×
10.06.2014
216.012.cf57

Результат интеллектуальной деятельности: НАНО- И МИКРОСТРУКТУРНОЕ КЕРАМИЧЕСКОЕ ТЕРМОБАРЬЕРНОЕ ПОКРЫТИЕ

Вид РИД

Изобретение

Авторы

№ охранного документа
0002518850
Дата охранного документа
10.06.2014
Аннотация: Изобретение относится к керамическому термобарьерному покрытию, которое имеет наноструктурный и микроструктурный слой. Керамическое термобарьерное покрытие на подложке из жаропрочного сплава на основе никеля или кобальта, или железа содержит необязательно металлическое связующее покрытие (7) и два наслоенных керамических слоя (16) с внутренним керамическим (10) и внешним керамическим (13) слоем. Внутренний керамический слой (10) является наноструктурным и имеет пористость между 3 об.% и 14 об.%, в частности между 9 об.% и 14 об.%, а внешний слой (13) имеет пористость более высокую, чем пористость внутреннего слоя (10), в частности по меньшей мере на 10% более высокую, наиболее предпочтительно по меньшей мере на 20% более высокую. Материал двух керамических слоев (10, 13) является одинаковым, в частности стабилизированным диоксидом циркония, наиболее предпочтительно диоксидом циркония, стабилизированным оксидом иттрия. Улучшается вязкость керамического термобарьерного покрытия. 11 з.п. ф-лы, 5 ил.

Изобретение относится к керамическому термобарьерному покрытию, которое имеет наноструктурный и микроструктурный слой.

Термобарьерные покрытия должны проявлять низкую теплопроводность, но также хорошее сцепление с подложкой или с металлическим связующим слоем.

В особенности должна быть улучшена вязкость термобарьерного покрытия.

Поэтому задача изобретения состоит в улучшении вязкости керамического термобарьерного покрытия.

Задача разрешена с помощью термобарьерного покрытия согласно пункту 1 патентной формулы.

Как показано,

фиг.1 представляет схематический вид изобретения,

фиг.2 представляет газовую турбину,

фиг.3 представляет турбинную лопатку,

фиг.4 представляет камеру сгорания,

фиг.5 представляет список жаропрочных сплавов.

Нижеследующие примеры и фигуры представляют собой только варианты осуществления изобретения.

В фиг.1 показан компонент 1, 120, 130, 155. Она показывает металлическую подложку 4, которая, особенно в случае такой детали, как лопатки или лопасти 120, 130 (фиг.3) для газовых турбин 100 (фиг.2), изготовлена из жаропрочного сплава на основе никеля, как приведенных в фиг.5.

На подложку 4 предпочтительно нанесен металлический связующий слой 7, главным образом типа MCrAlY.

В некоторых случаях керамическое термобарьерное покрытие (TBC) 16 может быть нанесено непосредственно на подложку 4.

На подложке 4 или на связующем покрытии 7 во время нанесения керамического ТВС или по меньшей мере во время работы покровной системы формируют слой 8 из оксида алюминия (термически выращенного оксидного слоя (TGO)).

Связующее покрытие 7 предпочтительно представляет собой двухслойный металлический слой с уменьшенным количеством алюминия и/или хрома в верхней области. Этот верхний металлический слой предпочтительно имеет около 16%-18% хрома (Cr) и от 4% до 5% алюминия (Al).

Это улучшает вязкость металлического слоя, который обращен непосредственно к керамическим слоям.

Керамическое термобарьерное покрытие 16 представляет собой двухслойное керамическое слоистое покрытие 10, 13.

Керамическое ТВС 16 главным образом состоит только из двух слоев 10, 13.

Внутреннее керамическое покрытие 10 на металлическом связующем покрытии 7 поверх подложки 4 или на ней является наноструктурным, и главным образом гораздо более тонким, чем вышележащий керамический слой 13. Это улучшает вязкость и сцепление керамического покрытия.

Термин «наноструктурный» означает, что около 70%, главным образом по меньшей мере 90% зерен керамического слоя 10 имеют размер менее, чем 500 нм, главным образом ≤300 нм.

Во избежание спекания, минимальные размеры зерен составляют более, чем (≥)100 нм, и наиболее предпочтительно ≥200 нм.

