×
27.05.2014
216.012.cb4e

Результат интеллектуальной деятельности: МОЛЕКУЛЯРНО-ЭЛЕКТРОННЫЙ АКСЕЛЕРОМЕТР

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам для измерения ускорения и может быть использовано в качестве первичного преобразователя в системах инерциальной навигации и сейсмометрии. Молекулярно-электронный акселерометр содержит диэлектрический корпус с двумя параллельными неподвижными электродами и третий подвижный электрод, установленный между неподвижными электродами. Подвижный электрод посредством упругих подвесов связан с жесткой рамкой, вмонтированной в корпус. Все электроды находятся в контакте с электропроводящей жидкостью, которая заполняет полость корпуса, и имеют внешние электрические выводы. Техническим результатом является уменьшение значения погрешности измерения ускорения, а также обеспечение широкого диапазона измерения ускорения при сохранении высокой чувствительности преобразователя во всем диапазоне измерения ускорения. 4 з.п. ф-лы, 4 ил.

Изобретение относится к контрольно-измерительной технике, в частности к устройствам для измерения ускорения, и может быть использовано в качестве первичного преобразователя в системах инерциальной навигации и сейсмометрии.

Известен датчик ускорения с несколькими электродами, которые погружены в токопроводяшую жидкость, используемую в качестве чувствительного к ускорению элемента. Указанные электроды и токопроводящая жидкость находятся в закрытом контейнере, который является общим электродом. При этом контейнер частично заполнен токопроводящей жидкостью (Пат. Германии 4025784 МПК G01C 9/06; G01C 9/20; G01P 1/00; G01Р 15/125. Датчик обнаружения ускорения или наклона автомобиля/Geisel Volker. - №DE 19904025184; заявл. 09.08.1990; опубл. 20.02.1992).

В данном датчике чувствительным к ускорению элементом является токопроводящая жидкость, частично заполняющая контейнер, т.е. датчик ускорения может функционировать, только находясь в поле тяготения, при этом вектор измеряемого ускорения должен быть нормален к вектору ускорения свободного падения, что является недостатком указанного датчика.

Известен молекулярно-электронный преобразователь параметров движения, содержащий корпус, частично заполненный электролитом, измерительные электроды, расположенные в корпусе по вертикали, попарно в диаметрально противоположных концах корпуса, и общий противоэлектрод, образующие совместно с электролитом окислительно-восстановительную систему. В преобразователь введен цилиндр, закрепленный посредством упругого подвеса в корпусе с зазором относительно его стенок (А.с. СССР 1103153 МКИ G01P 15/08. Молекулярно-электронный преобразователь параметров движения / А.И.Желонкин, Ю.Н. Осипов. - №3385086/18-10; заявл. 18.01.82; опубл. 15.07.84).

Недостатком данного молекулярно-электронного преобразователя является частичное заполнение его электролитом. При изменении температуры уровень электролита будет меняться вследствие объемного расширения жидкости, что приведет к изменению выходного сигнала и, как следствие, к погрешности в измерении ускорения.

Наиболее близким к заявляемому техническому решению является акселерометр, представленный на фиг.1 (Пат. Нидерландов №6913191, МПК G01P 15/08, H01G 3/04. Акселерометр/Verhagen С.М. - 19690013191; заявл. 28.08.1969). Акселерометр содержит диэлектрический корпус 1, заполненный электролитом 2, два параллельных плоских электрода 3, которые представляют собой торцевые стенки корпуса, и третий упругий электрод 4, который устанавливается между двумя плоскими электродами 3 и находится в контакте с электролитом 2. Каждый из электродов имеет вывод 5.

