×
27.05.2014
216.012.cb3e

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНОГО САМОСТОЯТЕЛЬНОГО РАЗРЯДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к квантовой электронике. Устройство для формирования объемного самостоятельного разряда (ОСР) содержит разрядную камеру, в которой установлены подключенные к источнику накачки три электродные пары, каждая из которых состоит из пластинчатых профилированных электродов. Каждая пластина катода расположена в плоскости соответствующей пластины анода, при этом электродные пары установлены либо параллельно продольной оси камеры, либо под острым углом к ней. Рабочая кромка центральных катодных пластин содержит расположенный по центру прямолинейный участок, к которому с обеих сторон примыкают участки с профилем Степперча. Рабочая кромка центральных анодных пластин имеет дугообразную форму и обращена выпуклостью в сторону разрядного промежутка. Участки рабочих кромок крайних анодных и катодных пластин, обращенные к центральным электродам, повторяют профиль рабочей кромки соответствующих анодных и катодных центральных пластин. Внешние участки рабочих кромок крайних анодных и катодных пластин имеют дугообразную форму и большую длину, чем участки рабочих кромок крайних анодных и катодных пластин, обращенные к центральным электродам, причем все участки рабочих кромок имеют плавное сопряжение. Технический результат заключается в обеспечении возможности формирования однородного ОСР между всеми парами электродных пластин в различных газовых средах. 6 з.п. ф-лы, 3 ил.

Устройство относится к квантовой электронике, а именно к устройствам для формирования объемного самостоятельного разряда (ОСР). Особенно предпочтительно использовать заявляемое устройство в электроразрядных импульсно-периодических лазерах с накачкой объемным самостоятельным разрядом в активных средах УФ и ИК лазеров на основе XeCl, XeF, KrF, ArF, CO2, HF и др. Устройство также может быть использовано для решения плазменно-химических задач.

Известна работа [1], в которой изучалась динамика развития ОСР с использованием системы плоских электродов и не были рассмотрены вопросы формирования однородного разряда за счет профилирования электродов. Кроме того, в данной работе эксперименты проводились при низких давлениях газовой смеси в однократном режиме формирования разряда. При более высоких давлениях активной среды или в частотном режиме работы разряд будет менее однородным.

Известна работа [2], которая посвящена разработке широкоаппертурного электроразрядного лазера с пластинчатыми электродами. Показано, что распределение свечения разряда практически совпадает с распределением энерговвода в плазму разряда. В данной работе использовались анод-катодные пары с рабочей кромкой трех видов. Пластины с дугообразным профилем имели ширину 60 мм и радиус рабочей кромки 200 мм (края каждой пластины были скруглены, радиус округления составлял 8 мм). Пластины другого вида также имели ширину 60 мм и рабочую кромку с профилем Степперча [3], рассчитанным для промежутка 30 мм с коэффициентами у0=0.45, d4=0.8. Пластины третьего вида имели ширину 120 мм и рабочую кромку с профилем Степперча на краях и с центральной плоской частью шириной 60 мм. Электроды располагались перпендикулярно оптической оси лазера, что не позволяло сформировать узкий пучок лазерного излучения. Кроме того, аналог рассчитан на работу в режиме однократных импульсов, т.е. в условиях, описанных в данной работе, нельзя исследовать формирование разряда в высокочастотном режиме работы лазера. В данной работе не учитывались краевые эффекты, связанные с неоднородностью электрического поля на крайних электродах. Кроме того, в данном устройстве не использовалась система предыонизации.

Прототипом устройства для формирования однородного разряда между пластинчатыми электродами является устройство, впервые описанное в работе [4]. Многосекционный разрядный промежуток формировался 12 парами анодно-катодных пластин с различными комбинациями профиля рабочей кромки анодных и катодных пластин. Например, в одном из вариантов рабочая кромка всех катодных пластин имела профиль Степперча, а рабочая кромка всех анодных пластин - дугообразную форму. Конструкция электродного узла позволяла устанавливать электроды вдоль оптической оси лазера или под небольшим углом к ней. Для улучшения условий формирования объемного разряда был использован механизм предыонизации. Предыонизация осуществлялась искровыми разрядами, расположенными с двух сторон разрядного промежутка.

