×
10.06.2014
216.012.d04b

Результат интеллектуальной деятельности: СПОСОБ ЭКСФОЛИАЦИИ СЛОИСТЫХ КРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нанотехнологиям. Способ включает эксфолиацию заготовок из слоистых кристаллических материалов, закрепленных с одной стороны на опоре из глипталя, с использованием клейкой ленты, глипталь по окончании эксфолиации растворяют в ацетоне, где образуется взвесь кристаллических пластин (слоев) халькогенидов металлов, которые выделяют из взвеси путем осаждения их на подложку. Изобретение позволяет получать слои наноразмерной толщины из слоистых кристаллов с возможностью последующего осаждения на различные подложки. 3 ил., 2 пр.
Основные результаты: Способ эксфолиации слоистых кристаллических материалов с использованием клейкой ленты, включающий эксфолиацию заготовок из слоистых кристаллических материалов, закрепленных с одной стороны на опоре, отличающийся тем, что в качестве опоры используется глипталь, который по окончании эксфолиации растворяют в ацетоне, где образуется взвесь кристаллических пластин наноразмерной толщины халькогенидов металлов, затем осаждаемых на подложку.

Развитие нанотехнологий стимулирует рост научного интереса к слоям и пленкам кристаллических материалов, имеющим наноразмерную толщину. С момента получения графена механическим отслаиванием слоев графита [K.S. Novoselov,

A.K. Geim, S.V. Morozov et al. Electric field effect in Atomically thin carbon films. Science, 2004, v. 306, p.666] ведутся интенсивные разработки методов эксфолиации слоистых материалов, структурно близких к графиту, а также поиски способов переноса слоев наноразмерной толщины на различные подложки для исследования свойств и для обеспечения практических применений таких слоев. В первую очередь это относится к кристаллам халькогенидов металлов, имеющих гексагональную структуру со слабыми связями между слоями в направлении оси<0001>(GaS, GaSe, GaTe, Bi2Se3, ВiТе3).

Известны способы лазерной и термической эксфолиации GaSe и GaS [U.K. Gautam,

S. R. С.Vivekchand, A. Govindaraj et al. Generation of onions and nanotubes of GaS and GaSe through laser and thermally induced exfoliation. J. Am. Chem. Soc., 2005, v. 127, 3658-3659] - аналог. Лазерная эксфолиация происходит при обработке взвеси порошка GaSe или GaS в органической жидкости, например в толуоле, лазерным излучением с длиной волны 532 нм. Термическая эксфолиация производится за счет нагрева порошков до 900°С в замкнутом объеме. Однако эти методы предназначены для получения нанотрубок и т.наз. «луковичных» наноструктур и технически не позволяют приготавливать слои наноразмерной толщины с последующим переносом их на подложки.

Известен способ механической эксфолиации графитовой заготовки, закрепленной с одной стороны на опоре из оптоволокна, с получением графена на поверхности оптоволокна [S.Y. Won. Method for manufacturing pulsed laser using graphene prepared by mechanical exfoliation. Application number KR 20100090781 20100915, 2012] - прототип. Метод состоит в том, что заготовку графита закрепляют с одной стороны на оптоволокне путем вдавливания оптоволокна в графит, а затем производят механическую эксфолиацию графита с противоположной стороны графитовой заготовки с помощью клейкой ленты. Так можно получать графеновые слои непосредственно на поверхности оптоволокна, но способ не позволяет переносить их на другие подложки.

Задачей данного изобретения является получение слоев наноразмерной толщины из слоистых кристаллов с возможностью последующего осаждения слоев на различные подложки.

Поставленная задача решается путем механической эксфолиации заготовок из слоистых кристаллов, закрепленных с одной стороны на опоре, с использованием клейкой ленты. При этом заготовка закрепляется на опоре из глипталя, а по окончании эксфолиации глипталь растворяется в ацетоне с образованием взвеси кристаллических слоев наноразмерной толщины, после чего слои выделяются из взвеси путем осаждения их на требуемую подложку.

Для удобства проведения процесса глипталь может быть нанесен тонким слоем на произвольное основание, например на полированное кварцевое стекло.

Предлагаемый способ эксфолиации позволяет получать слои наноразмерной толщины и переносить полученные слои на любую требуемую подложку.

Пример 1.