В описании данного акселерометра заявлено, что электрическое поле в электролите является однородным, что обеспечивает высокую степень линейности преобразования ускорения в электрический выходной сигнал. В соответствии с теорией электромагнитного поля у однородного электрического поля силовые линии параллельны, имеют одинаковую плотность и направление (Кухлинг X. Справочник по физике: Пер. с нем. 2-е изд. - М.: Мир, 1985. - С.324). При отсутствии воздействия на акселерометр сил инерции Fин, когда электроды 4 и 3 параллельны, силовые линии 6 не деформированы и электрическое поле является однородным. При воздействии на акселерометр ускорения а (фиг.2) на упругий электрод 4 воздействует сила инерции Fин, под действием которой он деформируется и приобретает форму криволинейной поверхности. Это нарушает параллельность силовых линий 6, что делает поле неоднородным, а следовательно, нарушает линейность преобразования ускорения в электрический выходной сигнал. При увеличении значения измеряемого ускорения увеличивается кривизна поверхности упругого электрода 4, что приводит к большей неоднородности электрического поля (Бессонов Л.А. Теоретические основы электротехники. Электромагнитное поле: Учебник для электротехн., энерг., приборостроит. спец. Вузов. - 8-е изд., перераб. и доп. - М: Высш. шк., 1986. - С.52) и уменьшению линейности преобразования. Таким образом, для сохранения приемлемой линейности преобразования приходится уменьшать диапазон измерения ускорения. Попытка автора расширить диапазон изменения ускорений за счет применения упругого электрода 4 с большей жесткостью приводит к снижению чувствительности акселерометра и делает невозможным измерение малых значений ускорения. Следовательно, недостатками данного изобретения являются зависимость линейности преобразования от измеряемого ускорения, ограниченный диапазон измерения ускорения для получения приемлемой линейности преобразования, либо снижение чувствительности преобразователя при расширении диапазона измерения ускорения.

Задачей заявляемого изобретения является уменьшение значения погрешности измерения ускорения за счет высокой линейности преобразования ускорения в электрический выходной сигнал, а также обеспечение широкого диапазона измерения ускорения при сохранении высокой чувствительности преобразователя во всем диапазоне измерения ускорения.

Поставленная задача решается тем, что молекулярно-электронный акселерометр содержит диэлектрический корпус с двумя параллельными неподвижными электродами и третий подвижный электрод, установленный между неподвижными электродами. Все электроды находятся в контакте с электропроводящей жидкостью, которая заполняет полость корпуса, и имеют внешние электрические выводы. Отличием от прототипа является то, что подвижный электрод посредством упругих подвесов связан с жесткой рамкой, вмонтированной в корпус. Кроме того, отношение значений расстояния между подвижным и неподвижным электродами к значению диаметральных размеров всех электродов находится в диапазоне от 1:80 до 1:110. В подвижном электроде могут быть выполнены отверстия для снижения гидравлического сопротивления перетеканию электропроводящей жидкости. Предпочтительным материалом для изготовления диэлектрического корпуса является вакуум-плотная керамика. В качестве электропроводящей жидкости используют раствор ионофора в жидком органическом растворителе с числами переноса катиона и аниона 0,5.

Сущность заявляемого изобретения поясняется фигурами.

На фиг.1 представлен акселерометр, взятый за прототип, в статичном состоянии;

на фиг.2 представлен акселерометр, взятый за прототип, при воздействии на него сил инерции;

на фиг.3 представлен заявляемый молекулярно-электронный акселерометр в статичном состоянии;

на фиг.4 представлен заявляемый молекулярно-электронный акселерометр при воздействии на него сил инерции.

Молекулярно-электронный акселерометр содержит диэлектрический корпус 7, заполненный электропроводящей жидкостью 8, два параллельных неподвижных электрода 9, подвижный электрод 10. Значение диаметров всех трех электродов одинаково. Подвижный электрод 10 связан посредством упругих подвесов 11 с жесткой рамкой 12, которая в свою очередь вмонтирована в корпус 7. Все электроды имеют внешние выводы 13. Соотношение расстояния между подвижным и неподвижными электродами L и диаметром D всех электродов находится в диапазоне от 1:80 до 1:110.