В данной работе регистрировалась только суммарная интенсивность всех разрядов, поэтому про степень однородности разряда между каждой катод-анодной парой говорить сложно. В прототипе рассматривались только два варианта профилей электродов, кроме того, конструкция устройства не учитывала краевые эффекты, связанные с неоднородностью электрического поля на крайних электродах. К недостатку данного устройства также можно отнести использование искровой системы предыонизации, которая способствует формированию неоднородного разряда вблизи искр, что ведет к ухудшению выходных характеристик лазера.

Задачей, на решение которой направлено изобретение, является создание устройства для формирования однородного объемного самостоятельного разряда между пластинчатыми электродами в смесях высокочастотных УФ и ИК лазеров.

Технический результат, достигаемый устройством, заключается в формировании однородного ОСР между всеми парами электродных пластин в различных газовых средах, что приведет к улучшению энергетических характеристик лазера.

Технический результат достигается тем, что в устройстве для формирования объемного самостоятельного разряда, содержащем разрядную камеру, в которой установлены подключенные к источнику накачки, по меньшей мере, три электродные пары, каждая из которых состоит из пластинчатых профилированных электродов, таким образом, что каждая пластина катода расположена в плоскости соответствующей пластины анода, электродные пары установлены либо параллельно продольной оси камеры, либо под острым углом к ней, новым является то, что рабочая кромка центральных катодных пластин содержит расположенный по центру прямолинейный участок, к которому с обеих сторон примыкают участки с профилем Степперча, а рабочая кромка центральных анодных пластин имеет дугообразную форму и обращена выпуклостью в сторону разрядного промежутка; участки рабочих кромок крайних анодных и катодных пластин, обращенные к центральным электродам, повторяют профиль рабочей кромки соответствующих анодных и катодных центральных пластин, а внешние участки рабочих кромок крайних анодных и катодных пластин имеют дугообразную форму и большую длину, чем участки рабочих кромок крайних анодных и катодных пластин, обращенных к центральным электродам, причем все участки рабочих кромок имеют плавное сопряжение.

Источник накачки включает в себя, по меньшей мере, одно устройство предварительной ионизации, которое представляет собой диэлектрическую трубку, расположенную вдоль рабочей кромки катодных пластин, и два электрода, обеспечивающих скользящий разряд по поверхности диэлектрической трубки.

Края всех электродных пластин скруглены радиусом не менее 1 мм.

Рабочая кромка катодных пластин в поперечном сечении имеет форму дуги.

Соседние электродные пластины расположены на расстоянии 0.5-2 мм друг от друга.

Толщина электродных пластин составляет 0.5-2 мм.

Формирование однородного разряда в электроразрядных лазерах играет очень важную роль для получения хороших энергетических параметров. Распределение интенсивности свечения разряда во многом определяется профилем электродов. Исследования по выбору необходимого профиля являются достаточно трудоемкой расчетно-теоретической и экспериментальной работой. Требуется получить однородный диффузный разряд в межэлектродном промежутке при высоких удельных энерговводах. В лазерах с пластинчатыми электродами уровень удельного энерговвода достигает 11 МВт/см3, при плотности тока до 3 кА/см2. Столь высокие энерговводы обусловлены малой шириной разряда в данных лазерах, что позволяет достигнуть высоких частот повторения лазерных импульсов. При повышенных энерговводах гораздо сложнее сформировать однородный объемный разряд, который не будет срываться в искровую фазу. Таким образом, вопрос о выборе профиля электродов для формирования однородного разряда в лазерах с пластинчатыми электродами стоит наиболее остро.

Конструкция лазерных камер аналогов [1, 2] и прототипа [4] не позволяет наблюдать разряд поперек оптической оси лазера, чтобы исследовать степень однородности разряда по длине пластинчатого электрода. Поэтому для проведения экспериментальных исследований по формированию однородного разряда между пластинчатыми электродами была разработана специализированная газоразрядная камера, которая позволяет проводить наблюдения разряда между каждой анод-катодной парой пластинчатых электродов.

На фиг.1 схематично представлено заявляемое устройство, где:

1 - источник накачки;

2 - катод;

3 - анод;

4 - диэлектрическая трубка;

5 - внутренний электрод устройства предыонизации;

6 - внешний электрод устройства предыонизации.

7 - зона объемного самостоятельного разряда.