Наноструктурным является только внутренний керамический слой 10. Наружный слой 13 является микроструктурным.

Термин «микроструктурный» означает, что около 70%, главным образом по меньшей мере 90% зерен керамического слоя 10 имеют размер более 1 мкм, главным образом более 20 мкм.

Нижний слой 10 главным образом является гораздо более тонким, чем верхнее керамическое термобарьерное покрытие 10.

Это значит, что толщина верхнего слоя 13 составляет по меньшей мере 60%, главным образом 70% общей толщины керамического слоя 13.

Нижний керамический слой 10 главным образом имеет толщину вплоть до 100 мкм с минимальным значением 10 мкм, главным образом 20 мкм.

Внутренний керамический слой 10 главным образом имеет пористость вплоть до 14 объемных процентов, главным образом между 9 объемными процентами до 14 объемных процентов.

Верхний керамический слой 13 главным образом имеет гораздо более высокую пористость, чем внутренний керамический слой 10 (различие составляет по меньшей мере 10%, главным образом ≥20%), главным образом пористость выше, чем 15% об., и пористость вплоть до 30% об.

Верхний слой 13 может быть нанесен любым способом нанесения покрытий, таким как плазменное напыление, высокоскоростное газопламенное напыление (HVOF) или холодное газовое напыление.

Наноструктурный керамический слой 10 предпочтительно наносят в виде суспензии, плазменным напылением или плазменным напылением из раствора прекурсора, или любым способом золь-гель-технологии.

Материал двух керамических слоев 10, 13 может быть одинаковым, главным образом он представляет собой стабилизированный иттрием диоксид циркония. Кроме того, внутренний керамический слой 10 может быть наноструктурным частично стабилизированным диоксидом циркония, и верхний слой 13 имеет иной состав, и главным образом представляет собой керамический слой со структурой пирохлора, которая главным образом представляет собой цирконат гадолиния (типа Gd2Zr2O7) или гафнат гадолиния (Gd2Hf2O7).

Фиг.3 показывает перспективный вид рабочей лопатки 120 ротора или направляющей лопасти 130 турбомашины, которая является протяженной вдоль продольной оси 121.

Турбомашина может представлять собой газовую турбину авиационного двигателя или электростанции для выработки электроэнергии, паровую турбину или компрессор.

Лопатка или лопасть 120, 130 имеет крепежный участок 400 (хвостовик), примыкающую полку 403 лопатки или лопасти, и основную лопатку (перо), или основную часть 406, последовательно протяженные вдоль продольной оси 121. В качестве направляющей лопасти 130, лопасть 130 может иметь дополнительную полку (не показана) на ее конце 415 лопасти.

Корень 183 лопатки или лопасти, который используется для крепления роторных лопаток 120, 130 к валу или диску (не показан), формируют в крепежном участке 400. Корень 183 лопатки или лопасти выполнен, например, в форме головки молотка. Возможны также другие конструкции, такие как елочный хвостовик или «ласточкин хвост». Лопатка или лопасть 120, 130 имеет входную кромку 409 и выходную кромку 412 для среды, которая обтекает основную часть 406 лопатки или лопасти.

В случае традиционных лопаток или лопастей 120, 130, в качестве примера, во всех участках 400, 403, 406 лопатки или лопасти 120, 130 используют сплошные металлические материалы, в частности, жаропрочные сплавы. Жаропрочные сплавы этого типа известны, например, из патентных документов EP 1204776 В1, EP 1306454, EP 1319729 А1, WO 99/67435 или WO 00/44949; эти документы составляют часть настоящего изобретения в отношении химического состава сплава. В этом случае лопатка или лопасть 120, 130 может быть получена способом литья, также с помощью направленного затвердевания, способом ковки, способом фрезерования или их комбинациями.

