×
27.06.2014
216.012.d826

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОГО РАЗМЕРА И КОНЦЕНТРАЦИИ СУБМИКРОННЫХ АЭРОЗОЛЬНЫХ ЧАСТИЦ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерения характеристик аэрозольных частиц оптическими методами. Способ заключается в измерении ослабления оптического излучения в видимой и ближней инфракрасной областях спектра. Максимальный размер и концентрацию аэрозольных частиц определяют по формулам
Основные результаты: Способ определения максимального размера и концентрации субмикронных аэрозольных частиц, основанный на измерении ослабления параллельного пучка зондирующего оптического излучения, отличающийся тем, что спектральный коэффициент пропускания измеряют в диапазоне длин волн λ=λ÷λ, строят график функции ,из которого определяют координаты λ, точки выхода этой функции на асимптоту , максимальный диаметр D и массовую концентрацию C аэрозольных частиц определяют по формулам , ,где λ - длина волны зондирующего излучения, мкм;τ(λ)=lnT (λ) - спектральная оптическая плотность;T(λ)=J(λ)/J(λ) - измеренная зависимость спектрального коэффициента пропускания от длины волны зондирующего излучения;J(λ), J(λ) - интенсивность прошедшего через аэрозольную систему и поступающего на нее зондирующего излучения, Вт;D - максимальный диаметр аэрозольных частиц, мкм;C - массовая концентрация аэрозольных частиц, кг/м;ρ - плотность материала аэрозольных частиц, кг/м;l - оптическая длина пути, м;λ, - координаты точки выхода на асимптоту функции , мкм;α(λ) - зависимость от длины волны значения параметра дифракции α=πD/λ, соответствующего абсциссе точки начала отклонения функцииQ(α) от функции Q(α);D - диаметр аэрозольных частиц;Q(α) - фактор эффективности ослабления, рассчитанный по точным формулам теории Ми для заданных зависимостей показателя преломления n(λ) и показателя поглощения æ(λ) материала аэрозольных частиц;Q(α)=α·F(λ) - фактор эффективности ослабления для релеевского рассеяния,функцию F(λ) рассчитывают по формуле ,а границы диапазона длин волн зондирующего излучения λ, λ выбирают в видимой и ближней инфракрасной областях спектра с учетом известных зависимостей n(λ) и æ(λ) в этом диапазоне.

Изобретение относится к области контрольно-измерительной техники, в частности к способам измерения характеристик аэрозольных частиц оптическими методами, и предназначено для определения максимального размера и концентрации субмикронных частиц в различных аэрозольных образованиях. Изобретение может найти применение в химической технологии, коллоидной химии, при разработке систем распыливания жидкости в различных отраслях техники, для контроля загрязнения окружающей среды.

Известны способы определения размеров и концентрации аэрозольных частиц, основанные на измерении ослабления параллельного пучка оптического зондирующего излучения [1-3]. При этом спектральный коэффициент пропускания зондирующего излучения измеряют для ограниченного набора длин волн, привлекают априорную информацию о спектре размеров аэрозольных частиц и проводят измерения дополнительных параметров (в частности, массовых расходов частиц и газа [1]). В качестве теоретической основы известных методов используют уравнение спектральной прозрачности (закон Бугера) для полидисперсных аэрозольных систем [4, 5] и теорию Ми для расчета факторов эффективности ослабления одиночных частиц [6].

Наиболее близким по технической сущности является способ определения дисперсности и концентрации частиц в аэрозольном облаке [7], основанный на измерении ослабления параллельного пучка зондирующего оптического излучения в диапазоне длин волн λ=(0.3÷1.1) мкм.

Недостатком данного способа является необходимость проведения дополнительных измерений оптической длины пути и объема аэрозольного облака с использованием двухракурсной видеосъемки. Проведение этих измерений вносит дополнительную погрешность и усложняет схему экспериментальной установки. При диагностике аэрозольных частиц субмикронных размеров применимость метода спектральной прозрачности связана с необходимостью измерения спектральных коэффициентов пропускания в ультрафиолетовой области спектра (λ<0.1 мкм) с высокой точностью для обеспечения возможности решения соответствующей обратной задачи оптики аэрозолей [5].

Техническим результатом изобретения является повышение точности определения характеристик субмикронных аэрозольных частиц без привлечения дополнительных измерений других параметров.

