×
20.05.2014
216.012.c536

БИПОЛЯРНАЯ ПЛАСТИНА ТОПЛИВНОГО ЭЛЕМЕНТА КРУГЛОЙ ФОРМЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Предложенное изобретение относится к биполярным пластинам топливных элементов (ТЭ). Предложенная биполярная пластина ТЭ круглой формы содержит разделительные пластины, имеющие среднюю зону, в которой каналы расположены по эвольвентам окружности, ограничивающей центральную зону, причем длина окружности, по которой строятся эвольвенты, равна произведению числа каналов на шаг, а шаг каналов равномерен по длине окружности, центральную зону, в которую входят внутренние концы эвольвентных каналов и ребра каналов которой на пластинах расположены таким образом, что при сборке они пересекаются, образуя плоские центральные коллекторы, периферийную кольцевую зону, состоящую из пересекающихся каналов и конических выступов, через которую организован подвод и отвод реагентов и хладагента к наружным концам соответствующих эвольвентных каналов. Разделительные пластины по периферии и периферийный уплотнительный кант имеют совпадающие по периферии отверстия, которые при сборке батареи ТЭ образуют коллекторные каналы для подвода через горизонтальные каналы окислителя, топлива и теплоносителя в периферийную кольцевую зону разделительных пластин и далее в соответствующие полости и отвода реагентов из них. Создание жесткой и легкой металлической биполярной пластины круглой формы, обеспечивающей равномерный отвод и подвод топлива, окислителя и хладагента по всей площади ТЭ является техническим результатом изобретения. 3 з.п. ф-лы, 6 ил.
Реферат Свернуть Развернуть

Заявляемое техническое решение относится к области прямого преобразования химической энергии в электрическую, в частности, к конструкции биполярной пластины топливного элемента (ТЭ).

Известны многочисленные варианты конструкции ТЭ, в которых применены биполярные пластины прямоугольной формы.

Одним из аналогов подобных биполярных пластин является ТЭ с протонообменной мембраной, описанный в патенте США №6261710 (класс МПК H01M 8/02, дата приоритета 25.11.1998) [1]. Согласно данного изобретения биполярная пластина содержит верхнюю и нижнюю разделительные тонколистовые металлические пластины, в которых выштампованы прямолинейные каналы с треугольным профилем. Каналы предназначены для подачи и отвода топлива, окислителя и хладагента.

При соприкосновении разделительных пластин в процессе сборки между ними образуется внутренняя полость хладагента, а внешние каналы формируют полости топлива и окислителя. В состав биполярной пластины также входит периферийная уплотняющая прокладка.

Недостатки аналога, а именно повышенная масса, габариты и значительный периметр уплотнения, связаны с прямоугольной формой биполярной пластины. Известно, что окружность является линией минимальной длины, ограничивающей полную поверхность данной формы. Только круглые биполярные пластины, а, следовательно, и батарея топливных элементов на их основе могут обладать наименьшей массой, габаритами и периметром уплотнения.

Наиболее близким к заявляемому техническому решению и потому принятому за прототип, является батарея топливных элементов, содержащая мембранно-электродные и биполярные сборки (пластины), заявленная в патенте РФ №2355072 «Батарея топливных элементов» (класс МПК HO1M 8/10, HO1M 8/02, дата приоритета 03.10.2007) [2]. Данная батарея топливных элементов содержит круглые (в плане) комплектующие детали, в частности, биполярные пластины с каналами для подвода и отвода анодного и катодного газов, жидкого хладагента. Каждая биполярная сборка состоит из примыкающих друг к другу катодной, средней и анодной разделительных металлических пластин. Катодная и анодная разделительные пластины снабжены каналами для подвода катодного газа к воздушному и анодного газа к водородному электродам мембранно-электродных сборок, а средняя пластина снабжена каналами для циркуляции жидкого хладагента между катодной и анодной пластинами. Каналы катодной пластины имеют в плане форму спиралей, каналы анодной пластины - форму полуокружностей и каналы средней пластины - форму дугообразных прорезей. Коллектором входа катодного газа является центральный канал, пронизывающий ТЭ, в том числе и биполярные сборки, коллектор выхода катодного газа выполнен в виде щелевидного канала, размещенного вдоль образующей батареи. Коллекторы входа и выхода анодного газа и хладагента также выполнены в виде щелевидных каналов, размещенных оппозитно вдоль образующих батареи. Каналы на поверхности анодных и катодных пластин биполярных сборок могут быть выполнены штамповкой.

