×
10.06.2014
216.012.cc41

Результат интеллектуальной деятельности: СПОСОБ АККУМУЛИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к аккумулированию электрической энергии, полученной в результате преобразования механической энергии ветра, солнечных батарей, геотермальной энергии тепловых источников и др. Технический результат заключается в повышении срока службы и ресурса работы аккумулятора за счет исключения химического взаимодействия электролита и электродов и отсутствия разрушаемых химическим путем электродов. Способ аккумулирования электрической энергии заключается в том, что аккумулирование осуществляют нехимическим путем, для чего приготавливают тиксотропную диспергированную систему из частиц ферромагнитного материала, диспергированных в жидкой или твердой фазе немагнитного материала, помещают ее в корпус с механизмом намагничивания, создают магнитное поле, активируют тиксотропную диспергированную систему, заряжают аккмулятор до максимальной емкости. Устройство для осуществления способа включет корпус, подключенный к источнику постоянного тока, внутри корпуса расположены тиксотропная диспергированная система частиц из ферромагнитного материала, диспергированная в жидкой или твердой фазе немагнитного материала, и механизм намагничивания, который представляет собой соленоид, подключенный к источнику постоянного тока, ось соленоида расположена параллельно горизонтальной оси корпуса. Кроме того, устройство для осуществления способа включает механизм намагничивания, который выполнен в виде параллельно соединенных между собой, по крайней мере, двух соленоидов, размещенных друг над другом, причем первый и последний соленоиды подключены к источнику постоянного тока. 2 з.п. ф-лы, 3 ил.

Изобретение может быть использовано для аккумулирования электрической энергии, полученной в результате преобразования механической энергии ветра, солнечных батарей, геотермальной энергии тепловых источников и др.

Известен способ аккумулирования электрической энергии при помощи свинцовых, никель-кадмиевых и других аккумуляторов (химическим путем).

Данный способ заложен в процесс зарядки-разрядки известного свинцового аккумулятора, на токоотводы которого нанесен активный материал разнополярных электродов, разнополярные электроды разделены сепараторами, собраны в блоки, установлены в корпусе с электролитом. (RU 2050644 С1, МПК Н01М 2/18, опубл. 20.12.1995 г.).

Данный способ также заложен в процесс зарядки-разрядки известного никель-кадмиевого аккумулятора, включающего пакет электродных пластин с разделением положительного и отрицательного электродов сепараторами, установленный в аккумуляторный корпус, залитый электролитом (RU 2336605 С1, МПК Н01М 2/18, опубл. 20.10.2008 г.).

Способ аккумулирования электрической энергии при помощи указанных выше устройств основан на химическом способе аккумулирования электрической энергии. Недостатком при работе (зарядке-разрядке) данных аккумуляторов является химическое взаимодействие электродов с электролитом. В результате химического растворения одного из электродов в электролите снижается срок службы и ресурс работы аккумулятора.

Известен электрический аккумулятор, содержащий корпус, электролит, блок электродов с сепараторами в виде стержней, расположенных на расстоянии, равном толщине электродов и соединенных вверху планкой (SU 1480692 А1, МПК Н01М 2/,18, опубл. 27.12.1995 г.).

Недостатком такого аккумулятора является ограниченность срока службы и ресурса работы.

Известен свинцовый аккумулятор, принятый за прототип, содержащий блоки отрицательных и положительных электродов, разделенных между собой сепараторами и помещенных в сосуд, заполненный электролитом (RU 2325013 С1, МПК Н01М 10/06, опубл. 20.05.2008 г.). В основу его работы заложено активное химическое взаимодействие электродов с электролитом.

Недостатком данного аккумулятора является то, что химически активный электролит по отношению к электродам разрушает их с образованием неразлагаемых сульфатов на поверхности электродов. Это снижает стойкость электродов, ограничивает срок службы и ресурс работы аккумуляторов.

Целью способа аккумулирования электрической энергии и устройства для его осуществления является повышение срока службы и ресурса работы аккумулятора за счет исключения химического взаимодействия электролита и электродов и отсутствия разрушаемых за счет химических реакций электродов.