С увеличением значения межэлектродного расстояния L (при отношении L:D больше чем 1:80) проявляются краевые эффекты, т.е. сказывается влияние поля вне межэлектродного пространства.

С увеличением значения диаметра D (при отношении L:D меньше чем 1:110) возрастает значение гидравлического сопротивления перетеканию электропроводящей жидкости 8 в межэлектродных пространствах, что увеличивает значение динамической погрешности акселерометра.

В процессе изысканий по теме заявляемого изобретения опытным путем было установлено, что оптимальное отношение L:D равно 1:100.

Для снижения гидравлического сопротивления в подвижном электроде возможно наличие отверстий, что приводит к увеличению быстродействия акселерометра и, как следствие, снижению динамической погрешности измерения.

В качестве материала для диэлектрического корпуса выбрана вакуум-плотная керамика, так как значение температурного коэффициента линейного расширения керамики позволяет минимизировать изменение межэлектродного расстояния L при изменении температуры, что необходимо для обеспечения приемлемого значения температурной погрешности.

Кроме того, вакуум-плотная керамика позволяет проводить заполнение полости корпуса электропроводящей жидкостью в вакууме и исключает проникновение газов в полость в процессе эксплуатации с целью обеспечения временной стабильности.

Предпочтительной электропроводящей жидкостью является раствор ионофора в жидком органическом растворителе с числами переноса катиона и аниона 0,5, так как температурная зависимость электрических характеристик подобных растворов позволяет добиваться приемлемой температурной погрешности.

Молекулярно-электронный акселерометр работает следующим образом. При воздействии на акселерометр ускорения а на подвижный электрод 10 действует сила инерции Fин, под действием которой деформируются упругие подвесы 11. В результате подвижный электрод 10 смещается в направлении действия силы инерции Fин параллельно неподвижным электродам 9. При этом происходит изменение межэлектродных расстояний L1, L2 (фиг.4), что приводит к изменениям электрических свойств соответствующих объемов электропроводящей жидкости в межэлектродных пространствах. Измененные свойства электропроводящей жидкости вызывают разнонаправленные изменения электрических сигналов между выводами 13 подвижного 10 и неподвижных 9 электродов. Разнонаправленное изменение электрических сигналов линейно пропорционально значению измеряемого ускорения.

Заявляемая конструкция молекулярно-электронного акселерометра позволяет обеспечить линейность преобразования измеряемого ускорения в электрический выходной сигнал за счет того, что в процессе измерения ускорения все электроды остаются параллельными, т.е. однородность электрического поля не нарушается.


МОЛЕКУЛЯРНО-ЭЛЕКТРОННЫЙ АКСЕЛЕРОМЕТР
МОЛЕКУЛЯРНО-ЭЛЕКТРОННЫЙ АКСЕЛЕРОМЕТР
МОЛЕКУЛЯРНО-ЭЛЕКТРОННЫЙ АКСЕЛЕРОМЕТР
МОЛЕКУЛЯРНО-ЭЛЕКТРОННЫЙ АКСЕЛЕРОМЕТР
Источник поступления информации: Роспатент

Showing 1-9 of 9 items.
10.11.2014
№216.013.04a1

Способ изготовления керамических оболочковых форм для литья по выплавляемым моделям

Изобретение относится к литейному производству. На модельном блоке формируют оболочку с использованием кремнезольного связующего, огнеупорного наполнителя и обсыпочного материала. Проводят сушку слоев оболочки, вытопку модельного состава в горячей воде. Для формирования первого слоя или двух...
Тип: Изобретение
Номер охранного документа: 0002532583
Дата охранного документа: 10.11.2014
27.01.2015
№216.013.20fe

Способ изготовления формы для литья по выплавляемым моделям (варианты)

Изобретение относится к области литейного производства. Послойно формируют оболочку из огнеупорного, обсыпочного и связующего материалов. Слои формы сушат и выплавляют модель. Форму монтируют в опоку, заполняемую смесью опорного наполнителя и древесно-угольного карбюризатора. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002539894
Дата охранного документа: 27.01.2015
20.06.2015
№216.013.56e9