Заготовки с монокристаллической структурой или структурами используются в качестве компонентов для машин, которые во время работы подвергаются воздействию высоких механических, термических и/или химических нагрузок. Монокристаллические заготовки этого типа получают, например, направленным затвердеванием из расплава. Сюда входят процессы литья, в которых жидкий металлический сплав затвердевает с образованием монокристаллической структуры, то есть, монокристаллической заготовки, то есть, направленно. В этом процессе образуются дендритные кристаллы в направлении теплового потока, и формируют либо структуру с зернами в виде столбчатых кристаллов (то есть, с зернами, которые проходят по всей длине заготовки и в этом контексте называются, в соответствии со стандартной терминологией, направленно затвердевшими), либо монокристаллическую структуру, то есть, вся заготовка состоит из монокристалла. В этом процессе должен быть исключен переход к глобулярному (поликристаллическому) затвердеванию, поскольку ненаправленный рост неизбежно ведет к образованию поперечных и продольных границ между зернами, которые сводят на нет хорошие свойства направленно затвердевшей или монокристаллической детали. Там, где в общем рассматриваются направленно затвердевшие микроструктуры, это следует понимать как включающее как монокристаллы, которые не имеют никаких границ между зернами или, в крайнем случае, имеют малоугловые межзеренные границы, так и структуры из столбчатых кристаллов, которые имеют границы между зернами, проходящие в продольном направлении, но не имеют никаких поперечных межзеренных границ. В случае этих указанных последними кристаллических структур речь также может идти о направленно затвердевших микроструктурах (направленно затвердевших структурах). Способы этого типа известны из патентных документов US 6024792 и EP 0892090 А1.

Лопатки или лопасти 120, 130 также могут иметь покрытия, защищающие от коррозии или окисления, например, (MCrAlX; М представляет по меньшей мере один элемент, выбранный из группы, состоящей из железа (Fe), кобальта (Co), никеля (Ni); Х обозначает активный элемент и представляет собой иттрий (Y), и/или кремний, и/или по меньшей мере один редкоземельный элемент, или гафний (Hf)). Сплавы этого типа известны из патентных документов ЕР 0486489 В1, ЕР 0786017 В1, ЕР 0412397 В1 или ЕР 1306454 А1.

На MCrAlX также может присутствовать термобарьерное покрытие, состоящее, например, из ZrO2, Y2O4-ZrO2, то есть, которое является не стабилизированным, является частично или полностью стабилизированным оксидом иттрия, и/или оксидом кальция, и/или оксидом магния. Столбчатые зерна получаются в термобарьерном покрытии с помощью подходящих способов нанесения покрытий, например, таких как физическое осаждение из паровой фазы с испарением электронным пучком (EB-PVD).

Термин «обновление» означает, что защитные слои могут быть удалены с деталей 120, 130 после того, как они были использованы (например, пескоструйной обработкой). Затем удаляют корродированные и/или окисленные слои или продукты. При необходимости также ремонтируют трещины в детали 120, 130 с использованием припоя согласно изобретению. Затем следует повторное нанесение покрытия на деталь 120, 130, после которого деталь 120, 130 может быть опять использована.

Лопатка или лопасть 120, 130 может иметь сплошную или полую конструкцию. Если лопатка или лопасть 120, 130 должна охлаждаться, то она является полой и также может включать отверстия 418 для пленочного охлаждения (обозначены пунктирными линиями).

Фиг.4 показывает камеру 110 сгорания газовой турбины 100 (Фиг.2).

Как известно, камеру 110 сгорания компонуют, например, как кольцевую камеру сгорания, в которой многочисленные форсунки 107, которые размещены вокруг оси 102 вращения в окружном направлении, открыты в общий объем 154 камеры сгорания, причем форсунки 107 образуют факелы 156 пламени. Для этой цели вся камера 110 сгорания в целом имеет кольцеобразную конфигурацию, позиционированную вокруг оси 102 вращения.

