×
20.05.2014
216.012.c393

Результат интеллектуальной деятельности: ТЕРМОРЕГУЛИРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И СПОСОБ ЕГО КРЕПЛЕНИЯ К ПОВЕРХНОСТИ КОРПУСА КОСМИЧЕСКОГО ОБЪЕКТА

Вид РИД

Изобретение

№ охранного документа
0002515826
Дата охранного документа
20.05.2014
Аннотация: Изобретение относится к космической технике и касается создания терморегулирующего материала для нанесения на поверхность космического объекта (КО). Терморегулирующий материал содержит подложку в виде оптически прозрачного стекла, высокоотражающий слой из серебра, защитный слой. Высокоотражающий слой из серебра имеет толщину 0,10÷0,15 мкм. В качестве защитного слоя использована нержавеющая сталь толщиной 0,10÷0,20 мкм. На защитный слой нанесен эпоксидный лак толщиной 20÷30 мкм. Перед нанесением на подложку высокоотражающего слоя из серебра осуществляют химическую очистку подложки с одновременным ультразвуковым воздействием в течение 3-х минут. Затем подложку вынимают из раствора, промывают последовательно теплой, холодной, дистиллированной водой по 1-1,5 мин и сушат на воздухе. Поверхность обрабатывают тлеющим разрядом для дополнительной очистки и активации поверхности подложки. Затем последовательно осуществляют нанесение высокоотражающего слоя и защитного слоя в вакуумной камере методом магнетронного распыления без разгерметизации вакуумной камеры за один технологический цикл, располагая подложку последовательно под магнетронными источниками с мишенью из серебра и мишенью из нержавеющей стали. На подложку с высокоотражающим слоем и защитным слоем наносят слой эпоксидного лака толщиной 20÷30 мкм для дополнительной защиты от атмосферной коррозии и для увеличения адгезии подложек с покрытием к клеевой композиции. Во время крепления терморегулирующего материала приклеивание материала клеевой композицией с электропроводящим наполнителем осуществляется при помощи грузов. В качестве электропроводящего наполнителя использована алюминиевая или серебряная пудра в количестве 20±5% и 10±5% соответственно, обеспечивающая необходимые электропроводящие свойства поверхности терморегулирующего материала. Достигается улучшение терморадиационных характеристик материала, повышение технологичности нанесения покрытия, повышение значения адгезии крепления подложек с покрытием к поверхности корпуса КО. 3 н.п. ф-лы, 2 ил.

Терморегулирующий материал предназначен для создания и поддержания в условиях космического пространства необходимых температурных условий космического объекта (КО).

На КО в процессе эксплуатации воздействуют перепад температур от минус 150°С до 150°С, глубокий вакуум, различные виды излучений. Решающее воздействие оказывают тепловое и видимое излучение Солнца. В связи с тем, что в вакууме отсутствует конвективный характер теплопередачи, в космическом пространстве основной метод терморегулирования осуществляется за счет использования покрытий с определенными значениями поглощательной способности солнечной радиации As и степени черноты ε наружных поверхностей космического объекта.

Поглощательная способность солнечной радиации и степень черноты наружных поверхностей различной аппаратуры являются одними из основных характеристик, учитываемых при расчете систем терморегулирования. Поглощательная способность солнечной радиации есть отношение поглощенной лучистой энергии Солнца ко всей падающей энергии солнечного излучения. Степень черноты есть отношение излучаемой телом энергии к энергии излучения абсолютно черного тела при той же температуре. Величины As и ε являются относительными, безразмерными и изменяются от 0 до 1.

Отношение поглощательной способности солнечной радиации к степени черноты - определяющая характеристика терморегулирующих покрытий, от которой зависит равновесная температура аппаратуры. Покрытие с малой величиной As/ε обеспечивает необходимую относительно низкую температуру КО, так как такой материал имеет низкую способность поглощать энергию солнечного излучения по сравнению со способностью излучать энергию в пространство.

Известно многослойное покрытие по патенту Франции №2681078, содержащее полимерную подложку, на которой расположен оптический слой. Способ получения такого покрытия включает в себя нанесение на эластичную подложку адгезионного слоя с последующим нанесением металлического оптического слоя и сушкой.

Основным недостатком данного аналога является высокая величина отношения поглощательной способности солнечной радиации покрытия к степени черноты (As/ε=2) при требуемом отношении менее 1 для терморегулирующих покрытий класса «солнечный отражатель».