Недостатки заявленного в прототипе технического решения заключаются в следующем.

Во-первых, каналы всех трех полостей организованы таким образом, что они существенно отличаются по длине и форме. Неодинаковые длина и форма создают различное гидравлическое сопротивление каналов потоку реагентов и хладагента, и, как следствие, неравномерное распределение токообразующей реакции по площади ТЭ.

Это обстоятельство снижает эффективность топливных элементов и ухудшает коррозионную стойкость батареи топливных элементов, что, в свою очередь, уменьшает ресурс ее работы.

Во-вторых, организация щелевых каналов путем соприкосновения внутренней поверхности цилиндрического диэлектрического корпуса и внешней поверхности внутренней поверхности пакета, состоящего из мембрано-электродных и биполярных сборок, которую практически невозможно изготовить гладкой, сильно затрудняет достижение межполостной герметичности батареи.

Задачей заявляемой конструкции биполярной пластины ТЭ круглой формы является обеспечение условий для равномерного распределения реагентов и хладагента по площади топливных элементов и упрощение вопроса достижения герметичности при сборке, как между полостями батареи, так и самой батареи топливных элементов относительно внешней среды, а кроме того, обеспечение необходимой жесткости биполярной пластины, что особенно важно при изготовлении ее из особо тонкого листового металла толщиной до 0,05 мм.

Решение поставленной задачи заключается в том, что в известной конструкции ТЭ круглой формы, состоящей из мембрано-электродной, а также биполярной сборок, содержащих каналы для циркуляции анодного, катодного газов и хладагента, полученных штамповкой, с оппозитным (противоположным) расположением входов и выходов анодного газа и хладагента, отверстий для крепежа и центрирования биполярных сборок при сборке батареи, согласно заявляемого технического решения изменена форма каналов, число разделительных пластин в биполярной сборке уменьшено до двух, за счет исключения центральной пластины, а вместо пяти щелевидных и одного круглого центрального каналов (коллекторов) входа и выхода катодного и анодного газов и хладагента организованы множество коллекторов входа и выхода катодного, анодного газов и хладагента, образованные отверстиями, в периферийном канте биполярной пластины ТЭ круглой формы.

Согласно заявляемому техническому решению вместо спиральных (для катодного газа), полукруглых (для анодного газа) и дугообразных (для хладагента) каналов, каналы обоих реагентов и хладагента заявляемой биполярной пластины ТЭ круглой формы выполнены по эвольвентам окружности, ограничивающей центральную зону и равномерно расположены по площади. Внутренние концы эвольвентных каналов соединены с центральной зоной, а наружные концы эвольвентных каналов в периферийной кольцевой зоне соединены с помощью горизонтальных каналов с коллекторными отверстиями, например, трапециевидными, расположенными по окружности на периферийном уплотнительном канте биполярной пластины ТЭ. Лишь применение этой конструкции позволяет получить для биполярных пластин ТЭ круглой формы каналы равной длины и одинаковой формы. Длина окружности, по которой строятся эвольвенты, равна произведению числа каналов на шаг, причем шаг каналов равномерен по длине окружности, а, следовательно, толщины ребер, образующих каналы, равны, и все каналы имеют одинаковое гидравлическое сопротивление, что обеспечивает высокую равномерность электрохимической токогенерирующей реакции по площади ТЭ и, как следствие, высокую эффективность батареи топливных элементов в целом.

Каналы топлива, окислителя и хладагента выштампованы в двух тонколистовых металлических разделительных пластинах, которые входят в состав биполярной пластины ТЭ. Обе разделительные пластины (анодная и катодная) прочно соединены между собой, например, спаяны по всем местам соприкосновения. Также спаяны между собой все места соприкосновения деталей с уплотнительным периферийным кантом.

