×
20.05.2014
216.012.c691

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНЫХ ИСТИННЫХ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследования прочностных свойств металлов и касается оценки их деформационно-прочностных характеристик путем приложения к ним растягивающих нагрузок. Сущность: осуществляют растяжение образца, регистрируют усилие деформирования, минимальный диаметр образца, продольный радиус шейки, по которым затем расчетным путем определяют зависимость истинного напряжения от степени истинных деформаций, определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения путем введения поправочного коэффициента снижения напряжений, строят скорректированную истинную диаграмму деформирования. Определяют максимальную истинную деформацию при разрыве с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва. Определяют показатель деформационного упрочнения расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца, а максимальные истинные напряжения находят с учетом полученного значения показателя деформационного упрочнения, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации, истинных напряжений и деформаций в момент разрыва образца. Технический результат: упрощение способа определения максимальных истинных напряжений и деформаций за счет исключения сложных процедур многократной токарной обработки шейки при сохранении достоверности полученных результатов. 1 ил., 2 табл.
Основные результаты: Способ определения максимальных истинных напряжений и деформаций при разрыве пластичных сплавов, заключающийся в следующем: осуществляют растяжение образца, регистрируют усилие деформирования (F), минимальный диаметр образца (d), продольный радиус шейки (R), по которым затем расчетным путем определяют зависимость истинного напряжения (S) от степени истинных деформаций (е), определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения S путем введения поправочного коэффициента снижения напряжений К, строят скорректированную истинную диаграмму деформирования, отличающийся тем, что определяют максимальную истинную деформацию при разрыве e с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва по формуле где d - исходный диаметр образца;d - минимальный диаметр образца при разрыве;η - параметр жесткости напряженного состояния, определяемый по формуле: R - продольный радиус шейки непосредственно перед разрывом образца;затем определяют показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца по формуле где tgα, tgα - соответственно касательный и секущий модули, соответствующие моменту разрыва образца для истинной диаграммы деформирования,а максимальные истинные напряжения S находят с учетом полученного значения показателя деформационного упрочнения n, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации e, истинных напряжений S и деформаций e в момент разрыва образца по формуле

Изобретение относится к области исследования прочностных свойств металлов и касается оценки их деформационно-прочностных характеристик путем приложения к ним растягивающих нагрузок.

После образования шейки при растяжении образца в районе его минимального сечения формируется сложное, неоднородное по поперечному сечению напряженное состояние, что приводит к завышению напряжения и занижению деформации. Для приведения объемного напряженного состояния к линейному (свойственного образцу до образования шейки) вводят поправочный коэффициент, учитывающий жесткость напряженного состояния.

Известен способ определения характеристик прочности и текучести конструкционных материалов, на основании которого изготавливают образец, а затем нагружают его вплоть до разрушения, регистрируют диаграмму в координатах «усилие - деформация», максимальное растягивающее усилие и продольную относительную пластическую деформацию отрыва, по которым судят, в частности, об условных и истинных напряжениях прочности материала (Авторское свидетельство СССР №1747989 А1, кл G01N 3/00. опубл. БИ №26 15.07.92).

Недостатком этого способа является отсутствие учета влияния вида напряженного состояния, связанного с сосредоточенной деформацией в шейке, на характеристики прочности и пластичности, что приводит к искажению результатов по определению характеристик прочности и пластичности.

Известен также способ определения характеристик прочности и текучести конструкционных материалов при различной степени объемной деформации, когда образец нагружают до разрушения, регистрируют диаграмму «усилие - деформация», максимальное растягивающее усилие, продольную относительную пластическую деформацию отрыва и по ним с учетом значений твердости судят об условном и истинном напряжении прочности материала (Авторское свидетельство СССР №1747989 А1, М кл. G01N 3/00 15.07.92). Однако способ не дает информации о характеристиках пластичности и влиянии напряженного состояния в шейке при испытании пластичных металлов, т.е. сопротивление большим пластическим деформациям.