Способ электроэрозионного профилирования шлифовального круга на токопроводящей связке

Изобретение относится к области электрофизической и электрохимической обработки. В качестве контролируемых электрических параметров при обработке выбираются амплитуды импульсов напряжения и тока, которые выделяются в межэлектродном промежутке. Максимальная производительность профилирования...
Тип: Изобретение
Номер охранного документа: 0002553779
Дата охранного документа: 20.06.2015
20.08.2015
№216.013.7289

Способ фосфатирования железокобальтового сплава

Изобретение относится к химической обработке поверхности металла, в частности железокобальтовых сплавов. Фосфатирование железокобальтового сплава осуществляют при температуре 95-98°C в течение 2-3 минут в растворе, содержащем, г/дм: PO - 7,4…9,8, Mn - 2,1…2,8, Zn - 11,0…13,0, - 21,0...25,0,...
Тип: Изобретение
Номер охранного документа: 0002560891
Дата охранного документа: 20.08.2015
13.01.2017
№217.015.7630

Датчик давления фундаментной плиты на грунт

Изобретение относится к измерительной технике, в частности к измерениям величины давления фундаментной плиты на грунт таких сооружений, как реакторные отделения АЭС, мосты, плотины, высотные и промышленные здания, и может быть использовано в системах мониторинга за напряженно-деформированным...
Тип: Изобретение
Номер охранного документа: 0002598692
Дата охранного документа: 27.09.2016
25.08.2017
№217.015.aa3f

Устройство для разгрузки полувагонов с боковыми разгрузочными люками в полу

Изобретение относится к разгрузке сыпучих материалов из полувагонов с боковыми разгрузочными люками в полу и может быть использовано для перегрузки разгружаемого материала из полувагона в другое транспортное средство или на промежуточный конвейер. Устройство для разгрузки сыпучих материалов из...
Тип: Изобретение
Номер охранного документа: 0002611670
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.c2e9

Способ осветления и удаления шлама с поверхности самарий-кобальтовых магнитных сплавов

Изобретение относится к обработке поверхности самарий-кобальтовых магнитных сплавов после электроискровой вырезки. Способ осветления и удаления шлама с поверхности самарий-кобальтовых магнитных сплавов включает последовательную обработку с наложением ультразвуковых колебаний в водных растворах...
Тип: Изобретение
Номер охранного документа: 0002618048
Дата охранного документа: 02.05.2017
26.08.2017
№217.015.dd18

Способ фосфатирования магнитомягких сплавов типа пермаллой (варианты)

Изобретение относится к химической обработке поверхности металла, в частности прецизионных магнитомягких сплавов типа пермаллой, для получения фосфатного электроизоляционного покрытия толщиной 8-15 мкм. Первый вариант способа включает нанесение на поверхность сплава типа пермаллой...
Тип: Изобретение
Номер охранного документа: 0002624566
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.dfb8

Раствор для химического серебрения медных сплавов и способ его получения

Изобретение относится к нанесению химических серебряных покрытий на медные сплавы, как альтернатива процессу амальгамирования. Раствор для химического серебрения медных сплавов содержит: хлористое серебро (в пересчете на металл) 4-5 г/л, тиомочевина 70-80 г/л, кислота соляная 55-65 мл/л,...
Тип: Изобретение
Номер охранного документа: 0002625149
Дата охранного документа: 11.07.2017
Showing 1-9 of 9 items.
10.11.2014
№216.013.04a1

Способ изготовления керамических оболочковых форм для литья по выплавляемым моделям

Изобретение относится к литейному производству. На модельном блоке формируют оболочку с использованием кремнезольного связующего, огнеупорного наполнителя и обсыпочного материала. Проводят сушку слоев оболочки, вытопку модельного состава в горячей воде. Для формирования первого слоя или двух...
Тип: Изобретение
Номер охранного документа: 0002532583
Дата охранного документа: 10.11.2014
27.01.2015
№216.013.20fe