В центральной, круглой зоне биполярной пластины ТЭ эвольвентные каналы отсутствуют. Каналы для потоков реагентов и хладагента в центральной зоне организованы с помощью отдельных протяженных ребер, длина, форма и взаимное расположение которых обеспечивает полное перемешивание и усреднение концентрации газов и хладагента, поступающих в нее из всех эвольвентных каналов. Для обеспечения жесткости конструкции в центральной зоне ребра анодной и катодной разделительных пластин биполярной пластины расположены таким образом, что пересекаются, образуя своеобразную сетку.

В периферийной кольцевой зоне биполярной пластины ТЭ циркуляция реагентов и хладагента также организованы с помощью ребер. Ребра анодной и катодной разделительных пластин с целью обеспечения жесткости биполярной пластины в этой зоне также расположены таким образом, что пересекаются друг с другом, обеспечивая жесткость этого участка.

Вертикальные коллекторы подачи и отвода реагентов и хладагента в батарее ТЭ образованы при сборке батареи ТЭ из отверстий, расположенных в периферийном уплотнительном канте биполярной пластины ТЭ круглой формы.

Пакет, состоящий из мембрано-электродных сборок и биполярных пластин ТЭ круглой формы, уплотнен по их кантам, например, при помощи герметика или клея.

Таким образом, в заявляемом техническом решении обеспечиваются равномерное распределение потоков реагентов и хладагента по всей площади ТЭ, надежное уплотнение анодной, катодной, а также полости хладагента между собой и всех полостей относительно внешней среды, необходимые жесткость и прочность биполярных пластин топливных элементов, изготовленных из особо тонколистовых металлов.

Заявляемое техническое решение представлено на следующих фигурах. Фиг.1 - общий вид заявляемой биполярной пластины ТЭ круглой формы. На фиг.2 - средняя зона эвольвентных каналов в большем масштабе. На фиг.3 представлено поперечное сечение средней зоны эвольвентных каналов. Фиг.4 - центральная зона в большем масштабе. Фиг.5 - увеличенный фрагмент периферийной кольцевой зоны с уплотнительным периферийным кантом. Фиг.6 - топливный элемент в разрезе по анодной полости.

Биполярная пластина ТЭ круглой формы (фиг.1) содержит следующие зоны: собственно эвольвентных каналов - среднюю (1), периферийную кольцевую (2), в которой происходит соединение наружных концов эвольвентных каналов с коллекторными отверстиями в периферийном уплотнительном канте, центральную (3), куда выходят внутренние концы эвольвентных каналов, а также периферийный уплотнительный кант (4). На фиг.1 средняя (эвольвентная) зона (1) и периферийная кольцевая зона (2) показаны не полностью; в действительности они равномерно покрывают всю площадь поверхности заявляемой биполярной пластины ТЭ круглой формы.

На фиг.2 средняя зона эвольвентных каналов (1) приведена в большем масштабе, чтобы показать ее каналы (5) и ребра (выпуклости) (6).

Поперечное сечение средней зоны эвольвентных каналов (фиг.3) дает представление как соединены, например, спаяны между собой (паяный шов обозначен позицией 7) анодная (8) и катодная (9) разделительные пластины, образуя между своими внутренними поверхностями полость для циркуляции хладагента (10). Внешние поверхности катодной (9) и анодной (8) разделительных пластин служат для образования каналов, по которым циркулируют соответственно топливо (11) и окислитель (12).

На фиг.4 представлено расположение в центральной зоне ребер каналов катодной (13) (сплошные линии) разделительной пластины и анодной (14) (прерывистые линии) разделительной пластины. Каналы центральной зоны обеих пластин расположены таким образом, что при сборке биполярной пластины ТЭ каналы пересекаются, образуя плоский центральный коллектор, который служит для равномерного распределения топлива, окислителя и хладагента в центральной зоне. Кроме того, подобное расположение каналов позволяет упрочнить центральную зону (3) биполярной пластины. На фиг.4 также представлено каким образом эвольвентные каналы (5) и их ребра (6) сочленяются с каналами и ребрами центральной зоны.