На фиг.2 представлены фотографии разряда и распределение интенсивности свечения для двух различных комбинаций электродов на смеси F2:Хе:Ne=10:10:2000 Top. На всех фотографиях свечения разряда катод расположен сверху, а анод - снизу. На фиг.2а представлены фотография разряда и распределение интенсивности его свечения в случае, когда катод имел профиль Степперча, а на фиг.2б - модифицированный профиль Степперча (с прямолинейным участком по центру). Анодные пластины в обоих случаях имели дугообразную форму. Как видно из фиг.2, вставка плоской части в середину катода позволяет избежать провала в центральной части распределения интенсивности свечения разряда и получить более однородный разряд.

На фиг.3 представлены фотографии разряда и распределение интенсивности свечения разряда между крайними электродами: симметричными (а) и несимметричными (б) на смеси F2:Xe:Ne=10:10:2000 Top. Как видно из фиг.3, замена внешних участков рабочих кромок крайних анодных и катодных пластин позволяет избежать пробоев на краях электродного промежутка, а также получить однородный разряд большей длины.

Электродные пары установлены либо параллельно продольной оси камеры, либо под острым углом к ней. Каждая пластина катода 2 расположена в плоскости соответствующей пластины анода 3. Катод 2 соединен общей шиной с источником накачки 1. К источнику накачки 1 подсоединялась, по меньшей мере, одна система предыонизации, расположенная вдоль катодных пластин вблизи их рабочей кромки, состоящая из диэлектрической трубки 4 и двух электродов, один из которых 5 расположен внутри трубки 4, а второй 6 - снаружи.

Для формирования объемного самостоятельного разряда 7 производят, как правило, предыонизацию активной лазерной среды (для некоторых активных сред надобность в предыонизации отсутствует). Для предыонизации межэлектродного промежутка использовался скользящий разряд по поверхности диэлектрической трубки 4, расположенной на расстоянии ≈12 мм от рабочей кромки катодных пластин. При достижении на межэлектродном промежутке определенного напряжения на открытой поверхности керамической трубки формируется скользящий разряд, который и является УФ предыонизацией для основного разряда. При достижении между электродами пробойного напряжения формируется основной разряд 7.

В примере конкретного выполнения разряд наблюдался перпендикулярно плоскости установки электродов или вдоль нее через окна из CaF2, расположенные с 4-х сторон разрядной камеры. Внутри камеры располагались электродные пластины из латуни толщиной 1 мм. Электродные пластины, используемые в разрядной камере, по своим размерам аналогичны пластинам, установленным в полномасштабных макетах лазеров, например, в [4]. Длина электродных пластин составляла 22.2 мм или 25.6 мм и определялась диаметром обострительных емкостей, задающих шаг электродных систем полномасштабных лазеров. Межэлектродное расстояние могло варьироваться в диапазоне 10-20 мм. Электродные пары установлены либо в одной плоскости, либо под острым (α≤0-20°) углом к ней, расстояние между соседними парами составляло 0.5-2 мм. В экспериментах использовались электроды с дугообразными профилями рабочей кромки с различными радиусами кривизны R (100…450 мм), а также с модифицированными профилями Степперча, рассчитанные для различных параметров у0 (0.4-0.45) и d4 (0.65-0.8).

Электрическая схема источника накачки содержала накопительную емкость Сн=2.1 нф и обострительную емкость Со=1.6нФ. При коммутации тиратроном накопительной емкости по С-С схеме заряжалась обострительная емкость. Для реализации индуктивно-емкостной развязки к каждой паре электродных пластин подсоединялась своя обострительная емкость Coi=0.4 нФ. Каждая обострительная емкость заряжалась через собственную развязывающую индуктивность (Lpi=1 мкГн) от общей накопительной емкости. Описанная электрическая схема позволяет работать как в однократном, так и в частотном режиме. Предельная частота следования импульсов 30 Гц ограничивалась мощностью источника питания и устойчивостью разряда в режиме без принудительной прокачки газовой смеси. Для определения электротехнических характеристик разряда применялись омический делитель и малоиндуктивный плоский токовый шунт. Делитель подсоединялся непосредственно к катодной пластине. Шунт был установлен в общей цепи разряда накачки и предыонизации. Фронт нарастания напряжения по уровню значений 0.1…0.9 Umax составлял ≈55 нс. Длительность тока на уровне 0.5 Imax составила 16 нс. Зарядное напряжение варьировалось в диапазоне 14-20 кВ.