Решением, наиболее близким к предложенному по своей сущности и принятому за прототип, является способ определения максимальных истинных напряжений и деформаций, который состоит в том, что при растяжении образца на стадии шейкообразования регистрируют усилие деформирования F и изменение диаметра d, растягивают образец до деформации, не вызывающей в шейке существенных геометрических изменений, влияющих на напряженное состояние в минимальном сечении шейки, разгружают образец, проводят переточку шейки на конусообразную форму с минимальным углом наклона образующей конуса, что снижает до минимально возможных значений параметр жесткости напряженного состояния в деформируемой зоне, обеспечивающий закрепление деформации в области шейки, измеряют обусловленную усилием деформацию ψ в минимальном сечении шейки, по которой затем расчетным путем определяют зависимость истинного напряжения S от степени истинной деформации е, повторяют аналогичную процедуру испытаний вплоть до разрушения образца. Величины истинных напряжений и деформаций при разрыве принимают за максимальные напряжения и деформации (Патент РФ 2319944 С1, кл. G01N 3/00 19.06.2006).

Недостатком способа является высокая трудоемкость, связанная с необходимостью периодической установки образца в центрах токарного станка и обеспечения соосности его установки относительно геометрии формирующейся шейки, обеспечения конусообразной формы обработки с расчетом минимального угла наклона образующих конуса. При этом эксцентриситет приложения нагрузки или неоднородность свойств вызывают нарушение соосности, не позволяющее выполнить соосную с шейкой обточку, что приводит к искажению экспериментальных результатов.

Таким образом, задача состоит в устранении отмеченных недостатков. Техническим результатом заявленного изобретения является упрощение способа определения максимальных истинных напряжений и деформаций за счет исключения сложных процедур многократной токарной обработки шейки при сохранении достоверности полученных результатов.

Указанный технический результат достигается тем, что в способе определения максимальных истинных напряжений и деформаций при разрыве пластичных сплавов, заключающемся в том, что осуществляют растяжение образца, регистрируют усилие деформирования (F), минимальный диаметр образца (d), продольный радиус шейки (R), по которым затем расчетным путем определяют зависимости истинного напряжения (S) от степени истинной деформации (е), определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения Se путем введения поправочного коэффициента К, строят скорректированную истинную диаграмму деформирования; определяют максимальную истинную деформацию при разрыве emax с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва по формуле

где d0 - исходный диаметр образца;

dk - минимальный диаметр образца при разрыве;

η - параметр жесткости напряженного состояния, определяемый по формуле:

Rk - продольный радиус шейки непосредственно перед разрывом образца;

затем определяют показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца по формуле

где tgαкас, tgαсек - соответственно касательный и секущий модули, соответствующие моменту разрыва образца для истинной диаграммы деформирования,

а максимальные истинные напряжения Smax находят с учетом полученного значения показателя деформационного упрочнения n, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации emax, истинных напряжений Se,k и деформаций ek в момент разрыва образца

Существенным отличием предлагаемого способа является то, что величины максимальных истинных напряжений и максимальных истинных деформаций определяют по изменению параметров шейки с учетом новых взаимосвязей, установленных между максимальной истинной деформацией и параметрами шейки, определяют параметр деформационного упрочнения при степенной аппроксимации истинной диаграммы деформирования на стадии предразрушения, что позволяет полностью исключить сложные процедуры периодической токарной обработки контура шейки, предусмотренные прототипом, при сохранении достоверности полученных результатов.

В результате испытание образца по предложенному способу дает возможность определить максимальные истинные напряжения и деформации, приведенные к линейному напряженному состоянию.

Способ иллюстрируется нижеприведенным чертежом, на котором представлены: 1 - диаграмма истинных напряжений при стандартных испытаниях; 2 - диаграмма, скорректированная по напряжениям на линейное напряженное состояние; 3 - касательная к скорректированной диаграмме растяжения в точке предразрушения; угол αсек, тангенс которого численно равен секущему модулю; угол αкас, тангенс которого численно равен касательному модулю; точка Д на диаграмме деформирования, отмеченная по полученным значениям номинальных истинных напряжений Smax и деформаций emax.