Технический результат достигается за счет того, что в предлагаемом способе аккумулирования электрической энергии в отличие от прототипа аккумулирование осуществляют нехимическим путем, для чего приготавливают тиксотропную диспергированную систему из частиц ферромагнитного материала, диспергированных в жидкой или твердой фазе немагнитного материала, помещают ее в корпус с механизмом намагничивания, создают магнитное поле, активируют тиксотропную диспергированную систему, заряжают аккмулятор до максимальной емкости.

Устройство для осуществления способа позволяет достигнуть технический результат за счет того, что включает корпус, подключенный к источнику постоянного тока, но в отличие от прототипа внутри корпуса расположены тиксотропная диспергированная система частиц из ферромагнитного материала, диспергированная в жидкой или твердой фазе немагнитного материала и механизм намагничивания, который представляет собой соленоид, подключенный к источнику постоянного тока, ось соленоида расположена параллельно горизонтальной оси корпуса.

Кроме того, в устройстве для осуществления способа в отличие от прототипа механизм намагничивания может быть выполнен в виде параллельно соединенных между собой, по крайней мере, двух соленоидов, размещенных друг над другом, причем первый и последний соленоиды подключены к источнику постоянного тока.

Из курса коллоидной химии известно, что при наложении внешнего магнитного поля в устойчивых золях, суспензиях, порошках диспергированных ферромагнитных материалов происходит структурирование ферромагнитных частиц вдоль магнитного поля. При снятии магнитного поля происходит восстановление первоначального состояния (Щукин Е.Д., Перцов А.В., Амелина Е.А. Коллоидная химия. - М.: Изд-во Московского университета, 1982. - 348 с.). Структурирование и восстановление положения частиц в золях, суспензиях и порошках диспергированных ферромагнитных материалов, то есть изменение взаимного положения частиц в магнитном поле приводит к появлению эдс в замкнутом контуре соленоида, который размещен внутри этих коллоидов.

В заявляемом изобретении используется новый нехимический способ аккумулирования электрической энергии по сравнению с традиционными методами, где для аккумулирования энергии используется химическое взаимодействие электродов с электролитом.

Предлагаемый способ основан на реологических свойствах дисперсной системы, обусловленных, в частности, тем, насколько независимо одна от другой могут двигаться частицы в дисперсной среде, то есть от концентрации, взаимодействия, формы частиц. При определенных условиях частицы в дисперсной среде склонны к слипанию, то есть при малых концентрациях возникают агрегаты (флокулы) частиц.

При соударении агрегатов, а также при их проникновении в соседние слои может происходить разрушение агрегатов. Это ведет к появлению неньютоновских свойств у дисперсной системы. Таким образом, наиболее существенное влияние на реологические свойства системы оказывает взаимодействие (агрегатирование) частиц, которое препятствует их свободному переносу слоями движущейся жидкости, то есть фиксирует взаимное положение частиц. В коллоидной химии явление фиксации пространственного положения частиц за счет возникновения связей между ними называется структурированием дисперсной системы. Обратимое разрушение и восстановление связей между частицами в структурированной дисперсной системе называется тиксотропией, а сами структурированные дисперсные системы с такими свойствами - тиксотропными. Разрушение связей между частицами при потенциальном характере их взаимодействия означает удаление частиц друг от друга на определенное расстояние, что возможно сразу для всех или большинства частиц только при наличии свободного объема, то есть структурная сетка должна быть ажурной. В структурированных дисперсных системах связь частиц в сетке сильнее, чем в коллоидных растворах. При прочих равных условиях все виды сил между частицами, а следовательно, и потенциал молекулярно-электростатического парного взаимодействия частиц пропорционален радиусу частиц. Эта связь должна быть больше, так как силы сцепления частиц противостоят не только тепловому движению, но и гравитационному полю.