Известно покрытие OSR и способ его установки по патенту США №5400986, включающее тонкий диэлектрический лист, внешняя поверхность которого покрыта прозрачным электропроводным слоем, тыльная поверхность покрыта отражающим слоем, а торцевая поверхность листа покрыта электропроводным покрытием так, что, по крайней мере, оно частично перекрывает отражающий слой и электрически связано с внешним прозрачным электропроводным слоем; слой клеевого материала преимущественно постоянной толщины, отличающийся от материала покрытия торцев, причем внешняя поверхность клеевого слоя больше, чем тыльная поверхность диэлектрического листа; клеевой слой фиксируется тыльной стороной к поверхности корпуса КО, а внешней поверхностью фиксируется к тыльной стороне диэлектрического листа, при этом клеевой слой является электропроводным и электрически соединен с указанным покрытием торцев для протекания тока между внешней поверхностью указанного листа и внешней поверхностью корпуса КО через указанное покрытие торцев.

Наиболее близким по технической сущности является терморегулирующее покрытие и способ его установки на КО по заявке на изобретение по патенту РФ №2356074 (МПК: B64G 1/58).

Терморегулирующее покрытие включает подложку из диэлектрического материала, выполненную из оптически прозрачного радиационно-стойкого материала в виде оптического стекла, электропроводный слой на внешней поверхности подложки, высокоотражающий слой из серебра, защитный слой и адгезивный слой на тыльной стороне поверхности подложки, причем электропроводный слой частично покрывает торцевые поверхности подложки.

Способ изготовления материала включает нанесение на подложки из оптически прозрачного стекла высокоотражающего слоя из серебра с последующим нанесением на него защитного слоя. Технология нанесения в заявке не описана.

Терморегулирующее покрытие приклеивается тыльной стороной к внешней поверхности корпуса КО эластичным радиационно-стойким клеевым слоем, отверждаемым при комнатной температуре и снабженным электропроводным волокнистым материалом (наполнителем). Перед приклейкой отдельные подложки из стекла с покрытием монтируют стороной с адгезивным слоем на вспомогательную ленту с липким слоем с соблюдением заданного зазора между торцевыми поверхностями элементов. После отверждения клеевого слоя вспомогательная лента удаляется с поверхности покрытия.

Основные недостатки аналогов и прототипа:

- нанесение поверхностного электропроводящего слоя приводит к увеличению значения поглощательной способности солнечной радиации As до значений 0,12 и выше, и, соответственно, к увеличению отношения As/ε до 0,15 и выше, что приводит к увеличению температуры внутреннего объема КО до значений более 40°С. Это отрицательно сказывается на работе многочисленных приборов и оборудования, создает некомфортные условия для человека;

- приклейка подложек из стекла при помощи липкого слоя не обеспечивает необходимую прочность из-за отсутствия давления на подложку при приклейке;

- процесс получения подложек из стекла с покрытием и их приклейки нетехнологичен, так как требует дополнительной технологической операции - нанесения электропроводящего покрытия на наружную поверхность подложки из стекла, что увеличивает время и затраты на изготовление терморегулирующего материала.

Задачей заявленного изобретения является создание терморегулирующего материала с улучшенными терморадиационными характеристиками, с высокой технологичностью нанесения покрытия, состоящего из высокоотражающего и защитного слоев, с высокой адгезией крепления подложек из оптически прозрачного радиационностойкого стекла с покрытием к поверхности корпуса КО, работающего в условиях воздействия факторов космического пространства (воздействие вакуума, радиации, ультрафиолетового облучения, атомарного кислорода, знакопеременных температур), а также уменьшение времени и стоимости изготовления терморегулирующего материала за счет исключения дополнительной технологической операции по нанесению электропроводящего покрытия на наружную поверхность подложки.

Задача достигается тем, что в предложенном терморегулирующем материале, содержащем подложку в виде оптически прозрачного стекла, высокоотражающий слой из серебра имеет толщину 0,10÷0,15 мкм, защитный слой из нержавеющей стали - толщину 0,10÷0,20 мкм, на защитный слой из нержавеющей стали нанесен эпоксидный лак толщиной 20÷30 мкм.