Технический результат изобретения достигается тем, что разработан способ определения максимального размера и концентрации субмикронных аэрозольных частиц, основанный на измерении ослабления параллельного пучка зондирующего оптического излучения. Спектральный коэффициент пропускания измеряют в диапазоне длин волн λ=λmin÷λmax и строят график функции

.

Из этого графика определяют координаты λ, точки выхода функции т(Х) на асимптоту , максимальный диаметр Dmax и массовую концентрацию Cm аэрозольных частиц определяют по формулам

,

,

где λ - длина волны зондирующего излучения, мкм;

τ(λ)=lnT-1 (λ) - спектральная оптическая плотность;

T(λ)=J(λ)/J0(λ) - измеренная зависимость спектрального коэффициента пропускания от длины волны зондирующего излучения;

J(λ), J0(λ) - интенсивность прошедшего через аэрозольную систему и поступающего на нее зондирующего излучения, Вт;

Dmax - максимальный диаметр аэрозольных частиц, мкм;

Cm - массовая концентрация аэрозольных частиц, кг/м3;

ρ - плотность материала аэрозольных частиц, кг/м3;

l - оптическая длина пути, м;

λ, - координаты точки выхода на асимптоту функции , мкм;

α(λ) - зависимость от длины волны значения параметра дифракции α=πD/λ, соответствующего абсциссе точки начала отклонения функции

Q(α) от функции Qp(α);

D - диаметр аэрозольных частиц;

Q(α) - фактор эффективности ослабления, рассчитанный по точным формулам теории Ми для заданных зависимостей показателя преломления n(λ) и показателя поглощения æ(λ) материала аэрозольных частиц;

Qp(α)=α·F(λ) - фактор эффективности ослабления для релеевского рассеяния,

функцию F(λ) рассчитывают по формуле

,

а границы диапазона длин волн зондирующего излучения λmin, λmax выбирают в видимой и ближней инфракрасной областях спектра с учетом известных зависимостей n(λ) и æ(λ) в этом диапазоне.

Полученный положительный эффект изобретения связан с тем, что одновременно определяются массовая концентрация частиц и их максимальный диаметр в исследуемой аэрозольной среде без проведения дополнительных исследований других параметров.

Рассмотрим обоснование заявляемого способа.

Определение массовой концентрации частиц

При прохождении монохроматического излучения с длиной волны λ через слой толщиной l, состоящий из равномерно распределенных монодисперсных частиц диаметром D с массовой концентрацией Cm происходит его ослабление за счет рассеяния и поглощения частицами. Количественной характеристикой ослабления является спектральный коэффициент пропускания

,

где J(λ) - поток излучения, прошедший сквозь слой; J0(λ) - поток излучения, поступающий на слой.

Величина Т(λ) определяется законом Бугера [5]

,

где τ(λ) - спектральная оптическая плотность слоя.

Выражение для спектральной оптической плотности записывается в виде [5]

,

где ρ - плотность материала частиц;

Q(α, m) - безразмерный фактор эффективности ослабления, который зависит от параметра дифракции (параметра Ми) α=πD/λ и комплексного показателя преломления материала частицы m=n-iæ (n - показатель преломления; æ - показатель поглощения; ).

Значения n и æ в общем случае зависят от длины волны излучения λ. Зависимость Q(a, m) от параметра дифракции носит сложный колебательный характер и рассчитывается по точным формулам теории Ми [6].

Для случая «малых» частиц при выполнении условия релеевского рассеяния (α<1) [6] фактор эффективности ослабления определяется аналитической формулой [5]:

где .

Подставляя (2) в выражение для оптической плотности (1), получим:

Из (3) следует, что в случае релеевского рассеяния величина оптической плотности τ(λ) не зависит от размера частиц D. Следовательно, по измеренным значениям τ(λ) из (3) можно определить массовую концентрацию частиц:

Данный способ определения Cm по формуле (4) с использованием измеренного значения τ(λ) является корректным только в ограниченном диапазоне длин волн зондирующего излучения λ≥λ** - длина волны, ограничивающая область релеевского рассеяния). Для определения λ* измеряют спектральную оптическую плотность в некотором диапазоне длин волн λmin≤λ≤λmax и строят график зависимости

,

где τ(λ) - измеренная зависимость спектральной оптической плотности от длины волны излучения.

График функции τ(λ) имеет два участка (фиг.1):

1. монотонно убывает при λ<λ*.

2. при λ≥λ*.

Для диапазона длин волн λ>λ* массовая концентрация частиц определяется по формуле (4).

