×
27.05.2014
216.012.cae2

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ФЕРРОМАГНИТНОЙ ЖИДКОСТИ НА ПОЛИЭТИЛСИЛОКСАНОВОЙ ОСНОВЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам получения ферромагнитных жидкостей, применяемых в магнитожидкостных герметизирующих устройствах. Предложен способ получения ферромагнитной жидкости на полиэтилсилоксановой основе, включающий осаждение высокодисперсных частиц магнетита из водных растворов солей двух- и трехвалентного железа раствором аммиака, их стабилизацию себациновой кислотой и пептизацию в смешанном растворителе, содержащем полиэтилсилоксановую жидкость, легкокипящий углеводородный растворитель и фракцию алкильных производных бензола или олигомеров пропилена, выкипающих в пределах 250÷400°С, в количестве 5÷95% от содержания полиэтилсилоксановой жидкости в смешанном растворителе. Стабилизатор предварительно растворяют в легкокипящем растворителе, в качестве легкокипящего растворителя используют этанол, а в качестве полиэтилсилоксановой жидкости используют полиэтилсилоксановую жидкость линейного строения общей формулы MD, где n=1-8, М - (СН)SiO, D - (CH)SiO, со среднечисловой молекулярной массой 1600÷1750 г, плотностью при 20°С 0,99÷1,00 г/см, вязкостью при 20°С 200÷500 сСт, температурой термоокислительной деструкции 360°С. Стабилизацию высокодисперсных частиц магнетита и их пептизацию в смешанном растворителе осуществляют одновременно при перемешивании и температуре 80°С в течение 24-х часов под вакуумом. Технический результат: получение ферромагнитной жидкости на полиэтилсилоксановой основе с высокой агрегативной устойчивостью, устойчивостью в магнитном поле 1,0 Тл длительный промежуток времени, с диапазоном рабочих температур от минус 90°С до плюс 250°С и намагниченностью насыщения 20÷40 кА/м. 2 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области коллоидной химии и может быть использовано для получения ферромагнитных жидкостей, применяемых в магнитожидкостных герметизирующих устройствах. Ферромагнитная жидкость, применяемая в магнитожидкостных герметизирующих устройствах, должна быть агрегативно устойчивой, устойчивой в магнитном поле до 1,0 Тл длительный промежуток времени, нетоксичной, пожаробезопасной, высоковакуумной, иметь диапазон рабочих температур от 183 до 523 К, иметь намагниченность насыщения до 40 кА/м и вязкость 0,5÷2,0 Па·с. Таким требованиям соответствуют ферромагнитные жидкости на полиэтилсилоксановой основе.

Известен способ получения магнитной жидкости на органосилоксановой основе, преимущественно на полиэтилсилоксановой основе (SU №1621766 А1, 27.01.2002), включающий осаждение магнетита из водно-органических растворов солей двух- и трехвалентного железа водно-органическим раствором гидроокиси аммония. Содержание растворителя (ацетона) в растворах составляет 25-35 об.%. Осадок магнетита промывают ацетоном, стабилизируют олеиновой кислотой в полиэтилсилоксановой жидкости-носителе. Получают магнитную жидкость с вязкостью 0,11÷0,22 Па·с, намагниченностью насыщения 30÷47 кА/м, коэффициентом перераспределения магнитной фазы 7÷10%, устойчивую при центрифугировании при 8000 g.

По данному способу возможно получение магнитных жидкостей только на основе низкомолекулярных полиэтилсилоксановых носителях, не обладающих высокотемпературными и вакуумными свойствами, что затрудняет их применение в магнитожидкостных герметизирующих устройствах.

Наиболее близким к заявляемому является способ получения ферромагнитной жидкости (RU №2024085 С1, 30.11.1994 г.),принятый за прототип, включающий осаждение высокодисперсного магнетита из водных растворов солей двух- и трехвалентного железа при избытке солей двухвалентного железа раствором аммиака, промывку осадка дистиллированной водой, пептизацию при нагревании под вакуумом в растворе олеиновой кислоты в алкарене, процесс пептизации проводят при 388-393К. Получают ферромагнитную жидкость с намагниченностью насыщения до 22,5 кА/м, плотностью 1,21 г/см3, вязкостью 0,23 Па·с, устойчивостью в гравитационном поле 6000 g, устойчивостью в магнитном поле до 1 Тл. Ферромагнитная жидкость может применяться при температуре от 223 до 453 К. При нагревании феррожидкости до 453 К в течение часа свойства образца сохраняются.

Данный способ не позволяет получить ферромагнитные жидкости с широким диапазоном вязкости и высокой намагниченностью насыщения. Это затрудняет их применение в магнитожидкостных герметизирующих устройствах, где во многих случаях требуется широкое варьирование указанных свойств.

Технический результат предлагаемого способа заключается в получении ферромагнитной жидкости на полиэтилсилоксановой основе с высокой агрегативной устойчивостью, устойчивостью в магнитном поле до 1,0 Тл длительный промежуток времени, с диапазоном рабочих температур от 183 до 523 К и намагниченностью насыщения 20÷40 кА/м и вязкость 0,5÷2,0 Па·с.