На фиг.5 показано, каким образом пересекаются ребра каналов анодной (15) и ребра каналов катодной (16) разделительных пластин в периферийной кольцевой зоне (2) биполярной пластины ТЭ круглой формы, обеспечивая ее жесткость и прочность в этой зоне. Ребра каналов (15 и 16) совместно с коническими выступами (17) образуют своеобразные плоские коллекторы, равномерно распределяющие топливо, окислитель и хладагент на входе в наружные концы соответствующих эвольвентных каналов в средней зоне эвольвентных каналов (1) биполярной пластины ТЭ круглой формы и выходе из них. Отверстия (18) в периферийном уплотнительном канте (4) и по периферии анодной (8) и катодной (9) разделительных пластин, например, трапециевидные, образуют при сборке батареи ТЭ вертикальные коллекторные каналы для подачи и отвода в соответствующие полости биполярной пластины ТЭ реагентов и хладагента через горизонтальные каналы (19), а через отверстия для крепежа и центрирования биполярных сборок при сборке батареи (20) проходят элементы крепежа, например, шпильки (стержневые пружины), стягивающие топливные элементы в батарею ТЭ. Отверстия для крепежа и центрирования биполярных сборок при сборке батареи (20) расположены равномерно по окружности биполярной пластины ТЭ круглой формы и их может быть, например, три.

Фиг.6 дает представление о всем топливном элементе в разрезе. ТЭ содержит биполярную пластину (21), в которую входят анодная (8) и катодная (9) разделительные пластины, образующие между собой каналы для циркуляции хладагента (10), а вместе с анодом (22) и катодом (23) образующие каналы для циркуляции топлива (11) и каналы для циркуляции окислителя (12). В состав биполярной пластины ТЭ круглой формы также входит периферийный уплотнительный кант (4), имеющий отверстия, с помощью которых при сборке биполярных пластин ТЭ круглой формы в батарею ТЭ образуются вертикальные коллекторные каналы (24), из которых по горизонтальным каналам (19) реагенты поступают в соответствующие каналы для циркуляции, например, как в данном случае топлива (11), т.е. к аноду (22) и в каналы для циркуляции окислителя (12), т.е. к катоду (23), а хладагент - в канал для циркуляции хладагента (10). В состав топливного элемента также входит электролитная мембрана (25) с ее уплотнительным периферийным кантом (26).

Работа ТЭ с заявляемой конструкцией биполярной пластины показана на примере циркуляции топлива (фиг.6) и происходит следующим образом. Топливо из вертикальных коллекторных каналов (24) по горизонтальным каналам (19) поступает в плоские коллекторы периферийной кольцевой зоны (2) и равномерно распределяется по эвольвентным каналам для циркуляции топлива (11) средней зоны эвольвентного канала (1), из средней зоны эвольвентного канала (1) топливо затем поступает в каналы центральной зоны (3), в которой топливо, поступившее из всех эвольвентных каналов средней зоны (1) смешивается, при этом гарантировано выравнивается концентрация его компонентов, в частности примесей, например, диоксида углерода, монооксида углерода и других примесей в том случае, когда в качестве топлива используется водород, полученный конверсией углеводородов. Аналогичным образом, но в обратном порядке инертные компоненты выводятся из полости, образованной каналами для циркуляции топлива, с противоположной стороны ТЭ с потоком циркулирующего топлива.

Окислитель из соответствующих вертикальных коллекторных и горизонтальных каналов таким же образом поступает в аналогичные зоны полости, образованной каналами для циркуляции окислителя, биполярной пластины топливного элемента круглой формы. Инертные примеси, содержащиеся в окислителе, аналогичным образом выводятся с противоположной стороны ТЭ.

По полости биполярной пластины ТЭ круглой формы, образованной каналами для хладагента (10), циркулирует хладагент, отводящий тепло, выделяющееся в токогенерирующей электрохимической реакции окисления топлива. Соединенные, например, спаянные между собой по всей длине ребер эвольвентные каналы в средней зоне (1), а также по всем местам пересечения ребер в периферийной кольцевой (2) и центральной (3) зонах придают биполярной пластине необходимую жесткость и прочность.