В процессе приготовления структурированных дисперсных систем необходимо исходить из следующего. Структурирование повышает вязкость суспензии и пропорционально ему, при перемешивании, растут напряжения в неразрешенных образованиях, что ведет к интенсивному их разрушению и дальнейшему увеличению густоты структурной сетки, а следовательно, росту вязкости, прогрессирующему разрушению образований. В связи с этим на стадии приготовления суспензии целесообразно повышение концентрации диспергируемого порошка с добавлением растворителя по мере перетирания смеси. Однородность структурированных дисперсных систем обеспечивают путем загущения дисперсной среды. В качестве загустителя используются растворы полимеров: полиизобутилен и др. Механизм действия загустителя сводится к структурированию среды. Частицы суспензии, более грубо дисперсные компоненты системы при этом пассивно вкраплены в структурированную среду, то есть могут выступать в роли активного наполнителя структурированной дисперсной системы. Введение наполнителя усиливает структурно-механические свойства системы. В этом случае частицы на структурированных дисперсных системах играют роль суспензии ферромагнитных материалов. При одинаковом размере частиц их доменная структура зависит от природы ферромагнетика. К числу таких материалов относятся гексаферрит бария ВаО 6 Fe2O3 и гамма окись железа g-Fe2O3.

Это обусловлено возможностью изменять взаимодействие между частицами и структуру системы с помощью магнитного поля, полной определенностью структуры дисперсных ферромагнетиков. Процесс намагничивания многодоменных частиц дисперсных ферромагнетиков обусловлен смещением междоменных границ внутри частицы. При этом растет размер областей, направление намагниченности которых совпадает с направлением внешнего поля, а размер других доменов соответственно уменьшатся. Если частицы однодоменны, то основную роль играет изменение направления намагниченности частицы, то есть направление ее магнитного момента. Возможность изменения ориентации частицы под влиянием действующего на частицу поля определяется тремя факторами: энергией магнитной анизотропии частицы, интенсивностью вращательной диффузии магнитного момента, структурно-механическими свойствами системы. В золях ферромагнетиков это легко выполнимо, так как намагниченность устойчивой текучести феррожидкости ограничена величиной I=(7,7-10)104 А/м.

Во внешнем поле, то есть при намагничивании частиц, энергетически наиболее выгодно такое взаимное положение частиц, когда их диполи параллельны и лежат на общей прямой, проходящей через центры диполей. В золях и суспензиях это ведет к образованию цепочек, ориентированных вдоль поля. Особенность такой структуры состоит в том, что она не является сплошной, как коагуляционные сетки.

Причина структурообразования заключается, прежде всего, в полидисперсности системы. Наличие в цепочке крупной частицы создает большой магнитный поток, для насыщения которого к ней присоединяются две и большее число цепочки из мелких частиц. Анизотропия структуры при этом сохраняется, она становится трехмерной.

Следовательно, основной причиной структурообразования является магнитодипольное взаимодействие частиц ферромагнетика (Бибик Е.Е., Матыгуллин Б.Я. Магнитостатические свойства коллоидных магнетитов. Магнитная гидродинамика, - 1973. - №1. - c.68-72).

Пример. Приготовление тиксотропной диспергированной системы из частиц ферромагнитного материала диспергированных твердой фазе немагнитного материала происходит следующим образом. Магнитный порошок ВаО 6 Fe2O3 смешивается с жидкой основой - керосином и ПАВ - олеиновая кислота, содержание которой составляет 10-20% объема основы. После загрузки 0,2 кг/л магнитного порошка в корпус производится его помол в течение 2-3 часов.

Получившаяся после помола пудра диспергируется ультразвуком в течение 20 минут при частоте 17 кГц. В результате диаметр частиц магнитного порошка составляет 50-90 нм, концентрация 1016 г/см3.

Механизм намагничивания конструируют путем намотки медной проволоки диаметром 0,5 мм на жесткий каркас диаметром 50-60 мм, который затем удаляют. Соленоид помещают в прямоугольный корпус, который 70-80% объема заполняется приготовленной диспергированной ферромагнитной системой. После этого соленоид подключают к источнику постоянного тока напряжением 10-12 В, сила тока 1,2 А и создается магнитное поле Н=(5-6)10-5 А/м. Получившаяся в результате кривая намагничивания соответствует насыщению при Н=6·10-4 А/м. Этому значению поля соответствует намагниченность насыщения. В течение времени, равном 200 сек, происходит изменение удельной восприимчивости от 1,8 до 0,6 и объема от 20 до 15 см3. Таким образом, в течение 3-4 минут среднее число соседних частиц в тиксотропной диспергированной системе увеличивается более двух, что достаточно для образования объемной сетки из ферромагнитных частиц в объеме суспензии внутри соленоида. Таким образом, происходит зарядка аккумулятора.