Для достижения относительно высокого коэффициента полезного действия камеру 110 сгорания рассчитывают на относительно высокую температуру рабочей среды М на уровне приблизительно от 1000°С до 1600°С. Чтобы обеспечить относительно длительную продолжительность работы даже при этих эксплуатационных параметрах, которые являются неблагоприятными для материалов, стенку 153 камеры сгорания оснащают внутренней облицовкой, сформированной из теплозащитных элементов 155 на ее стороне, обращенной к рабочей среде М. Каждый теплозащитный элемент 155, изготовленный из сплава, на стороне рабочей среды оснащают особенно термостойким защитным слоем (слой MCrAlX и/или керамическое покрытие), или сделанным из материала, который способен выдерживать высокие температуры (сплошные керамические кирпичи). Эти защитные слои могут быть подобными лопаткам или лопастям турбины, то есть, представлять собой, например, MCrAlX: М обозначает по меньшей мере один элемент, выбранный из группы, состоящей из железа (Fe), кобальта (Co), никеля (Ni), Х обозначает активный элемент и представляет собой иттрий (Y), и/или кремний, и/или по меньшей мере один редкоземельный элемент, или гафний (Hf). Сплавы этого типа известны из патентных документов ЕР 0486489 В1, ЕР 0786017 В1, ЕР 0412397 В1 или ЕР 1306454 А1, которые предполагаются составляющими часть настоящего изобретения в отношении химического состава сплава.

На MCrAlX также может присутствовать керамическое термобарьерное покрытие, состоящее, например, из ZrO2, Y2O4-ZrO2, то есть, которое является не стабилизированным, является частично или полностью стабилизированным оксидом иттрия, и/или оксидом кальция, и/или оксидом магния.

Столбчатые зерна получаются в термобарьерном покрытии с помощью подходящих способов нанесения покрытий, например, таких как физическое осаждение из паровой фазы с испарением электронным пучком (EB-PVD).

Термин «обновление» означает, что защитные слои могут быть удалены с теплозащитных элементов 155 после того, как они были использованы (например, пескоструйной обработкой). Затем удаляют корродированные и/или окисленные слои или продукты. При необходимости также ремонтируют трещины в теплозащитном элементе 155 с использованием припоя согласно изобретению. Затем следует повторное нанесение покрытия на теплозащитные элементы 155, после которого теплозащитные элементы 155 могут быть использованы вновь.

Более того, с учетом высоких температур внутри камеры 110 сгорания, может быть предусмотрена система охлаждения теплозащитных элементов 155 и/или деталей их крепления. В этом случае теплозащитные элементы 155 являются, например, полыми, и также могут включать отверстия 418 для пленочного охлаждения (не показаны), которые открыты в объем 154 камеры сгорания.

Фиг.2 показывает, в качестве примера, газовую турбину 100 в виде частичного продольного разреза. Внутри нее газовая турбина 100 имеет ротор 103, который смонтирован так, что он может вращаться вокруг оси 102 вращения и имеет вал, также известный как ротор турбины. Вдоль ротора 103 один за другим следуют впускной корпус 104, компрессор 105, например, тороидальная камера 110 сгорания, в частности, кольцевая камера сгорания, с многочисленными коаксиально размещенными форсунками 107, турбина 108 и выпускной корпус 109. Кольцевая камера 110 сгорания находится в сообщении, например, с кольцеобразным каналом 111 для горячего газа, где, например, четыре последовательных ступени 112 турбины образуют турбину 108.

Каждая ступень 112 турбины сформирована, например, из двух лопаточных или лопастных венцов. Если смотреть по направлению течения рабочей среды 113, ряд 125, сформированный из турбинных лопаток 120, следует за рядом 115 направляющих лопастей в канале 111 для горячего газа.

Направляющие лопасти 130 закреплены на внутреннем корпусе 138 статора 143, тогда как турбинные лопатки 120 ряда 125 вставлены в ротор 103, например, с помощью турбинного диска 133. С ротором 103 соединен генератор или машина (не показаны).

Когда газовая турбина 100 работает, компрессор 105 засасывает воздух 135 через впускной корпус 104 и сжимает его. Сжатый воздух, который поступает на конец компрессора 105, обращенный к турбине, проходит мимо форсунок 107, где он смешивается с топливом. Затем смесь сгорает в камере 110 сгорания с образованием рабочей среды 133. Оттуда рабочая среда 133 протекает вдоль канала 111 для горячего газа, проходит через направляющие лопасти 130 и лопатки 120 ротора. Рабочая среда 113 расширяется на лопатках 120 ротора, передает им импульс силы, так что лопатки 120 ротора приводят во вращение ротор 103, и ротор приводит в движение соединенную с ним машину.