Равномерное распределение по площади ТЭ потоков реагентов и хладагента вместе с равномерным и гарантировано достаточным прижатием электродов к матрице, обеспеченным жесткостью и прочностью биполярной пластины, позволило достигнуть высоких электрических характеристик топливного элемента.

Были изготовлены никелевые биполярные пластины щелочных ТЭ заявляемой конструкции для электродов площадью 700 см2 и толщиной сепараторных пластин 0,06 мм. Вес биполярной пластины в среднем составил 150 г. Все пластины соответствовали конструктивным требованиям. Герметичность полости хладагента относительно полостей топлива и окислителя и всех трех полостей относительно внешней среды, а также батарей ТЭ, изготовленных с использованием заявляемых биполярных пластин топливных элементов, соответствовала техническим требованиям. Техническим требованиям также соответствовали прочность и жесткость всех биполярных пластин, характеризующаяся отсутствием деформации при нагрузке 3 кг/см2. Высокая равномерность потоков реагентов и хладагента по площади ТЭ проявилась в высокой эффективности топливных элементов: в составе батарей ТЭ при температуре 99°C, концентрации едкого калия в электролите 8,3 г-экв/л и давлении кислорода и водорода 4,2 кг/см2 напряжение усредненного элемента батарей составило 985 мВ при плотности тока нагрузки 200 мА/см2, а удельная мощность 0,43 кг ТЭ/кВт и 805 мВ (0,52 кг ТЭ/кВт) при 1000 мА/см2. На батареях ТЭ с меньшей площадью электродов (176 см2) при температуре 121°C и тех же концентрации электролита, давлении газов и плотности тока нагрузки 4200 мА/см2 среднее напряжение составило 612 мВ (0,18 кг ТЭ/кВт).

Использование заявляемой конструкции позволяет изготавливать легкие компактные многоэлементные высокоэффективные батареи топливных элементов, способные длительное время надежно эксплуатироваться как при атмосферном давлении топлива, окислителя и хладагента, так и при давлениях окружающей среды, значительно превышающих атмосферное, а также в вакууме. Все это позволяет применять их не только в традиционных областях, но также там, где требуются изделия с высокими массогабаритными характеристиками, прежде всего, в космосе и на подводных аппаратах.

Источники информации

1. Патент США №6261710 «Sheet metal bipolar plate design for polymer electrolyte membrane fuel cells», кл. МПК H01M 2/00, дата приоритета 17.07.2001.

2. Патент РФ №2355072 «Батарея топливных элементов», кл. МПК H01M 8/10, H01M 8/02, дата приоритета 03.10.2007.


БИПОЛЯРНАЯ ПЛАСТИНА ТОПЛИВНОГО ЭЛЕМЕНТА КРУГЛОЙ ФОРМЫ
БИПОЛЯРНАЯ ПЛАСТИНА ТОПЛИВНОГО ЭЛЕМЕНТА КРУГЛОЙ ФОРМЫ
БИПОЛЯРНАЯ ПЛАСТИНА ТОПЛИВНОГО ЭЛЕМЕНТА КРУГЛОЙ ФОРМЫ
БИПОЛЯРНАЯ ПЛАСТИНА ТОПЛИВНОГО ЭЛЕМЕНТА КРУГЛОЙ ФОРМЫ
БИПОЛЯРНАЯ ПЛАСТИНА ТОПЛИВНОГО ЭЛЕМЕНТА КРУГЛОЙ ФОРМЫ
БИПОЛЯРНАЯ ПЛАСТИНА ТОПЛИВНОГО ЭЛЕМЕНТА КРУГЛОЙ ФОРМЫ
Источник поступления информации: Роспатент

Showing 1-10 of 22 items.
20.10.2013
№216.012.7559

Десублимационный аппарат

Изобретение относится к оборудованию для проведения процессов десублимации-сублимации гексафторида урана с целью его очистки от легких примесей и может быть использовано на разделительных производствах атомной промышленности. Десублимационный аппарат содержит оснащенный нагревателем стенки...
Тип: Изобретение
Номер охранного документа: 0002495701
Дата охранного документа: 20.10.2013
10.12.2013
№216.012.8953