Для реализации способа предлагается устройство, включающее корпус, источник постоянного тока, внутри корпуса залита или засыпана тиксотропная диспергированная система частиц из ферромагнитного материала, диспергированная в жидкой или твердой фазе немагнитного материала, установленный внутри корпуса механизм намагничивания, который представляет собой соленоид, ось которого расположена вдоль горизонтальной оси корпуса, параллельно его нижней части, причем соленоид подключен к источнику постоянного тока.

Кроме того, для реализации способа предлагается устройство, в котором механизм намагничивания выполнен в виде последовательно соединенных между собой по крайней мере двух соленоидов, размещенных друг на другом параллельно нижней части корпуса, причем первый и последний соленоиды подключены к источнику постоянного тока.

На фиг.1 схематично изображен общий вид аккумулятора, на фиг.2 - аккумулятор при зарядке, на фиг.3 - аккумулятор при разрядке.

На фиг.1, 2, 3 обозначены: 1 - корпус, 2 - механизм намагничивания в виде соленоида, 3 - тиксотропная диспергированная система частиц из ферромагнитного материала, 4 - крышка корпуса, 5 - упоры.

Работа аккумулятора (зарядка-разрядка) осуществляется следующим образом.

Открытый корпус 1 (фиг.1 и фиг.2) на 70-80% объема заполняется приготовленной диспергированной ферромагнитной системой. Затем в него опускают механизм намагничивания - соленоид 2, который закрепляется на крышке 4 с помощью упоров 5. После этого соленоид подключают к источнику постоянного тока напряжением 10-12 В, сила тока 1,2 А и создается магнитное поле Н=6·10-5 А/м. В результате активации тиксотропной диспергированной ферромагнитной системы происходит структурирование системы вдоль направления напряженности магнитного поля соленоида, то есть происходит зарядка аккумулятора.

При отключении аккумулятора (фиг.3) от источника постоянного тока происходит процесс размагничивания тиксотропной диспергированной ферромагнитной системы. При отключении аккумулятора от источника постоянного тока намагниченность ферромагнитных частиц снижается, в результате тиксотропных свойств система приходит в первоначальное неструктурированное состояние, то есть происходит движение ферромагнитных частиц в соленоиде в обратном направлении. При этом в соленоиде 2 индуцируется эдс обратного направления, ток идет в обратном направлении. В этом случае аккумулятор разряжается.

Работа механизма намагничивания в виде параллельно соединенных между собой, по крайней мере, двух соленоидов, размещенных друг над другом, когда первый и последний соленоиды подключены к источнику постоянного тока происходит следующим образом. При зарядке аккумулятора к источнику постоянного тока подключаются последовательно соединенные между собой соленоиды, помещенные в диспергированную ферромагнитную систему. Каждый из соленоидов самостоятельно активирует ферромагнитную систему, а при их параллельном соединении емкость аккумулятора суммируется. При разрядке процессы происходят в противоположном направлении.

Так как в заявляемом аккумуляторе отсутствуют химические процессы, то срок службы аккумулятора практически не ограничен.

В традиционных оксидно-никелевых и оксидно-кадмиевых аккумуляторах при емкости 60-73 А/ч, количество циклов зарядки-разрядки 7200-10600, время наработки от 6 до 8 месяцев.