Способ изготовления формы для литья по выплавляемым моделям (варианты)

Изобретение относится к области литейного производства. Послойно формируют оболочку из огнеупорного, обсыпочного и связующего материалов. Слои формы сушат и выплавляют модель. Форму монтируют в опоку, заполняемую смесью опорного наполнителя и древесно-угольного карбюризатора. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002539894
Дата охранного документа: 27.01.2015
20.06.2015
№216.013.56e9

Способ электроэрозионного профилирования шлифовального круга на токопроводящей связке

Изобретение относится к области электрофизической и электрохимической обработки. В качестве контролируемых электрических параметров при обработке выбираются амплитуды импульсов напряжения и тока, которые выделяются в межэлектродном промежутке. Максимальная производительность профилирования...
Тип: Изобретение
Номер охранного документа: 0002553779
Дата охранного документа: 20.06.2015
20.08.2015
№216.013.7289

Способ фосфатирования железокобальтового сплава

Изобретение относится к химической обработке поверхности металла, в частности железокобальтовых сплавов. Фосфатирование железокобальтового сплава осуществляют при температуре 95-98°C в течение 2-3 минут в растворе, содержащем, г/дм: PO - 7,4…9,8, Mn - 2,1…2,8, Zn - 11,0…13,0, - 21,0...25,0,...
Тип: Изобретение
Номер охранного документа: 0002560891
Дата охранного документа: 20.08.2015
13.01.2017
№217.015.7630

Датчик давления фундаментной плиты на грунт

Изобретение относится к измерительной технике, в частности к измерениям величины давления фундаментной плиты на грунт таких сооружений, как реакторные отделения АЭС, мосты, плотины, высотные и промышленные здания, и может быть использовано в системах мониторинга за напряженно-деформированным...
Тип: Изобретение
Номер охранного документа: 0002598692
Дата охранного документа: 27.09.2016
25.08.2017
№217.015.aa3f

Устройство для разгрузки полувагонов с боковыми разгрузочными люками в полу

Изобретение относится к разгрузке сыпучих материалов из полувагонов с боковыми разгрузочными люками в полу и может быть использовано для перегрузки разгружаемого материала из полувагона в другое транспортное средство или на промежуточный конвейер. Устройство для разгрузки сыпучих материалов из...
Тип: Изобретение
Номер охранного документа: 0002611670
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.c2e9

Способ осветления и удаления шлама с поверхности самарий-кобальтовых магнитных сплавов

Изобретение относится к обработке поверхности самарий-кобальтовых магнитных сплавов после электроискровой вырезки. Способ осветления и удаления шлама с поверхности самарий-кобальтовых магнитных сплавов включает последовательную обработку с наложением ультразвуковых колебаний в водных растворах...
Тип: Изобретение
Номер охранного документа: 0002618048
Дата охранного документа: 02.05.2017
26.08.2017
№217.015.dd18

Способ фосфатирования магнитомягких сплавов типа пермаллой (варианты)

Изобретение относится к химической обработке поверхности металла, в частности прецизионных магнитомягких сплавов типа пермаллой, для получения фосфатного электроизоляционного покрытия толщиной 8-15 мкм. Первый вариант способа включает нанесение на поверхность сплава типа пермаллой...
Тип: Изобретение
Номер охранного документа: 0002624566
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.dfb8

Раствор для химического серебрения медных сплавов и способ его получения

Изобретение относится к нанесению химических серебряных покрытий на медные сплавы, как альтернатива процессу амальгамирования. Раствор для химического серебрения медных сплавов содержит: хлористое серебро (в пересчете на металл) 4-5 г/л, тиомочевина 70-80 г/л, кислота соляная 55-65 мл/л,...
Тип: Изобретение
Номер охранного документа: 0002625149
Дата охранного документа: 11.07.2017
+ добавить свой РИД