Для смесей УФ лазеров общее давление газа варьировалось в интервале от 2 до 3 атм. Для смесей ИК лазеров общее давление газа было существенно меньше и составляло 0.1-0.4 атм. Для каждой активной смеси на всем диапазоне давлений длина разряда и форма распределения интенсивности свечения разряда существенно не менялись.

Проведенные эксперименты показали, что на электродах с рабочей кромкой с профилем Степперча распределение интенсивности свечения разряда имеет провал в центральной части электрода (Фиг.2а). Рабочая кромка с модифицированным профилем Степперча представляла из себя прямолинейный участок по центру электрода и профиль Степперча по краям. Прямолинейный участок имел длину 5-15 мм в зависимости от требуемой длины электрода. Модифицированный профиль Степперча позволил уменьшить провал в середине распределения интенсивности свечения разряда на 10-15%.

Электроды с профилем дугообразной формы с различными радиусами кривизны позволяют получить достаточно однородный разряд с колоколообразным распределением. Профиль подбирался экспериментальным путем, однородный разряд наибольшей длины наблюдался, когда катод имел модифицированный профиль Степперча, а анод - профиль дугообразной формы с R=300 мм (Фиг.2б).

Для снижения краевых эффектов были изготовлены электроды с несимметричным профилем рабочей кромки. Профиль электродов подбирался экспериментальным путем, наиболее однородный разряд наблюдался, когда половина электрода имела тот же профиль, что и соседний (центральный) электрод, а вторая половина - профиль дугообразной формы с R=300 мм. Кроме того, длина дугообразной части электрода была увеличена. Использование электродов с несимметричными профилями позволило избежать пробоев на краях электродного промежутка, а также привело к усилению интенсивности свечения на краях электродного узла и увеличению длины разряда вдоль длины электрода.

Использование скользящего разряда для предыонизации разрядного промежутка, по сравнению с искровой предыонизацией, позволило увеличить стабильность и частоту следования лазерных импульсов, а также увеличить время жизни активной среды лазера.

Плавное сопряжение всех участков рабочих кромок электродов позволило избежать усиления электрического поля в местах сопряжения различных профилей, что избавило от лишних неоднородностей разряда.

Скругление краев всех электродных пластин радиусом не менее 1 мм позволило избежать пробоев между соседними электродами, а также возникновения искровых каналов между катод-анодными парами.

Подобрана форма рабочей поверхности электродов для УФ и ИК лазеров. Длина разряда в этих лазерных смесях составила ~70-80% от длины электрода. На электродах с экспериментально подобранным профилем проведены исследования основных зависимостей энергии лазерных импульсов, предельных частот повторения импульсов, стабильности энергии лазерных импульсов в высокочастотном режиме работы лазера от состава активных сред лазеров, полного давления лазерной смеси, удельных энерговводов, скорости прокачки рабочей среды лазера. Использование электродов с новыми профилями позволило увеличить энергетические характеристики лазеров на ~20%, а предельные частоты повторения импульсов на ~10%.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Апполонов В.В., Белевцев А.А., Казанцев С.Ю., Сайфулин А.В., Фирсов К.Н. Самоинициирующийся объемный разряд в нецепных HF-лазерах на смесях SF6 с углеводородами. Квантовая электроника. Т.30, №3 (2000), с.207-214.

2. Андраманов А.В., Кабаев С.А., Лажинцев Б.В., Нор-Аревян В.А., Писецкая А.В., Селемир В.Д. Формирование профиля лазерного пучка в HF-лазере с пластинчатыми электродами. Квантовая электроника. Т.35, №4 (2005), с.359-364.

3. Stappaerts E.A. A novel analytical design method for discharge laser electrode profiles. Appl. Phys.Lett., 40 (12), p.1018-1019.