СПОСОБ АККУМУЛИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АККУМУЛИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АККУМУЛИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 31-40 of 42 items.
10.01.2015
№216.013.1c33

Способ получения биодизельного топлива

Изобретение относится к производству биодизельного топлива из возобновляемых источников сырья и направлено на повышение качества биодизельного топлива как альтернативного источника энергии. Способ получения биодизельного топлива включает подготовку растительного масла с нагревом до температуры...
Тип: Изобретение
Номер охранного документа: 0002538647
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1da8

Способ очистки промышленных сточных вод и устройство для его осуществления

Изобретение относится к области экологии, а именно к очистке промышленных сточных вод мясомолочных, масложировых, кожевенных предприятий. Способ очистки промышленных сточных вод включает их обработку смесью компонентов, образующих короткозамкнутую гальваническую пару типа анод-катод, с...
Тип: Изобретение
Номер охранного документа: 0002539020
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.23ab

Способ биологической очистки сточных вод и устройство для его осуществления

Изобретения могут быть использованы в области переработки органических субстратов с относительной влажностью 90-98%, в том числе хозяйственных и близких к ним по составу производственных сточных вод, навоза домашних животных, помета птицы, осадков и илов. Способ биологической очистки сточных...
Тип: Изобретение
Номер охранного документа: 0002540584
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2ce6

Устройство для электрообработки молочной продукции

Изобретение относится к устройствам для электрообработки жидкостей и может быть использовано для обработки молока и другой молочной продукции (кумыс, айран и др.) постоянным электрическим током. Согласно изобретению устройство для электрообработки молочной продукции содержит корпус, в котором...
Тип: Изобретение
Номер охранного документа: 0002542962
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.33c5

Способ обработки металлической полосы и устройство для его осуществления

Изобретение относится к области прокатного производства металлической полосы. Снижение продольной и поперечной разнотолщинности полосы обеспечивается за счет того, что в способе обработки металлической полосы пластической деформацией, включающем прокатку с охватом передним концом полосы...
Тип: Изобретение
Номер охранного документа: 0002544728
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3984

Валковая мельница

Изобретение относится к технологии переработки зерна и может быть использовано в мукомольной промышленности, а также на сельскохозяйственных предприятиях при производстве плющеного зерна и комбикормовой смеси. Валковая мельница содержит корпус, валки на опорах, гидравлическое устройство для...
Тип: Изобретение
Номер охранного документа: 0002546212
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4445

Электрофлотатор

Изобретение относится к физико- химической очистке сточных вод, в частности, от эмульгированных жировых загрязнений, нефтепродуктов и может быть использовано на предприятиях нефтеперерабатывающей, машиностроительной и пищевой промышленности. Электрофлотатор содержит корпус с патрубками для...
Тип: Изобретение
Номер охранного документа: 0002548975
Дата охранного документа: 20.04.2015
20.06.2015
№216.013.55ed

Транспортный трубопровод

Изобретение относится к трубопроводному транспорту и может быть использовано при транспортировке различных жидких и газообразных продуктов (пар, вода, углеводороды и др.) на предприятиях АПК, в коммунальном хозяйстве, нефтяной, химической и др. промышленности. Транспортный трубопровод содержит...
Тип: Изобретение
Номер охранного документа: 0002553527
Дата охранного документа: 20.06.2015
10.07.2015
№216.013.5bfb

Транспортный обогреваемый трубопровод

Изобретение относится к трубопроводному транспорту. К наружной поверхности обогреваемого трубопровода плотно прилегает коллектор с теплоносителем. В качестве источника тепла для теплоносителя использован геотермальный тепловой насос. Тепловой насос содержит соединительные трубопроводы,...
Тип: Изобретение
Номер охранного документа: 0002555088
Дата охранного документа: 10.07.2015
13.01.2017
№217.015.697f

Способ извлечения тяжелой нефти из продуктивного пласта и устройство для его осуществления

Группа изобретений относится к нефтяной промышленности. Технический результат - повышение производительности нефтеизвлечения из продуктивного пласта с одновременным снижением энергозатрат. В способе извлечения тяжелой нефти из продуктивного пласта прокладывают нагнетательную и добывающую...
Тип: Изобретение
Номер охранного документа: 0002591860
Дата охранного документа: 20.07.2016
Showing 31-40 of 66 items.
10.07.2014
№216.012.dab4