Способ определения максимальных истинных напряжений и деформаций реализуется следующим образом (на примере цилиндрического образца).

Исходные значения характеристик прочности и пластичности материала определяют на основе предварительных испытаний на растяжение образцов, форма и размеры которых предусмотрены ГОСТ 1497-84. Режимы проведения испытаний назначаются согласно упомянутому ГОСТу. В процессе испытания регистрируют усилие деформирования (F), соответствующее ему значение минимального диаметра (d), рассчитывают величину условных напряжений (σ) и деформации (ε) по формулам,

истинного напряжения S и истинной деформации e по формулам:

где A0 и А - начальная и текущая площади поперечного сечения образца

Испытания образца по предлагаемому способу проводят в несколько этапов (ступеней), задавая на каждом из них определенную степень деформации и контролируя ее по изменению минимального диаметра образца. Первоначально образец с исходным диаметром d0 устанавливают в захваты разрывной машины. Производят растяжение образца с записью машинной диаграммы, нагружая его до максимальной нагрузки Fmax, соответствующей σB, а затем разгружают. Измеряют диаметр di поперечного сечения образца и вычисляют истинные напряжение S и относительное удлинение е по формулам (2).

На последующих ступенях нагружения вплоть до разрушения деформация локализуется в области шейки, в минимальном сечении которой определяют диаметр di и продольный радиус шейки Ri. Истинные напряжения S и деформации е также определяют по формулам (2). Строят истинную диаграмму деформирования S □ е. В минимальном сечении шейки образца формируется объемное напряженное состояние, которое, как показано Бриджменом П. (Исследование больших пластических деформаций и разрыва. - М.: Либкор, 2010), а также Давиденковым Н.Н. и Спиридоновой Н.И. (Заводская лаборатория. - 1946 г. - №6. - С.588-592), влияет на величину истинных напряжений, завышая их. Для приведения истинных напряжений к линейному напряженному состоянию, т.е. для исключения влияния сложного напряженного состояния на величину истинных напряжений, вводят корректирующий коэффициент К

находят скорректированное (приведенное к линейному напряженному состоянию) истинное напряжение Se

и строят скорректированную истинную диаграмму деформирования в координатах Se □ е.

Объемное напряженное состояние, формируемое в шейке, также влияет на величину пластических деформаций. Приведение к линейному напряженному состоянию максимальных значений истинных деформаций осуществляется по формуле:

где η - параметр жесткости напряженного состояния при формировании шейки, который определяется по формуле:

Для оценки максимальных истинных напряжений, соответствующих emax, принимается степенная аппроксимация истинной диаграммы деформирования (ГОСТ 25.503-97 «Методы механических испытаний металлов. Метод испытаний на сжатие», £646-00 «Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet Materials»).

Определение показателя деформационного упрочнения n проводится расчетно-графическим методом путем обработки истинной диаграммы деформирования в соответствии с выражением

где tgαкас, tgαсек - соответственно касательный и секущий модули, соответствующие моменту разрыва образца. Величина максимальных истинных напряжений рассчитывается с учетом определенных выше максимальной истинной деформации emax, параметра деформационного упрочнения n, степенной аппроксимации диаграммы деформирования, истинных напряжений Se,k и деформаций ek, соответствующих моменту разрыва образца, по формуле:

Проведена экспериментальная проверка способа.

Испытывались пятикратные цилиндрические образцы из титанового сплава 5В с рабочей длиной 40 мм диаметром 10 мм на разрывной машине УМЭ-ЮТМ с записью диаграммы в координатах «нагрузка F - удлинение Δl». Испытание на растяжение проведено в соответствии с ГОСТ 1497-84. Дополнительно в процессе испытания на стадии шейкообразования проводились периодические разгрузки образца с целью измерения диаметра в минимальном сечении шейки di и продольного радиуса шейки Ri, по результатам которых была построена истинная диаграмма деформирования в координатах «истинные напряжения S - истинные (логарифмические) деформации е» (кривая 1). Затем строится приведенная к линейному напряженному состоянию по напряжениям истинная диаграмма деформирования «истинные напряжения Se - истинные деформации е» (кривая 2). Se определяли по формуле

где

Результаты расчетов приведены в таблице 1.