Многоэлементный матричный фильтр-прессный электролизер воды

Изобретение относится к технике электролитического получения водорода и кислорода в электролизерах воды и может быть использовано в топливных элементах, применяющихся в космических, подводных аппаратах, в наземном транспорте и в других устройствах. Изобретение относится к многоэлементному...
Тип: Изобретение
Номер охранного документа: 0002500837
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8d6f

Электролизер для получения водорода и кислорода из воды

Изобретение относится к устройствам для получения водорода и кислорода электролизом воды. Электролизер включает корпус, размещенные в нем последовательно соединенные между собой ячейки, состоящие из катода, анода, размещенной между ними газозапорной мембраны, насосы для циркуляции щелочного...
Тип: Изобретение
Номер охранного документа: 0002501890
Дата охранного документа: 20.12.2013
10.02.2014
№216.012.9dec

Способ штамповки эластичной средой

Изобретение относится к области обработки металлов давлением, в частности к холодной штамповке тонколистовых металлов эластичной средой с осуществлением глубокой вытяжки за несколько проходов. На первом этапе пакет из нескольких тонколистовых заготовок подвергают глубокой вытяжке под давлением...
Тип: Изобретение
Номер охранного документа: 0002506136
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a5c2

Десублимационный аппарат

Изобретение относится к оборудованию для проведения процессов десублимации-сублимации гексафторида урана (ГФУ). Десублимационный аппарат содержит корпус (1), в котором расположены кольцевая десублимационная камера с размещенными в ней перегородками (17,18,19), патрубки подвода-отвода (6)...
Тип: Изобретение
Номер охранного документа: 0002508149
Дата охранного документа: 27.02.2014
20.09.2014
№216.012.f57a

Ударно-инерционное устройство для очистки газа

Изобретение предназначено для улавливания мелкодисперсных и аэрозольных жидких и твердых частиц из газового потока и может быть использовано в нефтяной, газовой, химической и других отраслях промышленности. Ударно-инерционное устройство для очистки газа от жидких и твердых аэрозолей содержит...
Тип: Изобретение
Номер охранного документа: 0002528675
Дата охранного документа: 20.09.2014
27.12.2014
№216.013.15bf

Устройство для очистки газа от жидких и твердых частиц

Изобретение относится к устройству для улавливания жидких и твердых частиц из газового потока и может быть использовано в газовой, нефтяной, химической и других отраслях промышленности. Устройство содержит корпус с патрубками для подвода и отвода газа и жидкости, двухсекционный смеситель,...
Тип: Изобретение
Номер охранного документа: 0002536991
Дата охранного документа: 27.12.2014
10.05.2015
№216.013.499c

Спектрометрическая импульсная ионизационная камера

Изобретение относится к области регистрации альфа-излучения и может использоваться для измерения энергий альфа-частиц в атомной, ядерной отраслям промышленности. Спектрометрическая импульсная ионизационная камера включает модуль газонаполнения, выполненный в виде системы электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002550351
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.5526

Способ получения порошка металла электролизом

Изобретение относится к области порошковой металлургии, в частности к способу получения порошков металлов методом электролиза. Способ включает использование растворимых и нерастворимых анодов одновременно, при этом водный раствор электролита содержит соль соответствующего металла и буферные...
Тип: Изобретение
Номер охранного документа: 0002553319
Дата охранного документа: 10.06.2015
10.08.2015
№216.013.68c3

Способ изготовления биполярной пластины для щелочного топливного элемента

Предлагаемое изобретение относится к способу изготовления биполярных пластин для щелочных топливных элементов. Биполярная пластина для щелочного топливного элемента выполнена из двух тонколистовых профилированных сепараторов и двух металлических рамок из никеля. Предложенный способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002558372
Дата охранного документа: 10.08.2015
Showing 1-10 of 21 items.
20.10.2013
№216.012.7559