Способ переработки электронного лома

Изобретение относится к утилизации твердых бытовых отходов, содержащих благородные металлы. Электронный лом дробят на молотковой дробилке, добавляют измельченную медь, а затем плавят в присутствии флюса в течение 45-60 мин при температуре 1320-1350°C с продувкой воздухом при его расходе 3-4,5...
Тип: Изобретение
Номер охранного документа: 0002521766
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dceb

Электродиализатор с многослойной жидкой мембраной

Изобретение относится к области получения обессоленной воды и может быть использовано для деминерализации природных и сточных вод методом электродиализа в атомной энергетике, в электронной, медицинской, фармацевтической, химической, пищевой отраслях промышленности. Электродиализатор включает...
Тип: Изобретение
Номер охранного документа: 0002522333
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.e048

Способ переработки твердых бытовых и промышленных отходов и установка для его осуществления

Изобретение относится к области переработки отходов. Установка содержит последовательно установленные загрузочный бункер, мартеновскую печь, камеру дожигания, рекуператор нагрева воздуха горения, теплоутилизатор, дымосос и дымовую трубу, средство подачи топлива. Печь снабжена рукавным фильтром...
Тип: Изобретение
Номер охранного документа: 0002523202
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e127

Суперконденсатор

Изобретение относится к области электротехники и может быть использовано в приборах мобильной связи в качестве источника постоянного тока многократного использования. Предложенный суперконденсатор выполнен в виде тонкопленочной структуры, содержащей электроды, разделенные пленочным слоем...
Тип: Изобретение
Номер охранного документа: 0002523425
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1d1

Способ диагностирования газораспределительного механизма карбюраторного двигателя внутреннего сгорания и устройство для его осуществления

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ диагностирования газораспределительного механизма карбюраторного двигателя внутреннего сгорания заключается в измерении углового перемещения коленчатого вала двигателя от момента открытия впускного клапана первого...
Тип: Изобретение
Номер охранного документа: 0002523595
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.eac1

Устройство для очистки природных и сточных вод от механических примесей

Изобретение относится к очистке природных и сточных вод от механических примесей, и может быть использовано в системах очистки сточных вод в системе жилищно-коммунального хозяйства, а также в системах очистки природных питьевых вод городов и поселений. Устройство содержит трубопроводы, насосы и...
Тип: Изобретение
Номер охранного документа: 0002525905
Дата охранного документа: 20.08.2014
27.09.2014
№216.012.f7d0

Гидравлический таран

Изобретение относится к водоподъемным устройствам, использующим потенциальную энергию воды, и может быть использовано в местах перепада уровней воды, например на плотинах прудов. Гидравлический таран содержит питающий резервуар 17, подающий трубопровод 1, корпус 2, водовоздушный колпак 3 с...
Тип: Изобретение
Номер охранного документа: 0002529277
Дата охранного документа: 27.09.2014
10.12.2014
№216.013.0fe9

Смазочно-охлаждающая жидкость для обработки металлов давлением

Настоящее изобретение относится к смазочно-охлаждающей жидкости для обработки металлов давлением, содержащей воду и масло с числом омыления не менее 130 мг КОН/г, при содержании механических примесей не более 100 мг/л на 1% общей концентрации масла, при этом дополнительно содержит углеродные...
Тип: Изобретение
Номер охранного документа: 0002535490
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0fea

Смазка для обработки металлов давлением

Настоящее изобретение относится к смазке для обработки металлов давлением, содержащей мыло щелочного металла с влажностью 10-20 мас.%, при этом она дополнительно содержит нанотрубки графена со средним размером частиц 10-30 нм, модифицированные Mg(NO)×6HO, причем весовое соотношении частиц...
Тип: Изобретение
Номер охранного документа: 0002535491
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.106a

Способ обеззараживания продуктов и устройство для его осуществления

Способ предусматривает воздействие на обрабатываемый продукт холодным плазменным излучением при напряжении 3 кВ, частоте 10 Гц с расходом газа 0,6 л/мин в процессе перемещения продукта с изменением его ориентации относительно источника излучения. Для осуществления способа предусмотрено...
Тип: Изобретение
Номер охранного документа: 0002535625
Дата охранного документа: 20.12.2014
+ добавить свой РИД