Моменту разрушения соответствовали истинные напряжения Se,k и истинные деформации ek.

Таблица 1
Параметр Этапы нагружения
1 2 3 4 5 6 7 8 9
Истинная деформация (е, %) 6,5 12,1 15,3 19,7 23.7 28,7 34,1 38,1 46,8
Истинные напряжения (S, МПа) 974 1019 1041 1066 1093 1129 1154 1174 1247
Скорректированные истинные напряжения (Se, МПа) 974 1019 1041 1066 1080 1109 1114 1116 1135
Диаметр шейки (d, мм) 9,70 9,43 9,28 9,08 8,90 8,68 8,45 8,28 7,93
Продольный радиус шейки (R, мм) 90 60 29 18 8

Определение максимальных истинных деформаций по предложенному способу начинаются с установления жесткости напряженного состояния, предшествующего моменту разрыва образца. С этой целью разорванный образец устанавливается в центрах установочного стола микроскопа БМИ-1Ц и измеряются диаметр образца в минимальном сечении dk=7,93 мм и продольный радиус шейки Rk=8 мм. Определяется параметр жесткости напряженного состояния η по формуле

Затем с учетом этого параметра определяется величина максимальных истинных деформаций emax, приведенная к линейному напряженному состоянию:

Для определения максимальных истинных напряжений Smax устанавливается показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования. С этой

целью на диаграмме деформирования проводится касательная (прямая 3) к кривой деформирования в точке, соответствующей моменту разрыва образца (диаграмма 2, точка А). Из точки А опускается перпендикуляр до пересечения с осью абсцисс (точка В). Из начала координат проводится луч, параллельный касательной до пересечения с отрезком АВ (точка C). За показатель деформационного упрочнения принимается отношение отрезка ВС к АС:

Максимальные истинные напряжения Smax находят с учетом полученного значения показателя деформационного упрочнения n, максимальной деформации emax в момент разрыва образца, истинных напряжений Se,k и истинных деформаций ek по формуле

Определенные по предлагаемому способу значения максимальных истинных напряжений и максимальных истинных напряжений отмечены на диаграмме точкой Д: Smax=1157 МПа, emax=56%.

Проведено определение Smax и emax по прототипу. Результаты расчетов приведены в таблице 2.

Таблица 2
Параметр Этапы нагружения
1 2 3 4 5 6 7 8 9 10
Истинная деформация (е, %) 7,73 10,24 18,21 21,85 24,65 28,60 34,32 39,12 47,44 55,68
Истинные напряжения (S, МПа) 976 995 1047 1067 1077 1101 1133 1135 1166 1169
Скорректированные истинные напряжения (Se, МПа) 976 995 1047 1067 1064 1081 1114 1115 1147 1150
Диаметр шейки (d, мм) 9,64 9,52 9,15 8,98 8,86 8,69 8,44 8,24 7,90 7,59
Продольный радиус шейки (R, мм) 90 60 60 60 60 60

Результаты расчетов по прототипу (Smax.прот.=1150 МПа, emax.прот.=55,7%) и заявленному способу (Smax=1157 МПа, emax=56%) практически совпадают.

Данный способ позволил определить максимальные истинные напряжения и максимальные истинные деформации, приведенные к линейному напряженному состоянию, исключив высокую трудоемкость испытания по прототипу, связанную с необходимостью периодической переточки формы образующейся шейки и обеспечения конусообразной формы обработки с расчетом минимального угла наклона образующей конуса.