Когда газовая турбина 100 работает, детали, которые подвергаются воздействию горячей рабочей среды 113, испытывают термические нагрузки. Направляющие лопасти 130 и лопатки 120 ротора в первой ступени 112 турбины, если смотреть по направлению течения рабочей среды 113, вместе с теплозащитными элементами, которые составляют облицовку кольцеобразной камеры 110 сгорания, подвергаются самым высоким термическим нагрузкам. Чтобы выдерживать господствующие там температуры, эти детали могут охлаждаться посредством охлаждающей среды.

Подобным образом, подложки деталей могут иметь направленную структуру, то есть, они находятся в монокристаллической форме (SX-структура), или включают только продольно направленные зерна (DS-структура). Например, в качестве материала для деталей, в частности, для лопаток и лопастей 120, 130 турбины и деталей камеры 110 сгорания, используют жаропрочные сплавы на основе железа, на основе никеля или на основе кобальта. Жаропрочные сплавы этого типа известны, например, из патентных документов EP 1204776 В1, EP 1306454, EP 1319729 А1, WO 99/67435 или WO 00/44949.

Подобным образом, лопатки и лопасти 120, 130 имеют покрытия для защиты от коррозии (MCrAlX; М представляет по меньшей мере один элемент, выбранный из группы, состоящей из железа (Fe), кобальта (Co), никеля (Ni), Х обозначает активный элемент и представляет собой иттрий (Y), и/или кремний, и/или по меньшей мере один редкоземельный элемент, или гафний). Сплавы этого типа известны из патентных документов ЕР 0486489 В1, ЕР 0786017 В1, ЕР 0412397 В1 или ЕР 1306454 А1.

На MCrAlX также может присутствовать термобарьерное покрытие, состоящее, например, из ZrO2, Y2O4-ZrO2, то есть, которое является не стабилизированным, является частично или полностью стабилизированным оксидом иттрия, и/или оксидом кальция, и/или оксидом магния. Столбчатые зерна получаются в термобарьерном покрытии с помощью подходящих способов нанесения покрытий, например, таких как физическое осаждение из паровой фазы с испарением электронным пучком (EB-PVD).

Направляющая лопасть 130 имеет корень направляющей лопасти (здесь не показан), обращенный к внутреннему корпусу 138 турбины 108, и головку направляющей лопасти на противоположной стороне относительно корня направляющей лопасти. Головка направляющей лопасти обращена к ротору 103 и закреплена на крепежном кольце 140 статора 143.


НАНО- И МИКРОСТРУКТУРНОЕ КЕРАМИЧЕСКОЕ ТЕРМОБАРЬЕРНОЕ ПОКРЫТИЕ
НАНО- И МИКРОСТРУКТУРНОЕ КЕРАМИЧЕСКОЕ ТЕРМОБАРЬЕРНОЕ ПОКРЫТИЕ
НАНО- И МИКРОСТРУКТУРНОЕ КЕРАМИЧЕСКОЕ ТЕРМОБАРЬЕРНОЕ ПОКРЫТИЕ
НАНО- И МИКРОСТРУКТУРНОЕ КЕРАМИЧЕСКОЕ ТЕРМОБАРЬЕРНОЕ ПОКРЫТИЕ
НАНО- И МИКРОСТРУКТУРНОЕ КЕРАМИЧЕСКОЕ ТЕРМОБАРЬЕРНОЕ ПОКРЫТИЕ
Источник поступления информации: Роспатент

Showing 531-540 of 1,427 items.
27.02.2016
№216.014.cdb9

Разрядник защиты от перенапряжений с растяжимой манжетой

Разрядник (1) защиты от перенапряжений с колонкой варисторных элементов содержит растяжимую манжету (8) для размещения натяжных элементов (4) и фиксации их в радиальном направлении. Форма манжеты предусматривает заданные зоны деформации, за счет чего при неисправности и перегрузке манжета (8)...
Тип: Изобретение
Номер охранного документа: 0002575917
Дата охранного документа: 27.02.2016
20.02.2016
№216.014.cdfd

Сопловая лопатка с охлаждаемой платформой для газовой турбины

Узел платформы для поддержки сопловой лопатки для газовой турбины содержит поверхность прохождения газа, расположенную так, чтобы контактировать с потоковым рабочим газом, по меньшей мере, один охлаждающий канал. Охлаждающий канал имеет форму для направления охлаждающей текучей среды в...
Тип: Изобретение
Номер охранного документа: 0002575260
Дата охранного документа: 20.02.2016
10.02.2016
№216.014.cead