Покажем, что данный способ определения массовой концентрации частиц применим и для полидисперсных частиц, если для всех частиц выполняется условие релеевского рассеяния. В случае полидисперсных частиц выражение для спектральной оптической плотности имеет вид [5]:

где f(D) - функция счетного распределения частиц по размерам.

Подставляя в (6) выражение (2) для Qp(α, m) в случае релеевского рассеяния, получим формулу, полностью совпадающую с формулой (4) для определения массовой концентрации частиц.

Определение максимального размера частиц

Как было отмечено выше, фактор эффективности ослабления зависит от двух параметров - параметра дифракции а и æ комплексного показателя преломления материала частиц m=n-iæ. Значения n и зависят в общем случае от длины волны излучения λ, причем для разных материалов эти зависимости носят разный характер.

В случае релеевского рассеяния зависимость фактора эффективности ослабления от параметра дифракции линейна в соответствии с уравнением (2). Зависимость фактора эффективности ослабления от параметра дифракции, рассчитанного по точным формулам теории Ми, совпадает с релеевской до некоторого граничного значения α*, а при α>α* отклоняется от нее: Q(α, m)>Qp(α, m). При этом значение α* зависит от длины волны излучения (фиг.2), что связано с дисперсией m (зависимость n и æ от λ).

Таким образом, для известных зависимостей n(λ) и æ(λ) в диапазоне λmin≤λ≤λmаx можно построить графики Q(α, m) и Qp(α, m), проводя расчеты факторов эффективности ослабления по точным формулам теории Ми и по уравнению (2) для релеевского рассеяния. Из этих графиков (фиг.2) определяется зависимость от длины волны значения параметра дифракции, соответствующего абсциссе точки начала отклонения функции Q(α, m) от Qp(α, m):

.

Подставляя в эту зависимость значение λ*, определенное выше как абсцисса точки выхода на асимптоту , получим формулу для определения максимального диаметра аэрозольных частиц:

Сущность изобретения поясняется следующими рисунками:

Фиг.1 - график функции для определения координат λ*, точки выхода этой зависимости на асимптоту .

Фиг.2 - зависимость факторов эффективности ослабления от параметра дифракции для частиц сажистого углерода.

Фиг.3 - схема лабораторной установки для измерения характеристик аэрозольных частиц.

Фиг.4 - зависимость от длины волны значения параметра дифракции, соответствующего абсциссе точки начала отклонения функции Q(α) от Qp(α) для частиц сажистого углерода.

Пример реализации способа

На фиг.3 приведена схема лабораторной установки для измерения характеристик частиц сажистого углерода в пламени газовой горелки. Поток продуктов сгорания 2 газовой горелки через цилиндрическую трубку 1 заданного диаметра l поступал в зону измерений. Параллельный пучок зондирующего излучения 5 с начальной интенсивностью J0(λ) от источника сплошного спектра 3, в качестве которого использовалась лампа СИ-10-300 с ленточным вольфрамовым излучателем, создавался оптической фокусирующей системой 4. Прошедший через аэрозольную систему ослабленный поток излучения J(λ) поступал на вход спектрально-аналитического комплекса 6, 7.

Обработка экспериментальных данных по зависимости спектрального коэффициента пропускания от длины волны зондирующего излучения Т(λ) проводилась с помощью персонального компьютера 8.

Предварительно проводился расчет факторов эффективности ослабления Q(a,m) по точным формулам теории Ми и по формуле (2) для релеевского рассеяния. Примеры расчетных графиков приведены на фиг.2. При проведении расчетов использовались зависимости n(λ) и æ(λ) для частиц сажистого углерода, приведены в [8] для диапазона λ=(1÷6) мкм:

n(λ)=1.6+0.3λ,

æ(λ)=λ0.6,

где [λ]=мкм.

Обработка графиков Q(α, m) и Qp(α, n) для диапазона длин волн λ=(1÷6) мкм позволили получить зависимость α*(λ) для частиц сажистого углерода, приведенную на фиг.4. Эта зависимость аппроксимировалась формулой (погрешность аппроксимации не более 3%):

где [λ]=мкм.

Результаты измерений показали, что значение длины волны, соответствующее выходу на асимптоту функции , составляло λ*=2 мкм. Соответствующее значение α*, определенное по уравнению (8), составило α*=0.16 мкм. Максимальный диаметр частиц сажистого углерода

,

что хорошо согласуется с известными литературными данными [8]. Значение массовой концентрации частиц сажистого углерода (ρ=1.75 г/см3) изменялось в широких пределах Cm=(2÷15) мг/см3 в зависимости от коэффициента избытка окислителя газовой смеси, поступающей в горелку.