Монокристалл GaSe механически раскалывают по плоскости спайности (0001). Затем кристалл снова скалывают параллельно уже полученному сколу так, чтобы образовалась заготовка толщиной примерно 0,1 мм. Заготовку плотно прижимают к глипталю при температуре 60°С, затем охлаждают вместе с глипталем до комнатной температуры, после чего производят эксфолиацию со второй стороны заготовки при помощи клейкой ленты («скотча») на полимерной основе. Удаление GaSe клейкой лентой проводят до тех пор, пока селенид галлия продолжает отслаиваться. По окончании этого процесса на глиптале остаются тонкие, преимущественно наноразмерной толщины, пленки GaSe, которые уже не отслаиваются механически при помощи «скотча». Глипталь растворяют в ацетоне, что приводит к образованию взвеси кристаллических слоев наноразмерной толщины, т.к. слои большей толщины быстро оседают на дно. Слои выделяют из взвеси путем осаждения их на подложки из монокристаллического кремния. Получены слои GaSe наноразмерной толщины (примерно 10 нм) на кремниевых подложках. Такой слой показан на Фиг.1, где представлена оптическая микрофотография (поле зрения 635 мкм по горизонтали и 458 мкм по вертикали) слоя GaSe толщиной примерно 10 нм на подложке из монокристаллического кремния. На фотографии Фиг.1 свободная от GaSe поверхность подложки выглядит как темный фон.

Пример 2.

Монокристалл GaS механически раскалывают по плоскости спайности (0001). Затем кристалл снова скалывают параллельно уже полученному сколу так, чтобы образовалась заготовка толщиной примерно 0,2 мм. Заготовку плотно прижимают к глипталю при температуре 50°С, затем охлаждают вместе с глипталем до комнатной температуры, после чего производят эксфолиацию со второй стороны заготовки при помощи клейкой ленты («скотча») на полимерной основе. Удаление GaS клейкой лентой проводят до тех пор, пока сульфид галлия продолжает отслаиваться, затем глипталь, на поверхности которого остались тонкие, преимущественно наноразмерной толщины, слои сульфида галлия, растворяют в ацетоне, что приводит к образованию взвеси кристаллических слоев наноразмерной толщины. Слои выделяют из взвеси путем осаждения их на подложки из монокристаллического кремния, пассивированого окислением. Получены слои GaS наноразмерной толщины (около 15 нм) на окисленных кремниевых подложках. Такой слой показан на Фиг.2, где представлена оптическая микрофотография (поле зрения 635 мкм по горизонтали и 458 мкм по вертикали) слоя GaS толщиной около 15 нм на подложке из окисленного монокристаллического кремния. Поверх пластинки GaS (поз.1 на Фиг.2) нанолитографически нанесены золотые контакты (поз.2 на Фиг.2 обозначен один из 24 контактов), что позволяет измерять электрические характеристики нанослоя GaS. На Фиг.3 представлены результаты измерения толщины слоя GaS вблизи нанесенного контакта с помощью атомно-силовой микроскопии (по оси абсцисс показано расстояние в микронах, пройденное зондом микроскола, по оси ординат - высота в нм относительно плоскости подложки). Толщина слоя GaS без контакта - около 15 нм, толщина слоя сульфида галлия с контактом - примерно 24-25 нм.

Способ эксфолиации слоистых кристаллических материалов с использованием клейкой ленты, включающий эксфолиацию заготовок из слоистых кристаллических материалов, закрепленных с одной стороны на опоре, отличающийся тем, что в качестве опоры используется глипталь, который по окончании эксфолиации растворяют в ацетоне, где образуется взвесь кристаллических пластин наноразмерной толщины халькогенидов металлов, затем осаждаемых на подложку.
СПОСОБ ЭКСФОЛИАЦИИ СЛОИСТЫХ КРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ЭКСФОЛИАЦИИ СЛОИСТЫХ КРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ЭКСФОЛИАЦИИ СЛОИСТЫХ КРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Showing 31-40 of 95 items.
25.08.2017
№217.015.b151

Неорганический монокристаллический сцинтиллятор

Изобретение относится к новым неорганическим кристаллическим сцинтилляционным материалам на основе бромида лантана, легированного церием, и может быть использовано для регистрации ионизирующего излучения – гамма-квантов, рентгеновского излучения, космических излучений, элементарных частиц в...
Тип: Изобретение
Номер охранного документа: 0002613057
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.bf3a