Устройство для монтажа и демонтажа конструктивного элемента стационарной газовой турбины, стационарная газовая турбина и способ монтажа и демонтажа конструктивного элемента стационарной газовой турбины

Изобретение относится к способу и устройству для монтажа и демонтажа конструктивного элемента в виде горелки или переходной трубы газовой турбины на стационарной газовой турбине. Устройство содержит двухколейную рельсовую систему, по которой передвигается рамная тележка, несущий узел для...
Тип: Изобретение
Номер охранного документа: 0002575109
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.cf3d

Способ компьютерной генерации управляемой данными модели технической системы, в частности газовой турбины или ветрогенератора

Изобретение относится к способу компьютерной генерации управляемой данными модели технической системы, в частности газовой турбины или ветрогенератора. Управляемая данными модель обучается предпочтительно в областях тренировочных данных с низкой плотностью. Оценщик плотности выдает для наборов...
Тип: Изобретение
Номер охранного документа: 0002575328
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cf4e

Способ для динамической авторизации мобильного коммуникационного устройства

Изобретение относится к области технического обслуживания. Технический результат - ограничение открытого доступа к сетям с обслуживаемыми установками. Способ для динамической авторизации мобильного коммуникационного устройства для сети, при котором ассоциированный с коммуникационным устройством...
Тип: Изобретение
Номер охранного документа: 0002575400
Дата охранного документа: 20.02.2016
27.03.2016
№216.014.ddab

Устройство и способ для добычи, особенно добычи на месте залегания (in-situ), углеродсодержащего вещества из подземного месторождения

Группа изобретений относится к устройству и способу для добычи углеводородсодержащего вещества, особенно битума или тяжелой фракции нефти, из резервуара. Резервуар нагружается тепловой энергией для снижения вязкости вещества, для чего предусмотрен по меньшей мере один проводящий шлейф для...
Тип: Изобретение
Номер охранного документа: 0002579058
Дата охранного документа: 27.03.2016
20.02.2016
№216.014.e873

Диффузор отходящего газа для газовой турбины, газовая турбина с таким диффузором и способ работы такой газовой турбины

Диффузор отходящего газа газовой турбины содержит кольцеобразную наружную стенку для направления потока и кольцеобразный направляющий элемент, расположенный концентрично наружной стенке. Направленная радиально внутрь поверхность направляющего элемента имеет окружной, в продольном сечении...
Тип: Изобретение
Номер охранного документа: 0002575212
Дата охранного документа: 20.02.2016
10.02.2016
№216.014.e884

Устройство охлаждения ротора электрической машины

Изобретение касается электрической машины и устройства её охлаждения. Технический результат заключается в повышении эффективности охлаждения вала. Электрическая машина (12) содержит статор (16), ротор (18) и вал (20), который механически соединен с ротором (18). При этом вал (20) содержит...
Тип: Изобретение
Номер охранного документа: 0002575011
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.e8d9

Многофазно изолированный сжатым газом модуль кабельного ввода, снабженный герметичной оболочкой

Изобретение касается многофазно изолированного сжатым газом модуля кабельного ввода имеющего герметичную оболочку. Внутри герметичной оболочки расположено несколько электрически изолированных друг от друга посредством изоляции сжатым газом фазных проводов (10a, 10b). Эти фазные провода (10a,...
Тип: Изобретение
Номер охранного документа: 0002575867
Дата охранного документа: 20.02.2016
27.02.2016
№216.014.e8e3

Компрессор и соответствующая газовая турбина

Изобретение относится к осевому компрессору (10), содержащему ограничивающий радиально снаружи кольцеобразный проточный канал (36) корпус, в котором удерживаются с возможностью поворота проходящие через проточный канал (36) направляющие лопатки (14) венца направляющих лопаток, при этом каждая...
Тип: Изобретение
Номер охранного документа: 0002575956
Дата охранного документа: 27.02.2016
Showing 531-540 of 943 items.
10.03.2016
№216.014.c13d