По результатам примера видно, что заявленный способ позволяет одновременно определять массовую концентрацию и максимальный диаметр аэрозольных частиц с высокой точностью без проведения дополнительных измерений других параметров. Высокая точность определения Cm и Dmax связана со строгой обоснованностью границ применимости релеевского рассеяния.

ЛИТЕРАТУРА

1. Пат. РФ 717628, МПК G01N 15/02. Способ измерения среднего радиуса металлических капель в двухфазных потоках / Е.В.Соловьев. - №2343588/18-25; заявл. 01.04.1976; опубл. 25.02.1980, Бюл. №7.

2. Пат. РФ 1420474, МПК G01N 15/02. Способ определения параметров частиц аэрозоля в газовом потоке / Г.И.Левашенко, В.И.Анцулевич, С.Л.Шуралев, С.В.Симоньков. - №4037554/24-25; заявл. 17.03.1986; опубл. 30.08.1988, Бюл. №32.

3. Пат. РФ 2335760, МПК G01N 15/02. Оптический способ определения размеров частиц дисперсной фазы / О.Л.Власова, О.А.Писарев, А.Г.Безрукова, П.В.Плотникова. - №2006121402/28; заявл. 13.06.2006; опубл. 10.10.2008, Бюл. №28.

4. Дейрменджан Д. Рассеяние электромагнитного излучения сферическими полидисперсными частицами. - М.: Мир, 1971. - 165 с.

5. Архипов В.А. Лазерные методы диагностики гетерогенных потоков. - Томск: Изд-во Том. ун-та, 1987. - 140 с.

6. Хюлст Ван де Г. Рассеяние света малыми частицами. - М.: ИЛ, 1961. - 536 с.

7. Пат. РФ 2441218, МПК G01N 15/02. Способ определения дисперсности и концентрации частиц в аэрозольном облаке / В.А.Архипов, А.А. Павленко, С.С.Титов, О.Б.Кудряшова, С.С.Бондарчук. - №2010143653/28; заявл. 25.10.2010; опубл. 27.01.2012, Бюл. №3.

8. Блох А.Г. Теплообмен в топках паровых котлов. - Л.: Энергоатомиздат, 1984. - 240 с.

Способ определения максимального размера и концентрации субмикронных аэрозольных частиц, основанный на измерении ослабления параллельного пучка зондирующего оптического излучения, отличающийся тем, что спектральный коэффициент пропускания измеряют в диапазоне длин волн λ=λ÷λ, строят график функции ,из которого определяют координаты λ, точки выхода этой функции на асимптоту , максимальный диаметр D и массовую концентрацию C аэрозольных частиц определяют по формулам , ,где λ - длина волны зондирующего излучения, мкм;τ(λ)=lnT (λ) - спектральная оптическая плотность;T(λ)=J(λ)/J(λ) - измеренная зависимость спектрального коэффициента пропускания от длины волны зондирующего излучения;J(λ), J(λ) - интенсивность прошедшего через аэрозольную систему и поступающего на нее зондирующего излучения, Вт;D - максимальный диаметр аэрозольных частиц, мкм;C - массовая концентрация аэрозольных частиц, кг/м;ρ - плотность материала аэрозольных частиц, кг/м;l - оптическая длина пути, м;λ, - координаты точки выхода на асимптоту функции , мкм;α(λ) - зависимость от длины волны значения параметра дифракции α=πD/λ, соответствующего абсциссе точки начала отклонения функцииQ(α) от функции Q(α);D - диаметр аэрозольных частиц;Q(α) - фактор эффективности ослабления, рассчитанный по точным формулам теории Ми для заданных зависимостей показателя преломления n(λ) и показателя поглощения æ(λ) материала аэрозольных частиц;Q(α)=α·F(λ) - фактор эффективности ослабления для релеевского рассеяния,функцию F(λ) рассчитывают по формуле ,а границы диапазона длин волн зондирующего излучения λ, λ выбирают в видимой и ближней инфракрасной областях спектра с учетом известных зависимостей n(λ) и æ(λ) в этом диапазоне.
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОГО РАЗМЕРА И КОНЦЕНТРАЦИИ СУБМИКРОННЫХ АЭРОЗОЛЬНЫХ ЧАСТИЦ
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОГО РАЗМЕРА И КОНЦЕНТРАЦИИ СУБМИКРОННЫХ АЭРОЗОЛЬНЫХ ЧАСТИЦ
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОГО РАЗМЕРА И КОНЦЕНТРАЦИИ СУБМИКРОННЫХ АЭРОЗОЛЬНЫХ ЧАСТИЦ
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОГО РАЗМЕРА И КОНЦЕНТРАЦИИ СУБМИКРОННЫХ АЭРОЗОЛЬНЫХ ЧАСТИЦ
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОГО РАЗМЕРА И КОНЦЕНТРАЦИИ СУБМИКРОННЫХ АЭРОЗОЛЬНЫХ ЧАСТИЦ
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОГО РАЗМЕРА И КОНЦЕНТРАЦИИ СУБМИКРОННЫХ АЭРОЗОЛЬНЫХ ЧАСТИЦ
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОГО РАЗМЕРА И КОНЦЕНТРАЦИИ СУБМИКРОННЫХ АЭРОЗОЛЬНЫХ ЧАСТИЦ
Источник поступления информации: Роспатент