Задача достигается также тем, что в способе изготовления терморегулирующего материала, включающем нанесение на подложку из оптически прозрачного стекла высокоотражающего слоя из серебра с последующим нанесением на него защитного слоя из нержавеющей стали, перед нанесением на подложку из оптически прозрачного стекла высокоотражающего слоя из серебра осуществляют химическую очистку подложки из оптически прозрачного стекла раствором следующего состава:

тринатрийфосфат 10÷15 г/л
сода кальцинированная 3÷5 г/л
синтанол ДС-10 3÷5 г/л

с одновременным ультразвуковым воздействием в течение 3-х минут, затем подложку из оптически прозрачного стекла вынимают из раствора, промывают последовательно теплой, холодной, дистиллированной водой по 1÷1,5 мин. и сушат на воздухе, после этого поверхность подложки обрабатывают тлеющим разрядом для дополнительной очистки и активации поверхности подложки, затем последовательно осуществляют нанесение высокоотражающего слоя из серебра и защитного слоя из нержавеющей стали в вакуумной камере методом магнетронного распыления без разгерметизации вакуумной камеры за один технологический цикл, располагая подложку из оптически прозрачного стекла последовательно под магнетронными источниками с мишенью из серебра и мишенью из нержавеющей стали под углом, близким к 90°, высокоотражающий слой из серебра наносят по следующему режиму:

U=450±50 В,

I=2,5÷3,0±0,5 мА,

t=2 мин на каждый поддон с подложкой, а

защитный слой из нержавеющей стали наносят по следующему режиму:

U=500±50 В,

I=3,5÷4,0±0,7 мА,

t=3 мин на каждый поддон с подложкой,

затем на подложку из оптически прозрачного стекла с высокоотражающим слоем из серебра и защитным слоем из нержавеющей стали наносят слой эпоксидного лака толщиной не более 30 мкм для дополнительной защиты подложки из оптически прозрачного стекла с покрытием от атмосферной коррозии и для увеличения адгезии подложки из оптически прозрачного стекла с покрытием к клеевой композиции.

Задача достигается также тем, что в способе крепления терморегулирующего материала к поверхности корпуса космического объекта, включающем приклеивание терморегулирующего материала клеевой композицией с электропроводящим наполнителем, при приклеивании терморегулирующего материала к поверхности корпуса космического объекта использованы грузы, обеспечивающие давление 8÷12 г/см2, в качестве электропроводящего наполнителя использована алюминиевая или серебряная пудра в количестве 20±5% и 10±5% соответственно, обеспечивающая необходимые электропроводящие свойства поверхности терморегулирующего материала.

На Фиг.1 показан предлагаемый терморегулирующий материал, где:

1 - подложка из оптически прозрачного стекла;

2 - высокоотражающий слой из серебра;

3 - защитный слой из нержавеющей стали;

4 - эпоксидный лак;

5 - клеевая композиция с наполнителем алюминиевой или серебряной пудрой.

На Фиг.2 показана схема внутрикамерного устройства вакуумной напылительной установки для способа изготовления терморегулирующего материала, где:

6 - вакуумная камера;

7 - магнетронный источник с мишенью из серебра;

8 - магнетронный источник с мишенью из нержавеющей стали;

9 - поддоны с подложками из оптически прозрачного стекла;

10 - защитный экран.

На подложку из оптически прозрачного стекла 1 методом магнетронного распыления в вакууме последовательно за один технологический цикл наносят высокоотражающий слой из серебра 2 и защитный слой из нержавеющей стали 3, после чего на защитный слой из нержавеющей стали наносят эпоксидный лак 4.

Способ изготовления терморегулирующего материала осуществляется следующим образом.

Перед процессом нанесения высокоотражающего слоя из серебра проводят очистку подложки из оптически прозрачного стекла от загрязнений. Очистка является необходимым этапом получения качественного терморегулирующего материала с высокой адгезией серебра к стеклу.

Опыт нанесения покрытий показал, что при недостаточной очистке поверхности подложки из оптически прозрачного стекла от загрязнений адгезия серебра к стеклу практически отсутствует.

Для проведения процесса очистки подложки из оптически прозрачного стекла, например, укладывают в один слой в специальное приспособление, помещают в ультразвуковую ванну следующего состава:

тринатрийфосфат 10÷15 г/л
сода кальцинированная 3÷5 г/л
синтанол ДС-10 3÷5 г/л

Включают ультразвуковой генератор и производят обработку поверхности подложек из оптически прозрачного стекла в упомянутой ванне в течение 3-х минут. После выключения ультразвукового генератора подложки из оптически прозрачного стекла вынимают из ванны, промывают последовательно в ваннах с теплой, холодной, дистиллированной водой по 1÷1,5 мин и сушат на воздухе.

Нанесение высокоотражающего слоя из серебра и защитного слоя из нержавеющей стали проводят магнетронным методом.