Способ получения опорных плит для обжига керамических изделий

Изобретение относится к области огнеупорных материалов и направлено на создание опорных плит (лещадок) для высокотемпературного обжига керамических изделий, таких как посуда, электроизоляторы и т.п. Для изготовления таких плит создан способ получения двухслойного кремний-углеродного...
Тип: Изобретение
Номер охранного документа: 0002617133
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bf9d

Состав электрода накопителя электроэнергии

Изобретение относится к области материалов для создания конденсаторов, используемых в силовой электротехнике. Состав электрода накопителя электроэнергии, содержащий смесь активного углерода со связующим, отличается тем, что он содержит несколько слоев активного углерода в структурной форме...
Тип: Изобретение
Номер охранного документа: 0002617114
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bfac

Способ изготовления изделия с фильтром для агрессивных жидкостей и газов

Изобретение относится к области химической технологии и может быть использовано для изготовления фильтров, способных применяться для очистки агрессивных жидкостей и газов от инородных включений при высоких температурах эксплуатации, в том числе диметилгидразина, используемого в качестве...
Тип: Изобретение
Номер охранного документа: 0002617105
Дата охранного документа: 20.04.2017
25.08.2017
№217.015.cee8

Способ получения полых нагревателей сопротивления на основе углеродкарбидокремниевого материала

Предложен способ получения полых трубчатых нагревателей из композиционного материала на основе углерода, кремния и карбида кремния путем пропитки расплавленным кремнием предварительно сформированной трубы из углеграфитовых тканей. Заготовку перемещают в вакуумной среде относительно капиллярного...
Тип: Изобретение
Номер охранного документа: 0002620688
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d64a

Устройство квантовой криптографии (варианты)

Устройство квантовой криптографии включает источник излучения, первый волоконный светоделитель, волоконный интерферометр, второй волоконный светоделитель, первый фазовый модулятор, третий волоконный светоделитель, детектор, аттенюатор, линию задержки, поляризационный фильтр, второй фазовый...
Тип: Изобретение
Номер охранного документа: 0002622985
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d8c0

Способ получения сульфида галлия (ii)

Изобретение относится к неорганической химии, а именно к получению сульфида галлия (II), являющегося перспективным материалом для полупроводниковой оптоэлектронной техники и инфракрасной оптики. Cинтез GaS проводили в замкнутом объеме из элементарных галлия и серы, взятых в стехиометрическом...
Тип: Изобретение
Номер охранного документа: 0002623414
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e440

Модулятор электромагнитного излучения субтерагерцового и терагерцового диапазона для систем высокоскоростной беспроводной связи

Изобретение относится к оптоэлектронике, а именно к модуляторам электромагнитного излучения, в частности, работающим в субтерагерцовом и терагерцовом диапазонах частот (100-10000 ГГц). Изобретение может использоваться в областях науки и техники, использующих данные диапазоны частот, в...
Тип: Изобретение
Номер охранного документа: 0002626220
Дата охранного документа: 24.07.2017
19.01.2018
№218.016.0759

Способ получения кремниевых мишеней для магнетронного распыления

Изобретение относится к литейному производству, в частности к получению кремниевых профильных отливок для мишеней магнетронного распыления. Шихту полупроводникового поликристаллического кремния расплавляют в графитовом тигле, который перемещают вертикально в полости нагревателя. В донном...
Тип: Изобретение
Номер охранного документа: 0002631372
Дата охранного документа: 21.09.2017
10.05.2018
№218.016.4d2f

Способ выращивания кристаллов фуллерена с60

Изобретение может быть использовано в полупроводниковой оптоэлектронике. Навеску порошка исходного фуллерена С60 загружают в кварцевую ампулу, внутренняя поверхность которой покрыта пироуглеродом для защиты исходного порошка от воздействия УФ излучения. Затем проводят низкотемпературную...
Тип: Изобретение
Номер охранного документа: 0002652204
Дата охранного документа: 25.04.2018
Showing 31-40 of 72 items.
25.08.2017
№217.015.b151