Showing 31-38 of 38 items.
29.12.2017
№217.015.f6f9

Этил (3s,4r,5s)-4-ацетамидо-5-амино-3-(1-этилпропокси)циклогекс-1-ен-1-карбоксилата этоксисукцинат в качестве противовирусного препарата и способ его получения

Изобретение относится к этил (3S,4R,5S)-4-ацетамидо-5-амино-3-(1-этилпропокси)циклогекс-1-ен-1-карбоксилат этоксисукцинату, обладающему противовирусной способностью. Соединение по изобретению получают путем обработки этил...
Тип: Изобретение
Номер охранного документа: 0002639158
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fd04

Стенд для исследования деформации капель аэродинамическими силами

Изобретение относится к исследованию деформации капель аэродинамическими силами и может быть использовано в лабораторных установках для исследования физических и химических процессов. Стенд для исследования деформации капель аэродинамическими силами включает вертикально расположенную капельницу...
Тип: Изобретение
Номер охранного документа: 0002638376
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.099d

Способ получения дисперсно-упрочненного нанокомпозитного материала на основе алюминия

Изобретение относится к получению дисперсно-упрочненного нанокомпозитного материала на основе алюминия. Способ включает введение лигатуры в расплав матрицы на основе алюминия при одновременном воздействии на расплав ультразвукового поля. Лигатуру готовят в виде компактированных стержней из...
Тип: Изобретение
Номер охранного документа: 0002631996
Дата охранного документа: 29.09.2017
19.01.2018
№218.016.09ae

Способ получения упрочненных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к получению легких сплавов на основе алюминия с повышенной прочностью. Способ заключается во введении в расплав алюминия лигатуры, содержащей модифицирующую добавку, при одновременном воздействии на расплав ультразвукового поля, причем...
Тип: Изобретение
Номер охранного документа: 0002631995
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.102a

Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки

Изобретение относится к контрольно-измерительной технике, в частности к оптико-электронным устройствам измерения параметров дисперсных сред. Заявленное устройство содержит лазерный источник зондирующего излучения, фотоэлектрический приемник излучения и оптический сканер в виде вращающегося...
Тип: Изобретение
Номер охранного документа: 0002633648
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1040

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе включает подачу порошка металлического горючего в камеру сгорания, его воспламенение и горение в потоке воздуха из воздухозаборника. Порошок в виде равномерно перемешанной суспензии в сжиженном горючем газе,...
Тип: Изобретение
Номер охранного документа: 0002633730
Дата охранного документа: 17.10.2017
05.07.2019
№219.017.a618

Способ защиты космического аппарата от несанкционированного доступа сторонних космических объектов

Изобретение относится к области космической техники, а более конкретно к защите космических аппаратов. Способ защиты космического аппарата от несанкционированного доступа сторонних космических объектов включает обнаружение стороннего космического объекта и защиты от него экраном. Экран выполнен...
Тип: Изобретение
Номер охранного документа: 0002693481
Дата охранного документа: 03.07.2019
06.12.2019
№219.017.ea22

Способ идентификации космических аппаратов и их обломков в космическом пространстве

Изобретение относится к ракетно-космической технике и может быть использовано для идентификации космических аппаратов и их обломков в космическом пространстве с помощью средств космического мониторинга. Способ идентификации космических аппаратов и их обломков в космическом пространстве с...
Тип: Изобретение
Номер охранного документа: 0002707982
Дата охранного документа: 03.12.2019
Showing 51-60 of 78 items.
19.04.2019
№219.017.30f3

