркало 4 выполнено в виде вогнутого гиперболоида, отражающая поверхность которого симметрична относительно оптической оси, расположенного за вторым зеркалом 3 и обращенного вогнутостью к входной щели 1. Диспергирующее устройство спектрометра расположено с другой стороны относительно оптической оси по отношению к входной щели 1 и состоит из диспергирующего элемента в виде призмы 5 с преломляющим углом 5…30° из материала с показателем преломления в пределах 1,4…1,7 и коэффициентом дисперсии для линии е в пределах 20…70, и плоского зеркала виде нанесенного на вторую по ходу луча грань призмы 5 отражающего покрытия 6, плоское зеркало, расположенное под углом, находящимся в интервале 80…90° к падающим на него лучам.

Также в зеркальном автоколлимационном спектрометре третье зеркало 4 может быть выполнено в виде децентрированного по апертуре фрагмента вогнутого гиперболоида (фиг.2).

На фиг.3 приведена модуляционная передаточная функция зеркального автоколлимационного спектрометра для средней и граничных длин волн рабочего спектрального диапазона для центральной точки входной щели.

На фиг.4 приведена модуляционная передаточная функция зеркального автоколлимационного спектрометра для средней и граничных длин волн рабочего спектрального диапазона для крайней точки входной щели.

Зеркальный автоколлимационный спектрометр работает следующим образом. Излучение от входной щели 1 спектрометра попадает на первое зеркало 2, затем, отразившись от него, последовательно претерпевает отражение на втором зеркале 3 и третьем зеркале 4. После зеркала 4 коллимированный пучок излучения попадает на призму 5, преломившись на первой грани, отразившись от отражающего покрытия 6 на второй грани и вновь преломившись на первой грани которой, раскладывается в спектр и снова попадает на третье зеркало 4. Отразившись последовательно от третьего зеркала 4, второго зеркала 3 и первого зеркала 2, излучение формирует разложенное в спектр изображение входной щели в плоскости изображения.

В соответствии с предложенным техническим решением рассчитан зеркальный автоколлимационный спектрометр, конструктивные параметры которого приведены в таблице 1.

Таблица 1
Описание Радиус, мм Толщина, мм Показатель преломления Наклон в меридиональной плоскости относительно оптической оси, град.
Плоскость входной щели r1=∞ 21,042
d1=126,775 1
Первое зеркало r2=-206,617 0
d2=-89,197 -1
Второе зеркало r3=-147,803∗1 0
d3=179,934 1
Третье зеркало r4=571,703∗2 0
d4=-329,934 -1
Передняя грань призмы r5=∞ 31,412
d5=-40 TK20
Задняя грань призмы с зеркальным покрытием r6=∞ 18,946
d6=40 TK20
Передняя грань призмы r7=∞ 31,412
d7=329,934 1
Третье зеркало r8=571,703∗2 0
d8=-179,934 -1
Второе зеркало r9=-147,803∗1 0
d9=89,197 1
Первое зеркало r10=-206,617 0
d10=-126,775 -1
Плоскость изображения r11=∞ 0,9

1) параметр е2=0,966
2) параметр е2=1,853
е2 - квадрат эксцентриситета поверхности 2-го порядка.

Характеристики спектрометра:

Спектральный диапазон: 1,0-2,325 мкм. Относительное отверстие объектива: 1:3. Длина входной щели: 20 мм.

Линейное поле в пространстве изображений: 2,56×20,38 мм.

Спектрометр имеет следующие характеристики качества изображения:

- кривизна спектральных линий исправлена во всем рабочем спектральном диапазоне;

- линейная дисперсия для коротковолновой границы спектрального диапазона 0,418 нм/мкм;

- линейная дисперсия для длинноволновой границы спектрального диапазона 0,446 нм/мкм;

- МПФ на пространственной частоте 30 мм-1 не менее 0,5 во всем рабочем спектральном диапазоне для всех точек линейного поля.

Таким образом, создан зеркальный автоколлимационный спектрометр работающий в ближнем инфракрасном диапазоне длин волн 1,0-2,325 мкм, с входной щелью длиной 20 мм, относительным отверстием объектива 1:3, имеющий высокое качество изображения и исправленную кривизну спектральных линий во всем рабочем спектральном диапазоне, что очень важно при использовании матричных фотоприемных устройств. Кроме того, он обладает повышенной технологичностью и простотой в юстировке за счет использования в объективе спектрометра асферических поверхностей не более чем второго порядка., а диспергирующее устройство, выполнено в виде одиночной призмы с нанесенным на ее вторую по ходу луча грань отражающим покрытием.