Технический результат достигается тем, что в способе получения ферромагнитной жидкости, включающем осаждение высокодисперсного магнетита из водных растворов солей двух- и трехвалентного железа раствором аммиака, промывку осадка дистиллированной водой, пептизацию при нагревании под вакуумом в растворе олеиновой кислоты в алкарене, стабилизацию магнетита осуществляют себациновой кислотой, при этом стабилизатор предварительно растворяют в легкокипящем растворителе, в качестве легкокипящего растворителя используют этанол; пептизацию стабилизированного магнетита проводят в смешанном растворителе, содержащем полиэтилсилоксановую жидкость и фракцию алкильных производных бензола или олигомеров пропилена, выкипающих в пределах 523÷673 К в количестве 5÷95 об.% от содержания полиэтилсилоксановой жидкости в смешанном растворителе; в качестве полиэтилсилоксановой жидкости используют полиэтилсилоксановую жидкость линейного строения общей формулы M2Dn, где n=1-8, М - (C2H5)3SiO0,5, D - (C2H5)2SiO, со среднечисловой молекулярной массой 1600÷1750 г, плотностью 0,99÷1,00 г/см3, вязкостью 200÷500 сСт, температурой термоокислительной деструкции 633 К. Стабилизацию высокодисперсных частиц магнетита и их пептизацию в смешанном растворителе осуществляют одновременно при перемешивании и температуре 353 К в течение 24-х часов под вакуумом.

Способ осуществляют следующим образом.

Готовят водные растворы солей двух- и трехвалентного железа и водный раствор аммиака. Водные растворы солей двух- и трехвалентного железа смешивают. Высокодисперсный магнетит, полученный осаждением из раствора солей двух- и трехвалентного железа водным раствором аммиака, отделяют от маточного раствора декантацией и многократно промывают дистиллированной водой до рН 7. Осадок высокодисперсного магнетита отфуговывают. Стабилизатор растворяют в легкокипящем растворителе. Готовят смешанный растворитель, содержащий полиэтилсилоксановую жидкость и фракцию алкильных производных бензола или олигомеров пропилена в количестве 5÷95 об.% от содержания полиэтилсилоксановой жидкости в смешанном растворителе. К осадку высокодисперсного магнетита при непрерывном перемешивании добавляют одновременно раствор стабилизатора в легкокипящем растворителе и смешанный растворитель. Смесь тщательно перемешивают и пептизируют при температуре 353 К в течение 24-х часов под вакуумом, при этом происходит удаление из массы смеси воды и этанола, стабилизация высокодисперсного магнетита и его пептизация в смешанном растворителе. Предлагаемый способ позволяет получить ферромагнитные жидкости с широким диапазоном вязкости и высокой намагниченностью насыщения, устойчивые в магнитном поле до 1,0 Тл длительный промежуток времени, с диапазоном рабочих температур от 183 до 523 К. Целенаправленное варьирование вязкостными характеристиками осуществляется за счет изменения соотношения полиэтилсилоксановой жидкости и фракций алкильных производных бензола или олигомеров пропилена.

Пример

256 г FeCl3·6H2O растворяют в 2 литрах дистиллированной воды, 133 г FeSO4·7H2O растворяют в 2 литрах дистиллированной воды. Растворы солей смешивают. Готовят 6%-ный водный раствор аммиака в количестве 4 литра. К смеси солей железа приливают 6%-ный водный раствор аммиака до рН 11. При этом выпадает осадок высокодисперсного магнетита. Осадок отделяют от маточного раствора декантацией и многократно промывают дистиллированной водой до рН 7.

Осадок высокодисперсного магнетита отфуговывают. Готовят раствор себациновой кислоты в этаноле, содержащий 30 г себациновой кислоты и 100 мл этанола. Готовят смешанный растворитель, содержащий 80 мл полиэтилсилоксановой жидкости и 80 мл олигомера пропилена. К осадку высокодисперсных частиц магнетита добавляют раствор себациновой кислоты в этаноле и смешанный растворитель. Смесь перемешивают и пептизируют при температуре 353 К в течение 24-х часов под вакуумом.

Другие примеры, приведенные в таблице, осуществляют аналогичным образом, используя различные фракции олигомеров пропилена или фракции алкильных производных бензола. В таблице показано как меняется пластическая вязкость ферромагнитной жидкости в зависимости от изменения соотношения полиэтилсилоксановой жидкости и фракций алкильных производных бензола или олигомеров пропилена в рамках примерно одинаковой намагниченности насыщения.