4. Андраманов А.В., Кабаев С.А., Лажинцев Б.В., Нор-Аревян В.А., Писецкая А.В., Селемир В.Д. Высокочастотный HF лазер с пластинчатыми электродами. Квантовая электроника. Т.36, №3, (2006), с.235-238


УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНОГО САМОСТОЯТЕЛЬНОГО РАЗРЯДА
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНОГО САМОСТОЯТЕЛЬНОГО РАЗРЯДА
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНОГО САМОСТОЯТЕЛЬНОГО РАЗРЯДА
Источник поступления информации: Роспатент

Showing 191-200 of 591 items.
27.02.2015
№216.013.2ca4

Устройство для измерения плотности потока нейтронов

Изобретение относится к ядерной технике. Техническим результатом является уменьшение погрешности измеряемой величины плотности потока нейтронов. Устройство для измерения плотности потока нейтронов содержит: ионизационную импульсно-токовую камеру с двумя электродами, электрометрический...
Тип: Изобретение
Номер охранного документа: 0002542896
Дата охранного документа: 27.02.2015
27.03.2015
№216.013.3519

Способ направленной модификации полупроводниковых приборных структур с использованием импульсных электромагнитных полей

Изобретение относится к области полупроводниковой электроники, в частности к модификации электрофизических свойств полупроводниковых транзисторных структур. Способ включает определение критериальных параметров приборов, облучение в пассивном режиме ограниченной выборки однотипных...
Тип: Изобретение
Номер охранного документа: 0002545077
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.352e

Реакторная установка с реактором на быстрых нейтронах и свинцовым теплоносителем

Изобретение относится к ядерной технике и предназначено для использования в энергетических установках с реактором на быстрых нейтронах c теплоносителем в виде свинца или его сплава. Установка включает шахту реактора с верхним перекрытием, размещенный в шахте реактор с активной зоной,...
Тип: Изобретение
Номер охранного документа: 0002545098
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.35ea

Способ разделения газообразных смесей на фракции с различным удельным весом и газовая центрифуга для его осуществления

Изобретение относится к разделению изотопных и газовых смесей, преимущественно газообразных соединений изотопов урана. Газовая центрифуга содержит герметичный неподвижный корпус в виде вертикального цилиндра, вращающийся ротор, соосно размещенный в корпусе, выполненный в виде вала и снабженный...
Тип: Изобретение
Номер охранного документа: 0002545286
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.35ed

Устройство сферической формы для исследования сжимаемости газов в области сверхвысоких давлений

Изобретение относится к области исследований квазиизэнтропической сжимаемости газов, например водорода, дейтерия, гелия и т.д., в мегабарной области давлений. Устройство содержит заряд взрывчатого вещества, охватывающий металлическую оболочку с полостью для напуска газа посредством...
Тип: Изобретение
Номер охранного документа: 0002545289
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.3610

Датчик резонаторный

Изобретение относится к области измерений механических параметров. Датчик резонаторный содержит основание в виде пластины из монокристалла, в котором выполнены сквозные прорези с образованием стержневого резонатора, поверхности которого металлизированы для образования электродной системы, и...
Тип: Изобретение
Номер охранного документа: 0002545324
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.36d9

Индуктивный преобразователь угла поворота

Изобретение относится к области электротехники, в частности к индуктивным преобразователям угла поворота систем автоматики. Технические результат заключается в повышении точности работы преобразователя и упрощении его изготовления. Преобразователь угла содержит ротор, по крайней мере, с одним...
Тип: Изобретение
Номер охранного документа: 0002545529
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3928

Способ приготовления катализатора для окисления водорода

Изобретение относится к способу приготовления катализатора для окисления водорода, состоящего из носителя с промежуточным покрытием из γ-оксида алюминия и активной части, содержащей каталитически активный металл - палладий. Предложенный способ включает обработку, подготовку и пропитку носителя...
Тип: Изобретение
Номер охранного документа: 0002546120
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.399e

Способ транслитерационного преобразования информации и передачи ее по каналам связи

Изобретение относится к передаче информации по каналам связи. Техническим результатом является повышение надежности передачи структурированных сообщений, достигаемое за счет проверки правильности передачи структурированных блоков. В способе транслитерационного преобразования информации и ее...
Тип: Изобретение
Номер охранного документа: 0002546238
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ae7

Способ трехуровневого управления и система для его осуществления

Изобретение относится к области управления техническими средствами (ТС) и может быть использована для управления средствами различного назначения, например средствами охраны, связи, испытательной техники, защиты информации и др. Технический результат - расширение функциональных возможностей за...
Тип: Изобретение
Номер охранного документа: 0002546567
Дата охранного документа: 10.04.2015
Showing 191-200 of 444 items.
27.02.2015
№216.013.2ca4