Неорганический монокристаллический сцинтиллятор

Изобретение относится к новым неорганическим кристаллическим сцинтилляционным материалам на основе бромида лантана, легированного церием, и может быть использовано для регистрации ионизирующего излучения – гамма-квантов, рентгеновского излучения, космических излучений, элементарных частиц в...
Тип: Изобретение
Номер охранного документа: 0002613057
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.bf3a

Способ получения опорных плит для обжига керамических изделий

Изобретение относится к области огнеупорных материалов и направлено на создание опорных плит (лещадок) для высокотемпературного обжига керамических изделий, таких как посуда, электроизоляторы и т.п. Для изготовления таких плит создан способ получения двухслойного кремний-углеродного...
Тип: Изобретение
Номер охранного документа: 0002617133
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bf9d

Состав электрода накопителя электроэнергии

Изобретение относится к области материалов для создания конденсаторов, используемых в силовой электротехнике. Состав электрода накопителя электроэнергии, содержащий смесь активного углерода со связующим, отличается тем, что он содержит несколько слоев активного углерода в структурной форме...
Тип: Изобретение
Номер охранного документа: 0002617114
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bfac

Способ изготовления изделия с фильтром для агрессивных жидкостей и газов

Изобретение относится к области химической технологии и может быть использовано для изготовления фильтров, способных применяться для очистки агрессивных жидкостей и газов от инородных включений при высоких температурах эксплуатации, в том числе диметилгидразина, используемого в качестве...
Тип: Изобретение
Номер охранного документа: 0002617105
Дата охранного документа: 20.04.2017
25.08.2017
№217.015.cee8

Способ получения полых нагревателей сопротивления на основе углеродкарбидокремниевого материала

Предложен способ получения полых трубчатых нагревателей из композиционного материала на основе углерода, кремния и карбида кремния путем пропитки расплавленным кремнием предварительно сформированной трубы из углеграфитовых тканей. Заготовку перемещают в вакуумной среде относительно капиллярного...
Тип: Изобретение
Номер охранного документа: 0002620688
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d64a

Устройство квантовой криптографии (варианты)

Устройство квантовой криптографии включает источник излучения, первый волоконный светоделитель, волоконный интерферометр, второй волоконный светоделитель, первый фазовый модулятор, третий волоконный светоделитель, детектор, аттенюатор, линию задержки, поляризационный фильтр, второй фазовый...
Тип: Изобретение
Номер охранного документа: 0002622985
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d8c0

Способ получения сульфида галлия (ii)

Изобретение относится к неорганической химии, а именно к получению сульфида галлия (II), являющегося перспективным материалом для полупроводниковой оптоэлектронной техники и инфракрасной оптики. Cинтез GaS проводили в замкнутом объеме из элементарных галлия и серы, взятых в стехиометрическом...
Тип: Изобретение
Номер охранного документа: 0002623414
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e440

Модулятор электромагнитного излучения субтерагерцового и терагерцового диапазона для систем высокоскоростной беспроводной связи

Изобретение относится к оптоэлектронике, а именно к модуляторам электромагнитного излучения, в частности, работающим в субтерагерцовом и терагерцовом диапазонах частот (100-10000 ГГц). Изобретение может использоваться в областях науки и техники, использующих данные диапазоны частот, в...
Тип: Изобретение
Номер охранного документа: 0002626220
Дата охранного документа: 24.07.2017
19.01.2018
№218.016.0759

Способ получения кремниевых мишеней для магнетронного распыления

Изобретение относится к литейному производству, в частности к получению кремниевых профильных отливок для мишеней магнетронного распыления. Шихту полупроводникового поликристаллического кремния расплавляют в графитовом тигле, который перемещают вертикально в полости нагревателя. В донном...
Тип: Изобретение
Номер охранного документа: 0002631372
Дата охранного документа: 21.09.2017
10.05.2018
№218.016.4af7

Способ интраоперационного забора биоптата глиомы и морфологически неизменной ткани головного мозга для молекулярно-генетических исследований

Изобретение относится к области медицины, в частности к онкологии. Предложен способ интраоперационного забора биоптата глиомы и морфологически неизмененной ткани головного мозга для молекулярно-генетических исследований. Под нейронавигационным контролем осуществляют доступ к опухоли. При...
Тип: Изобретение
Номер охранного документа: 0002651749
Дата охранного документа: 23.04.2018
+ добавить свой РИД