Способ эксплуатации стационарной газотурбинной установки и всасывающий канал для всасываемого воздуха газотурбинной установки

Способ (39) эксплуатации стационарной газотурбинной установки (10), которая оснащена по меньшей мере одним фильтром (32, 34) для очистки всасываемого воздуха (А) и подсоединена к генератору (20). Генератор выполнен с возможностью запитывания электрической энергии в электрическую...
Тип: Изобретение
Номер охранного документа: 0002576407
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.c16f

Масштабируемый по мощности и частоте инвертор

Изобретение относится к области электротехники и может быть использовано в инверторе для предоставления масштабируемого по частоте выходного сигнала инвертора, в особенности с высокой выходной мощностью. Технический результат - создание инвертора с низкими затратами для высоких напряжений или...
Тип: Изобретение
Номер охранного документа: 0002576249
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.c18b

Топливная система газопаротурбинной установки и способ ее промывки

Топливная система (8) и способ её промывки для газопаротурбинной установки с интегрированной газификацией угля, включающей газовую турбину (1). Топливная система (8) подключена к камере (3) сгорания газовой турбины (1) и содержит устройство (10) для газификации природного топлива и газопровод...
Тип: Изобретение
Номер охранного документа: 0002576398
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.c199

Возбудитель блока генерирования мощности, блок генерирования мощности и оборудование вывода энергии в электрической сети

Использование: в области электроэнергетики. Технический результат - повышение надежности и стабильности подачи питания к электрической сети. Возбудитель блока генерирования мощности включает в себя контроллер возбуждения для генерирования сигнала возбуждения согласно первому управляющему...
Тип: Изобретение
Номер охранного документа: 0002576021
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c1d2

Способ получения противокоронной защиты, быстроотверждаемая система защиты от коронного разряда, и электрическая машина

Изобретение относится к способу получения противокоронной защиты для электрических машин. Противокоронная защита отверждается, по меньшей мере, с помощью УФ-излучения и имеет электрически полупроводящий наполнитель, который может содержать карбид кремния и/или графит. Отверждение может...
Тип: Изобретение
Номер охранного документа: 0002574607
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c323

Сплав, защитное покрытие и конструкционная деталь

Изобретение относится к области металлургии, а именно к защитным покрытиям конструкционных деталей. Сплав на основе никеля для защитного покрытия конструкционной детали, в частности детали газовой турбины, предназначенного для защиты от коррозии и/или окисления детали при высоких температурах,...
Тип: Изобретение
Номер охранного документа: 0002574559
Дата охранного документа: 10.02.2016
27.01.2016
№216.014.c35a

Способ эксплуатации сортировочной горки и система управления сортировочной горкой

Изобретение относится к области железнодорожной автоматики, в частности к управлению сортировочными горками. Техническое решение заключается в том, что для соответствующих отцепов (100, 101) в виде скатывающихся вагонов или групп вагонов для первого вагонного замедлителя (70), исходя из...
Тип: Изобретение
Номер охранного документа: 0002574039
Дата охранного документа: 27.01.2016
10.02.2016
№216.014.c3b8

Способ эксплуатации сортировочной станции, а также управляющее устройство для сортировочной станции

Изобретение относится к области управления и эксплуатации сортировочной станции. В способе определяют местоположение (p1) локомотива (10) на пути (100) приема сортировочной станции по отношению к подлежащему расформированию блоку (60), перемещаемому от локомотива (10) из пути (100) приема к...
Тип: Изобретение
Номер охранного документа: 0002574287
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c42c

Устройство и способ загрузки транспортной единицы

Устройство для загрузки транспортной единицы (10), предусмотренной для транспортировки штучных грузов (12), в частности почтовых отправлений, включает в себя первую и вторую вдвигаемые в транспортную единицу (10) на различной высоте транспортерные секции (18, 20) для перемещения и выгрузки...
Тип: Изобретение
Номер охранного документа: 0002574507
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4f8

Способ формирования последовательности импульсных сигналов

Изобретение относится к способу формирования последовательности импульсных сигналов, используя процессор, в частности, для системы калибровки системы измерения синхронизации венцов в турбомашине или другом вращающемся оборудовании. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002574358
Дата охранного документа: 10.02.2016
+ добавить свой РИД