Свойства ферромагнитных жидкостей по заявленному способу
Добавляемая фракция Количество добавляемой фракции, об.% Вязкость кинематическая добавляемой фракции при 20°С, сСт Свойства ферромагнитной жидкости при 20°С
плотность, г/см3 вязкость пластическая, Па·с намагниченность насыщения, кА/м
Олигомер пропилена 5 2,8 1,33 1,54 34
То же 25 8,3 1,29 1,25 35
То же 50 2,8 1,21 0,95 35,5
То же 95 15,8 1.18 0,56 35
Алкилбен-зол С610 5 2,9 1,33 1,538 34
Алкилбен-зол C12-c14 30 15,8 1,31 1,38 35
Алкилбен-зол C12-C14 50 15,8 1,28 1,14 34,5
Алкилбен-зол C14-C16 95 36,4 1,24 0,62 35.7

Источник поступления информации: Роспатент

Showing 31-32 of 32 items.
20.03.2016
№216.014.c59f

Способ автоматического регулирования величины ph циркуляционной воды контура охлаждения статора электрогенератора паровой турбины

Использование: для автоматического регулирования величины рН циркуляционной воды контура охлаждения статора электрогенератора паровой турбины. Сущность изобретения заключается в том, что изменяют подачу щелочи в циркуляционную воду, организуют линию рециркуляции после фильтра через дозировочный...
Тип: Изобретение
Номер охранного документа: 0002578045
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c719

Способ управления количеством транспортируемого в свободном состоянии текстильного материала в технологической машине непрерывного действия

Изобретение относится к области текстильной промышленности и может быть использовано для автоматизации технологических процессов обработки текстильных материалов. При осуществлении способа управления количеством транспортируемого в свободном состоянии текстильного материала в технологической...
Тип: Изобретение
Номер охранного документа: 0002578532
Дата охранного документа: 27.03.2016
Showing 31-38 of 38 items.
10.02.2016
№216.014.c3b9

Система управления теплоотражающими экранами оконного блока

Изобретение относится к автоматизированным системам управления теплоотражающими экранами в жилых и общественных зданиях и наружных светопрозрачных ограждениях. Система управления теплоотражающими экранами включает электропривод, инфракрасный импульсный датчик-излучатель, инфракрасный импульсный...
Тип: Изобретение
Номер охранного документа: 0002574997
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c59f

Способ автоматического регулирования величины ph циркуляционной воды контура охлаждения статора электрогенератора паровой турбины

Использование: для автоматического регулирования величины рН циркуляционной воды контура охлаждения статора электрогенератора паровой турбины. Сущность изобретения заключается в том, что изменяют подачу щелочи в циркуляционную воду, организуют линию рециркуляции после фильтра через дозировочный...
Тип: Изобретение
Номер охранного документа: 0002578045
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c719

Способ управления количеством транспортируемого в свободном состоянии текстильного материала в технологической машине непрерывного действия

Изобретение относится к области текстильной промышленности и может быть использовано для автоматизации технологических процессов обработки текстильных материалов. При осуществлении способа управления количеством транспортируемого в свободном состоянии текстильного материала в технологической...
Тип: Изобретение
Номер охранного документа: 0002578532
Дата охранного документа: 27.03.2016
18.05.2018
№218.016.507d

Способ получения магнитной жидкости

Изобретение относится к области коллоидной химии и может быть использовано для получения магнитных жидкостей на полиметилсилоксановой основе, применяемых в магнитожидкостных герметизирующих устройствах. Способ получения магнитной жидкости включает получение высокодисперсных частиц магнетита...
Тип: Изобретение
Номер охранного документа: 0002653022
Дата охранного документа: 04.05.2018
11.03.2019
№219.016.db0a

Способ получения ферромагнитной жидкости

Изобретение относится к области коллоидной химии и может быть использовано для получения магнитной жидкости, применяемой в датчиках угла наклона, ускорений и т.д. Способ включает осаждение высокодисперсного магнетита, обработку осадка магнетита в течение 15 минут 50%-ным водным раствором...
Тип: Изобретение
Номер охранного документа: 0002410782
Дата охранного документа: 27.01.2011
21.05.2020
№220.018.1e91

Магнитожидкостное уплотнение вала электродвигателя

Изобретение относится к уплотнительной технике и может быть использовано для герметизации вращающего вала электродвигателей, например, взрывозащищенных, электродвигателей с измененяемыми частотой вращения и удерживающим перепадом давления герметизируемой среды. В магнитожидкостном уплотнении...
Тип: Изобретение
Номер охранного документа: 0002721400
Дата охранного документа: 19.05.2020
27.05.2020
№220.018.2161

Способ повышения ресурса и надежности магнитожидкостных герметизаторов

Изобретение относится к области приборостроения и машиностроения и может применяться при создании герметизаторов с нанодисперсной магнитной жидкостью. Способ обработки поверхностей магнитопроводящих деталей герметизаторов, выполненных из стали 40X13 и контактирующих с нанодисперсной магнитной...
Тип: Изобретение
Номер охранного документа: 0002721967
Дата охранного документа: 25.05.2020
04.07.2020
№220.018.2f55

Магнитожидкостное уплотнение вала с пониженным моментом трения

Изобретение относится к уплотнительной технике и может применяться в машиностроении для уплотнения вращающихся валов. Магнитожидкостное уплотнение вала с пониженным моментом трения, содержащее магнитную систему, состоящую из охватывающих вал постоянного магнита и полюсных приставок, снабженных...
Тип: Изобретение
Номер охранного документа: 0002725399
Дата охранного документа: 02.07.2020
+ добавить свой РИД