Магнетронный метод основан на использовании анодно-катодной системы. При подаче на эту систему напряжения получают эмиссию с катода. Таким образом, электроны на своем пути ионизируют атомы инертного газа (аргона), а образующиеся ионы, в свою очередь, под действием электрического поля бомбардируют поверхность катода, выбивая из него атомы металла (серебра). Инертная среда - аргон - играет роль потенциального источника ионов. Чем выше масса атомов инертной среды, тем выше эффективность выбивания атомов с катода. В качестве инертной среды удобнее всего применять аргон, поскольку он представляет собой вполне доступный инертный газ, обладающий сравнительно большим молекулярным весом, что обеспечивает более высокую по отношению к воздуху скорость распыления.

Магнитное поле увеличивает эффект ионизации среды. Высокоотражающий слой из серебра, нанесенный магнетронным методом, обладает хорошей адгезией и однородностью толщины на большой площади.

Для нанесения высокоотражающего слоя из серебра и защитного слоя из нержавеющей стали подложки из оптически прозрачного стекла укладывают в поддоны, затем поддоны с подложками из оптически прозрачного стекла 9 устанавливают в вакуумную камеру 6 с давлением 1·10-2÷1·10-3 мм рт.ст.

На соответствующие магнетроны, разделенные защитным экраном 10, устанавливают источники с мишенями из серебра 7 и нержавеющей стали 8, протирают поверхность источников с мишенями х/б салфеткой, смоченной этиловым спиртом.

Включают тлеющий разряд. Производят обработку поверхности подложек из оптически прозрачного стекла тлеющим разрядом по следующему режиму:

U=1500B,

I=15 мА,

t=15 мин на каждый поддон с подложками.

Прекращают обработку тлеющим разрядом. Откачивают вакуумную камеру до давления 1·10-4÷1·10-5 мм рт.ст. Создают в вакуумной камере среду инертного газа, например аргона.

Включают магнетронный источник с мишенью из серебра 7, располагая поддоны с подложками из оптически прозрачного стекла 9 под магнетронным источником с мишенью из серебра 7 под углом, близким к 90°. Высокоотражающий слой из серебра наносится по следующему режиму:

U=450±50 В,

I=2,5÷3,0±0,5 мА,

t=2 мин на каждый поддон с подложками.

Указанные значения технологических параметров (напряжения, тока) и времени нанесения оптимальны, при меньших значениях технологических параметров и времени нанесения получают недостаточную толщину (менее 0,10 мкм) высокоотражающего слоя из серебра, в таком случае значение поглощательной способности солнечной радиации As будет более 0,15; при больших значениях технологических параметров и времени нанесения получают слой из серебра толщиной более 0,15 мкм, что приводит к неудовлетворительной его адгезии к поверхности подложки.

Затем перемещают поддоны с подложками из оптически прозрачного стекла 9 с нанесенным высокоотражающим слоем из серебра 2 под магнетронный источник с мишенью из нержавеющей стали 8. Защитный слой из нержавеющей стали 3 наносят по следующему режиму:

U=500±50 В,

I=3,5÷4,0±0,7 мА,

t=3 мин на каждый поддон с подложками.

При меньших значениях технологических параметров и времени нанесения толщина защитного слоя из нержавеющей стали будет недостаточна (менее 0,10 мкм) для обеспечения надежной защиты слоя из серебра от атмосферной коррозии, при больших значениях технологических параметров и времени нанесения получают слои из нержавеющей стали толщиной более 0,20 мкм, что приводит к самопроизвольному одновременному отслаиванию слоев из серебра и из нержавеющей стали от подложки из оптически прозрачного стекла.

При проведении процесса поддоны с подложками из оптически прозрачного стекла 9 перемещают без разгерметизации вакуумной камеры 6.

После окончания процесса нанесения высокоотражающего слоя из серебра 2 и защитного слоя из нержавеющей стали 3 напускают воздух в вакуумную камеру 6 и вынимают поддоны с подложками из оптически прозрачного стекла 9 с нанесенными на подложки высокоотражающим слоем из серебра 2 и защитным слоем из нержавеющей стали 3.

Для дополнительной защиты покрытия, состоящего из высокоотражающего слоя из серебра и защитного слоя из нержавеющей стали, от атмосферной коррозии и для увеличения адгезии упомянутого покрытия к подложке из оптически прозрачного стекла и к клеевой композиции для приклеивания к поверхности КО, на поверхность подложек из оптически прозрачного стекла с покрытием наносят слой эпоксидного лака толщиной 20÷30 мкм, например лака ЭП-730, сушат лак при комнатной температуре в течение 24 часов. При толщине лака менее 20 мкм не обеспечивается достаточная защита покрытия от атмосферной коррозии, при толщине лака более 30 мкм происходит увеличение массы терморегулирующего материала, что нежелательно.