Способ получения металлизированного твердого топлива

Изобретение относится к области разработки металлизированных смесевых твердых топлив. Способ включает механическое перемешивание окислителя, горючего-связующего и металлического горючего. В качестве окислителя используют перхлорат аммония с размером частиц не более 50 мкм или нитрат аммония с...
Тип: Изобретение
Номер охранного документа: 0002415906
Дата охранного документа: 10.04.2011
23.04.2019
№219.017.36b3

Бронебойный активно-реактивный снаряд

Изобретение относится к боеприпасам, а именно к бронебойным активно-реактивным снарядам - БАРС. Технический результат - повышение эффективности бронепробиваемости при одновременном повышении точности стрельбы. Устройство содержит боевой элемент, включающий сердечник и корпус, гиперзвуковой...
Тип: Изобретение
Номер охранного документа: 0002685610
Дата охранного документа: 22.04.2019
24.05.2019
№219.017.5ddb

Способ измерения интегрального коэффициента излучения поверхности твердого материала

Изобретение относится к области измерений в теплофизике, в частности к способам определения интегрального коэффициента излучения поверхности твердых материалов, и может быть использовано при измерении интегрального коэффициента излучения теплозащитных материалов. Способ включает измерение...
Тип: Изобретение
Номер охранного документа: 0002688911
Дата охранного документа: 22.05.2019
31.05.2019
№219.017.706d

Способ получения керамических изделий на основе порошков оксидов металлов

Изобретение относится к получению керамических деталей аддитивным нанесением слоев затвердевающей термопластичной суспензии. Используют термопластичную суспензию, содержащую порошок на основе системы диоксид циркония - диоксид иттрия (ZrO - YO) и парафин, и/или церезин, и/или воск с добавками...
Тип: Изобретение
Номер охранного документа: 0002689833
Дата охранного документа: 29.05.2019
07.06.2019
№219.017.756c

Способ получения потока капель с регулируемым дисперсным составом

Изобретение относится к средствам распыливания жидкостей и растворов и может быть использовано в двигателестроении, химической и лакокрасочной промышленности. Способ получения потока капель с регулируемым дисперсным составом включает распыливание жидкости в газообразной среде центробежной...
Тип: Изобретение
Номер охранного документа: 0002690802
Дата охранного документа: 05.06.2019
09.06.2019
№219.017.7d60

Способ введения упрочняющих частиц в алюминиевые сплавы

Изобретение относится к области металлургии, а именно к литым композиционным материалам на основе алюминиевых сплавов. Способ получения литого композиционного материала на основе алюминиевого сплава, содержащего тугоплавкое соединение, включает получение порошкообразного композиционного...
Тип: Изобретение
Номер охранного документа: 0002425163
Дата охранного документа: 27.07.2011
13.06.2019
№219.017.818e

Способ оценки взрыво- и пожароопасности химических источников тока

Изобретение относится к области производства и испытаний химических элементов питания и может быть использовано для оценки их взрыво- и пожароопасности при эксплуатации. Пробивание корпуса цилиндрической батареи осуществляют по ее диаметру заостренным металлическим стержнем диаметром (4÷5) мм в...
Тип: Изобретение
Номер охранного документа: 0002691196
Дата охранного документа: 11.06.2019
20.06.2019
№219.017.8ccc

Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния

Изобретение относится к области металлургии легких сплавов, в частности к способам получения литьем сплавов на основе алюминия и магния. Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния включает предварительный нагрев герметичной цилиндрической камеры, на...
Тип: Изобретение
Номер охранного документа: 0002691826
Дата охранного документа: 18.06.2019
05.07.2019
№219.017.a618

Способ защиты космического аппарата от несанкционированного доступа сторонних космических объектов

Изобретение относится к области космической техники, а более конкретно к защите космических аппаратов. Способ защиты космического аппарата от несанкционированного доступа сторонних космических объектов включает обнаружение стороннего космического объекта и защиты от него экраном. Экран выполнен...
Тип: Изобретение
Номер охранного документа: 0002693481
Дата охранного документа: 03.07.2019
10.07.2019
№219.017.afb9

Способ определения смачиваемости порошковых материалов

Изобретение относится к области исследования характеристик порошковых материалов, в частности их смачиваемости. Способ определения смачиваемости порошковых материалов заключается в нахождении краевого угла капли, помещенной на брикет спрессованного порошка. Причем порошок прессуют под давлением...
Тип: Изобретение
Номер охранного документа: 0002457464
Дата охранного документа: 27.07.2012
+ добавить свой РИД