Десублимационный аппарат

Изобретение относится к оборудованию для проведения процессов десублимации-сублимации гексафторида урана с целью его очистки от легких примесей и может быть использовано на разделительных производствах атомной промышленности. Десублимационный аппарат содержит оснащенный нагревателем стенки...
Тип: Изобретение
Номер охранного документа: 0002495701
Дата охранного документа: 20.10.2013
10.12.2013
№216.012.8953

Многоэлементный матричный фильтр-прессный электролизер воды

Изобретение относится к технике электролитического получения водорода и кислорода в электролизерах воды и может быть использовано в топливных элементах, применяющихся в космических, подводных аппаратах, в наземном транспорте и в других устройствах. Изобретение относится к многоэлементному...
Тип: Изобретение
Номер охранного документа: 0002500837
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8d6f

Электролизер для получения водорода и кислорода из воды

Изобретение относится к устройствам для получения водорода и кислорода электролизом воды. Электролизер включает корпус, размещенные в нем последовательно соединенные между собой ячейки, состоящие из катода, анода, размещенной между ними газозапорной мембраны, насосы для циркуляции щелочного...
Тип: Изобретение
Номер охранного документа: 0002501890
Дата охранного документа: 20.12.2013
10.02.2014
№216.012.9dec

Способ штамповки эластичной средой

Изобретение относится к области обработки металлов давлением, в частности к холодной штамповке тонколистовых металлов эластичной средой с осуществлением глубокой вытяжки за несколько проходов. На первом этапе пакет из нескольких тонколистовых заготовок подвергают глубокой вытяжке под давлением...
Тип: Изобретение
Номер охранного документа: 0002506136
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a5c2

Десублимационный аппарат

Изобретение относится к оборудованию для проведения процессов десублимации-сублимации гексафторида урана (ГФУ). Десублимационный аппарат содержит корпус (1), в котором расположены кольцевая десублимационная камера с размещенными в ней перегородками (17,18,19), патрубки подвода-отвода (6)...
Тип: Изобретение
Номер охранного документа: 0002508149
Дата охранного документа: 27.02.2014
20.09.2014
№216.012.f57a

Ударно-инерционное устройство для очистки газа

Изобретение предназначено для улавливания мелкодисперсных и аэрозольных жидких и твердых частиц из газового потока и может быть использовано в нефтяной, газовой, химической и других отраслях промышленности. Ударно-инерционное устройство для очистки газа от жидких и твердых аэрозолей содержит...
Тип: Изобретение
Номер охранного документа: 0002528675
Дата охранного документа: 20.09.2014
27.12.2014
№216.013.15bf

Устройство для очистки газа от жидких и твердых частиц

Изобретение относится к устройству для улавливания жидких и твердых частиц из газового потока и может быть использовано в газовой, нефтяной, химической и других отраслях промышленности. Устройство содержит корпус с патрубками для подвода и отвода газа и жидкости, двухсекционный смеситель,...
Тип: Изобретение
Номер охранного документа: 0002536991
Дата охранного документа: 27.12.2014
10.05.2015
№216.013.499c

Спектрометрическая импульсная ионизационная камера

Изобретение относится к области регистрации альфа-излучения и может использоваться для измерения энергий альфа-частиц в атомной, ядерной отраслям промышленности. Спектрометрическая импульсная ионизационная камера включает модуль газонаполнения, выполненный в виде системы электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002550351
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.5526

Способ получения порошка металла электролизом

Изобретение относится к области порошковой металлургии, в частности к способу получения порошков металлов методом электролиза. Способ включает использование растворимых и нерастворимых анодов одновременно, при этом водный раствор электролита содержит соль соответствующего металла и буферные...
Тип: Изобретение
Номер охранного документа: 0002553319
Дата охранного документа: 10.06.2015
10.08.2015
№216.013.68c3

Способ изготовления биполярной пластины для щелочного топливного элемента

Предлагаемое изобретение относится к способу изготовления биполярных пластин для щелочных топливных элементов. Биполярная пластина для щелочного топливного элемента выполнена из двух тонколистовых профилированных сепараторов и двух металлических рамок из никеля. Предложенный способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002558372
Дата охранного документа: 10.08.2015
+ добавить свой РИД