ЗЕРКАЛЬНЫЙ АВТОКОЛЛИМАЦИОННЫЙ СПЕКТРОМЕТР
ЗЕРКАЛЬНЫЙ АВТОКОЛЛИМАЦИОННЫЙ СПЕКТРОМЕТР
ЗЕРКАЛЬНЫЙ АВТОКОЛЛИМАЦИОННЫЙ СПЕКТРОМЕТР
ЗЕРКАЛЬНЫЙ АВТОКОЛЛИМАЦИОННЫЙ СПЕКТРОМЕТР
Источник поступления информации: Роспатент

Showing 41-50 of 59 items.
12.01.2017
№217.015.5bed

Измерительный преобразователь емкость-напряжение

Изобретение относится к измерительной технике и может быть использовано для построения средств измерения физических величин с помощью емкостных датчиков. Измерительный преобразователь емкость-напряжение содержит емкостный датчик, переходной конденсатор, источник опорного напряжения, генератор...
Тип: Изобретение
Номер охранного документа: 0002589771
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5d6d

Лазерный дальномер

Лазерный дальномер содержит импульсный полупроводниковый лазер, оптическую систему, генератор тактовых импульсов, счетчик импульсов, устройство с индикатором, ключевую схему, фотоприемник, линию задержки, схему совпадения. Также дальномер содержит сумматор и устройство поворота изображения,...
Тип: Изобретение
Номер охранного документа: 0002590311
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6c2b

Светосильный объектив

Объектив состоит из двух компонентов, разделенных апертурной диафрагмой. Первый компонент состоит из одиночной плосковыпуклой линзы, обращенной выпуклой поверхностью к плоскости предметов, одиночного положительного мениска, обращенного выпуклой поверхностью к плоскости предмета, и...
Тип: Изобретение
Номер охранного документа: 0002592746
Дата охранного документа: 27.07.2016
25.08.2017
№217.015.d0ae

Автоколлимационный спектрометр со спектральным разложением в сагиттальном направлении

Изобретение может быть использовано в промышленных, авиационных и космических гиперспектральных системах. Cпектрометр состоит из входной щели, объектива и диспергирующего устройства, находящегося с другой стороны от оптической оси по отношению к входной щели. Объектив выполнен из трех зеркал:...
Тип: Изобретение
Номер охранного документа: 0002621364
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.de16

Носки защитные

Изобретение относится к носкам защитным, преимущественно предназначенным к использованию в условиях космического пространства. Согласно изобретению носки снабжены защитными утолщениями на верхней части следа и передней части паголенка, которые полностью покрывают верхнюю наружную часть стопы,...
Тип: Изобретение
Номер охранного документа: 0002624711
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.e50d

Способ выбора марок оптических стекол для конструирования оптических систем космической аппаратуры в условиях длительного воздействия ионизирующих излучений космического пространства

Изобретение относится к методам обеспечения длительной (до года и более) радиационной стойкости оптических стекол космической аппаратуры. Способ включает вычисление, по известной методике, распределения дозы ионизирующих излучений космического пространства на оптической оси каждого выполненного...
Тип: Изобретение
Номер охранного документа: 0002626450
Дата охранного документа: 27.07.2017
19.01.2018
№218.016.040a

Облегченное зеркало космического телескопа

Зеркало имеет отражающую рабочую поверхность и плоскую тыльную поверхность, в которой выполнены вырезы для получения ячеек структур облегчения. Их оси симметрии параллельны оптической оси зеркала и параллельны между собой. Одни из ячеек выполнены в виде сотовой шестиугольной структуры так, что...
Тип: Изобретение
Номер охранного документа: 0002630556
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.07f1

Зеркально-линзовый объектив для работы в ближнем ик-спектральном диапазоне

Объектив содержит установленные по ходу луча первое зеркало в виде внеосевого фрагмента вогнутого положительного асферического зеркала, второе зеркало в виде выпуклого отрицательного осесимметричного сферического зеркала. Линзовый компенсатор с оптической силой, составляющей 0,6…0,7 от...
Тип: Изобретение
Номер охранного документа: 0002631531
Дата охранного документа: 25.09.2017
29.03.2019
№219.016.f111

Лазерный дальномер

Лазерный дальномер содержит первый импульсный полупроводниковый лазер, формирующую оптическую систему, генератор тактовых импульсов, выход которого связан с входом счетчика импульсов, ключевую схему, приемную оптическую систему, фотоприемник, считывающее устройство и индикатор. При этом в...
Тип: Изобретение
Номер охранного документа: 0002343413
Дата охранного документа: 10.01.2009
29.03.2019
№219.016.f73d

Перебазируемый телескоп с защитным укрытием

Изобретение относится к оптическим астрономическим приборам полной заводской готовности, осуществляющим наблюдение искусственных и естественных небесных тел. Телескоп содержит опорно-поворотное устройство с основанием и оптический блок с блендой, размещенные на транспортной платформе с рамой,...
Тип: Изобретение
Номер охранного документа: 0002449330
Дата охранного документа: 27.04.2012
Showing 41-50 of 56 items.
12.01.2017
№217.015.5bed