Способ определения максимальных истинных напряжений и деформаций при разрыве пластичных сплавов, заключающийся в следующем: осуществляют растяжение образца, регистрируют усилие деформирования (F), минимальный диаметр образца (d), продольный радиус шейки (R), по которым затем расчетным путем определяют зависимость истинного напряжения (S) от степени истинных деформаций (е), определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения S путем введения поправочного коэффициента снижения напряжений К, строят скорректированную истинную диаграмму деформирования, отличающийся тем, что определяют максимальную истинную деформацию при разрыве e с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва по формуле где d - исходный диаметр образца;d - минимальный диаметр образца при разрыве;η - параметр жесткости напряженного состояния, определяемый по формуле: R - продольный радиус шейки непосредственно перед разрывом образца;затем определяют показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца по формуле где tgα, tgα - соответственно касательный и секущий модули, соответствующие моменту разрыва образца для истинной диаграммы деформирования,а максимальные истинные напряжения S находят с учетом полученного значения показателя деформационного упрочнения n, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации e, истинных напряжений S и деформаций e в момент разрыва образца по формуле
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНЫХ ИСТИННЫХ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ
Источник поступления информации: Роспатент

Showing 61-70 of 211 items.
10.11.2014
№216.013.0366

Способ получения 1-(1-адамантил)-3,4-динитро-5(n-нитропиразолил)-1h-пиразолов

Изобретение относится к химии производных адамантана, а именно к новому способу получения 1-(1-адамантил)-3,4-динитро-5-(N-нитропиразолил)-1H-пиразолов нуклеофильным замещением с нитропиразолами, которые могут являться исходными соединениями для синтеза терапевтически активных веществ....
Тип: Изобретение
Номер охранного документа: 0002532268
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04c1

Состав для пропитки абразивного инструмента

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении и эксплуатации абразивных инструментов. Состав для пропитки абразивного инструмента содержит в качестве органического вещества газообразователь - гексахлорпараксилол (1,4-бис-трихлорметилбензол), а в...
Тип: Изобретение
Номер охранного документа: 0002532615
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.07dd

Трансмисионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему диалкилдитиофосфат цинка, полиметакрилат, кремнийорганическую присадку, серусодержащую присадку - продукт взаимодействия фракции α-олефинов с серой при нагревании в присутствии катализатора, нефтяное масло, при этом...
Тип: Изобретение
Номер охранного документа: 0002533414
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07de

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, мас.%: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло до 100. Серусодержащая присадка представляет собой продукт, полученный в...
Тип: Изобретение
Номер охранного документа: 0002533415
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07df

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, % масс.: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло - до 100. Серусодержащая присадка представляет собой продукт взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002533416
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e0

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, мас.%: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло до 100. Серусодержащая присадка представляет собой продукт, полученный в...
Тип: Изобретение
Номер охранного документа: 0002533417
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e3

Способ совместного получения 1,2-эпоксидодекана и 1,2-додекандиола

Изобретение относится к способу эпоксидирования малоактивных длинноцепочных олефинов, при котором получаются эпоксиды и диолы. Додекандиол обеспечивает эластичность полиэфирных смол (покрытий, высококачественных полиуретановых покрытий), его используют в качестве полупродукта в синтезе...
Тип: Изобретение
Номер охранного документа: 0002533420
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e5

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, % масс.: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло до 100, при этом серусодержащая присадка представляет собой продукт...
Тип: Изобретение
Номер охранного документа: 0002533422
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.083b

Способ получения композиционного материала медь-титан

Изобретение может быть использовано при изготовлении сваркой взрывом деталей термического, химического оборудования, теплорегуляторов. Составляют трехслойный пакет с симметричным расположением титановой пластины относительно медных с заданным соотношением толщин слоев. Сваривают пакет взрывом и...
Тип: Изобретение
Номер охранного документа: 0002533508
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0857

Тензорезисторный датчик силы

Изобретение относится к весовой технике, в частности к тензорезисторным датчикам силы, предназначенным для точного измерения сил, в том числе в агрессивных средах. Тензорезисторный датчик силы содержит жесткий центр, силовводяшую оболочку, кольцевой силопреобразователь, ограниченный изнутри...
Тип: Изобретение
Номер охранного документа: 0002533536
Дата охранного документа: 20.11.2014
Showing 61-70 of 280 items.
20.10.2013
№216.012.7611