Устройство для измерения плотности потока нейтронов

Изобретение относится к ядерной технике. Техническим результатом является уменьшение погрешности измеряемой величины плотности потока нейтронов. Устройство для измерения плотности потока нейтронов содержит: ионизационную импульсно-токовую камеру с двумя электродами, электрометрический...
Тип: Изобретение
Номер охранного документа: 0002542896
Дата охранного документа: 27.02.2015
27.03.2015
№216.013.3519

Способ направленной модификации полупроводниковых приборных структур с использованием импульсных электромагнитных полей

Изобретение относится к области полупроводниковой электроники, в частности к модификации электрофизических свойств полупроводниковых транзисторных структур. Способ включает определение критериальных параметров приборов, облучение в пассивном режиме ограниченной выборки однотипных...
Тип: Изобретение
Номер охранного документа: 0002545077
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.352e

Реакторная установка с реактором на быстрых нейтронах и свинцовым теплоносителем

Изобретение относится к ядерной технике и предназначено для использования в энергетических установках с реактором на быстрых нейтронах c теплоносителем в виде свинца или его сплава. Установка включает шахту реактора с верхним перекрытием, размещенный в шахте реактор с активной зоной,...
Тип: Изобретение
Номер охранного документа: 0002545098
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.35ea

Способ разделения газообразных смесей на фракции с различным удельным весом и газовая центрифуга для его осуществления

Изобретение относится к разделению изотопных и газовых смесей, преимущественно газообразных соединений изотопов урана. Газовая центрифуга содержит герметичный неподвижный корпус в виде вертикального цилиндра, вращающийся ротор, соосно размещенный в корпусе, выполненный в виде вала и снабженный...
Тип: Изобретение
Номер охранного документа: 0002545286
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.35ed

Устройство сферической формы для исследования сжимаемости газов в области сверхвысоких давлений

Изобретение относится к области исследований квазиизэнтропической сжимаемости газов, например водорода, дейтерия, гелия и т.д., в мегабарной области давлений. Устройство содержит заряд взрывчатого вещества, охватывающий металлическую оболочку с полостью для напуска газа посредством...
Тип: Изобретение
Номер охранного документа: 0002545289
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.3610

Датчик резонаторный

Изобретение относится к области измерений механических параметров. Датчик резонаторный содержит основание в виде пластины из монокристалла, в котором выполнены сквозные прорези с образованием стержневого резонатора, поверхности которого металлизированы для образования электродной системы, и...
Тип: Изобретение
Номер охранного документа: 0002545324
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.36d9

Индуктивный преобразователь угла поворота

Изобретение относится к области электротехники, в частности к индуктивным преобразователям угла поворота систем автоматики. Технические результат заключается в повышении точности работы преобразователя и упрощении его изготовления. Преобразователь угла содержит ротор, по крайней мере, с одним...
Тип: Изобретение
Номер охранного документа: 0002545529
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3928

Способ приготовления катализатора для окисления водорода

Изобретение относится к способу приготовления катализатора для окисления водорода, состоящего из носителя с промежуточным покрытием из γ-оксида алюминия и активной части, содержащей каталитически активный металл - палладий. Предложенный способ включает обработку, подготовку и пропитку носителя...
Тип: Изобретение
Номер охранного документа: 0002546120
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.399e

Способ транслитерационного преобразования информации и передачи ее по каналам связи

Изобретение относится к передаче информации по каналам связи. Техническим результатом является повышение надежности передачи структурированных сообщений, достигаемое за счет проверки правильности передачи структурированных блоков. В способе транслитерационного преобразования информации и ее...
Тип: Изобретение
Номер охранного документа: 0002546238
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ae7

Способ трехуровневого управления и система для его осуществления

Изобретение относится к области управления техническими средствами (ТС) и может быть использована для управления средствами различного назначения, например средствами охраны, связи, испытательной техники, защиты информации и др. Технический результат - расширение функциональных возможностей за...
Тип: Изобретение
Номер охранного документа: 0002546567
Дата охранного документа: 10.04.2015
+ добавить свой РИД