Измерительный преобразователь емкость-напряжение

Изобретение относится к измерительной технике и может быть использовано для построения средств измерения физических величин с помощью емкостных датчиков. Измерительный преобразователь емкость-напряжение содержит емкостный датчик, переходной конденсатор, источник опорного напряжения, генератор...
Тип: Изобретение
Номер охранного документа: 0002589771
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5d6d

Лазерный дальномер

Лазерный дальномер содержит импульсный полупроводниковый лазер, оптическую систему, генератор тактовых импульсов, счетчик импульсов, устройство с индикатором, ключевую схему, фотоприемник, линию задержки, схему совпадения. Также дальномер содержит сумматор и устройство поворота изображения,...
Тип: Изобретение
Номер охранного документа: 0002590311
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6c2b

Светосильный объектив

Объектив состоит из двух компонентов, разделенных апертурной диафрагмой. Первый компонент состоит из одиночной плосковыпуклой линзы, обращенной выпуклой поверхностью к плоскости предметов, одиночного положительного мениска, обращенного выпуклой поверхностью к плоскости предмета, и...
Тип: Изобретение
Номер охранного документа: 0002592746
Дата охранного документа: 27.07.2016
25.08.2017
№217.015.d0ae

Автоколлимационный спектрометр со спектральным разложением в сагиттальном направлении

Изобретение может быть использовано в промышленных, авиационных и космических гиперспектральных системах. Cпектрометр состоит из входной щели, объектива и диспергирующего устройства, находящегося с другой стороны от оптической оси по отношению к входной щели. Объектив выполнен из трех зеркал:...
Тип: Изобретение
Номер охранного документа: 0002621364
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.de16

Носки защитные

Изобретение относится к носкам защитным, преимущественно предназначенным к использованию в условиях космического пространства. Согласно изобретению носки снабжены защитными утолщениями на верхней части следа и передней части паголенка, которые полностью покрывают верхнюю наружную часть стопы,...
Тип: Изобретение
Номер охранного документа: 0002624711
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.e50d

Способ выбора марок оптических стекол для конструирования оптических систем космической аппаратуры в условиях длительного воздействия ионизирующих излучений космического пространства

Изобретение относится к методам обеспечения длительной (до года и более) радиационной стойкости оптических стекол космической аппаратуры. Способ включает вычисление, по известной методике, распределения дозы ионизирующих излучений космического пространства на оптической оси каждого выполненного...
Тип: Изобретение
Номер охранного документа: 0002626450
Дата охранного документа: 27.07.2017
19.01.2018
№218.016.040a

Облегченное зеркало космического телескопа

Зеркало имеет отражающую рабочую поверхность и плоскую тыльную поверхность, в которой выполнены вырезы для получения ячеек структур облегчения. Их оси симметрии параллельны оптической оси зеркала и параллельны между собой. Одни из ячеек выполнены в виде сотовой шестиугольной структуры так, что...
Тип: Изобретение
Номер охранного документа: 0002630556
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.07f1

Зеркально-линзовый объектив для работы в ближнем ик-спектральном диапазоне

Объектив содержит установленные по ходу луча первое зеркало в виде внеосевого фрагмента вогнутого положительного асферического зеркала, второе зеркало в виде выпуклого отрицательного осесимметричного сферического зеркала. Линзовый компенсатор с оптической силой, составляющей 0,6…0,7 от...
Тип: Изобретение
Номер охранного документа: 0002631531
Дата охранного документа: 25.09.2017
10.05.2018
№218.016.3850

Способ определения метастатического потенциала опухоли молочной железы

Изобретение относится к медицине, а именно к онкологии, может быть использовано для определения метастатического потенциала инвазивного протокового рака молочной железы. Для этого на подготовленных для морфологического исследования препаратах операционного материала молочной железы больной...
Тип: Изобретение
Номер охранного документа: 0002646787
Дата охранного документа: 07.03.2018
11.03.2019
№219.016.dcb2

Средство, стимулирующее продукцию гранулоцитарно-макрофагального колониестимулирующего фактора в клетках системы мононуклеарных фагоцитов

Изобретение относится к медицине, в частности к иммунологии, а именно к средствам иммунокоррекции, и может быть использовано в качестве индуктора гранулоцитарно-макрофагального колониестимулирующего фактора в клетках системы мононуклеарных фагоцитов in vitro и для эфферентной терапии при...
Тип: Изобретение
Номер охранного документа: 0002438676
Дата охранного документа: 10.01.2012
+ добавить свой РИД