Способ модификации поверхности гранулята полиэтилентерефталата

Настоящее изобретение относится к способу модификации поверхности гранулята полиэтилентерефталата для повышения термо-. фото-, износо- и гидролитической стойкости, а также снижения газопроницаемости полимерных материалов. Способ заключается в обработке поверхности гранулята...
Тип: Изобретение
Номер охранного документа: 0002495885
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.77b2

Самоходная шагающая тележка многоопорной дождевальной машины

Самоходная шагающая тележка многоопорной дождевальной машины включает раму (1) с поперечно закрепленной к напорному трубопроводу (2) с помощью стоек (3) несущей балкой (4), по концам которой попарно установлены шагающие опоры (5, 6), содержащие опорные стопы (7) и шарнирные четырехзвенники (8,...
Тип: Изобретение
Номер охранного документа: 0002496304
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.77b3

Самоходная шагающая тележка многоопорной многосекционной дождевальной машины

Самоходная шагающая тележка многоопорной многосекционной дождевальной машины включает раму (1) с несущей балкой (2), закрепленной к напорному трубопроводу (3) с помощью стойки L-образной формы (4), расположенной со смещением относительно продольной оси несущей балки (2), по концам которой...
Тип: Изобретение
Номер охранного документа: 0002496305
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78f7

Способ контроля состояния режущих кромок сборных многолезвийных инструментов

Изобретение относится к области обработки металлов резанием, в частности, сборным многолезвийным инструментом. С момента начала обработки непрерывно измеряют значение термоЭДС каждой режущей кромки и производят непрерывное сравнение текущих значений термоЭДС каждой режущей кромки с...
Тип: Изобретение
Номер охранного документа: 0002496629
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.79e1

Способ приготовления живых препаратов микроскопических грибов рода coccidioides для световой микроскопии

Изобретение относится к медицине и биотехнологии, в частности к способу приготовления живых препаратов микроскопических грибов для световой микроскопии рода Coccidioides, и может быть использовано для идентификации, установления специфики строения и развития клеток в различных физиологических...
Тип: Изобретение
Номер охранного документа: 0002496863
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7dab

Способ получения термопластичной эластомерной композиции

Изобретение относится к способу получения термопластичной эластомерной композиции на основе полиэтилена и хлорсульфированного полиэтилена, применяемой при изготовлении различных эластичных резинотехнических изделий методами экструзии, литья под давлением и выдувного формования. Способ...
Тип: Изобретение
Номер охранного документа: 0002497844
Дата охранного документа: 10.11.2013
27.11.2013
№216.012.8543

Способ получения третичных аминов

Изобретение относится к способу получения третичных аминов, в частности к новому способу гидрирования енаминов, который применим в условиях лаборатории и позволяет получать насыщенные третичные амины общей формулы Способ гидрирования енаминов, отличающийся тем, что в качестве енаминов...
Тип: Изобретение
Номер охранного документа: 0002499793
Дата охранного документа: 27.11.2013
10.01.2014
№216.012.93a0

Устройство для очистки газа

Изобретение относится к средствам мокрой очистки газов в слое механической пены. Устройство для очистки газа содержит корпус с патрубками ввода газа и вертикальными выхлопными трубами, верхние концы которых оборудованы сепаратором, а нижние - закручивателями из наклонных лопаток, равномерно...
Тип: Изобретение
Номер охранного документа: 0002503486
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9474

Композиция для покрытий

Изобретение может быть использовано для изготовления покрытий спортивных площадок, полов, кровельных и гидроизоляционных покрытий. Композиция для покрытий включает пластификатор, мел, глицерин, полиизоцианат, дибутилдилауринат олова и продукт сополимеризации 20-50 масс.ч. стирола с 100 масс.ч....
Тип: Изобретение
Номер охранного документа: 0002503698
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9475

Способ крепления резин друг к другу

Изобретение относится к способу крепления вулканизованных резин друг к другу и может быть использовано в резиновой промышленности. Изобретение позволяет обеспечить повышенную прочность клеевого шва при креплении вулканизованных резин друг с другом, упростить технологию склеивания. Это...
Тип: Изобретение
Номер охранного документа: 0002503699
Дата охранного документа: 10.01.2014
+ добавить свой РИД