Для приклеивания подложек из оптически прозрачного стекла с высокоотражающим слоем из серебра 2 и защитным слоем из нержавеющей стали 3 применяют клеевую композицию, например, из каучукового клея с наполнителем алюминиевой или серебряной пудрой 5, количество алюминиевой или серебряной пудры 20±5% и 10±5% соответственно. При больших количествах алюминиевой или серебряной пудры не обеспечивается необходимая адгезия подложек из оптического стекла с высокоотражающим слоем из серебра и защитным слоем из нержавеющей стали к корпусу КО, а при меньших количествах алюминиевой или серебряной пудры недостаточна электропроводность поверхности терморегулирующего материала. Для сравнения в прототипе используют дополнительный электропроводящий слой, который ухудшает прозрачность подложки из оптического стекла, что приводит к увеличению значения поглощательной способности солнечной радиации As до значений 0,12 и выше и, соответственно, увеличению отношения As/ε до 0,15 и выше, что, в свою очередь, приводит к снижению эффективности работы терморегулирующего материала. Без дополнительного электропроводящего слоя на поверхности заявленного терморегулирующего материала поглощательная способность солнечной радиации As имеет значение 0,06÷0,07, а соотношение As/ε=0,08.

После подготовки трафаретов с подложками из оптически прозрачного стекла с покрытием на их поверхность и на подготовленную поверхность корпуса КО тонким равномерным слоем наносят клеевую композицию с наполнителем. После нанесения клеевой композиции укладывают, например, подготовленные трафареты на поверхность корпуса КО, соединяют склеиваемые поверхности, например ручным обжатием, не допуская повреждения подложек из оптически прозрачного стекла с покрытием, и обеспечивают давление 8÷12 г/см2 при помощи грузов. При давлении меньше 8 г/см2 получают неудовлетворительное качество приклеивания, давление больше 12 г/см2 приводит к повреждению подложек из оптически прозрачного стекла. Корпус КО с приклеенным трафаретом выдерживают в течение 24 часов для вулканизации клеевой композиции в условиях цеха, снимают грузы и трафареты. Остатки клеевой композиции с поверхности подложек из оптически прозрачного стекла с покрытием удаляют салфеткой из хлопчатобумажной ткани.

Таким образом, предложенный материал, способ его изготовления и крепления на поверхность корпуса космического объекта позволяют:

- улучшить терморадиационные характеристики терморегулирующего материала.

Низкое значение поглощательной способности солнечной радиации As=0,06÷0,07 достигается благодаря расположению магнетронного источника с мишенью из серебра практически перпендикулярно к подложкам из оптически прозрачного стекла. Геометрические размеры магнетронного источника с мишенью из серебра по длине полностью соответствуют длине поддона с подложками из оптически прозрачного стекла. Высота между магнетронным источником с мишенью из серебра и поддоном с подложками из оптически прозрачного стекла выбрана таким образом, чтобы угол поступления серебра на подложку из оптически прозрачного стекла был не менее 80°, т.к. при меньших углах поступления серебра на подложку из оптически прозрачного стекла значение поглощательной способности солнечной радиации As превышает 0,12;

- достичь высокого значения адгезии серебра к подложке из оптически прозрачного стекла (более 5 кг/см2), что обеспечивает дополнительная очистка подложки из оптически прозрачного стекла высокоэнергетическими ионами аргона в тлеющем разряде в вакууме, при этом происходит активация поверхности подложки из оптически прозрачного стекла, что еще более увеличивает адгезию серебра к подложке из оптически прозрачного стекла. Управление процессом магнетронного испарения серебра осуществляется установлением электрических параметров напряжения и тока, благодаря чему получают строго контролируемое значение толщины высокоотражающего слоя серебра (0,10÷0,15 мкм), что также обеспечивает высокую адгезию серебра к подложке из оптически прозрачного стекла;

- повысить производительность и технологичность магнетронного метода испарения за счет обеспечения возможности размещения в вакуумной камере большого количества поддонов с подложками из оптически прозрачного стекла и возможности перемещения поддонов с подложками под магнетронные источники с мишенями из серебра и нержавеющей стали без разгерметизации вакуумной камеры. За один технологический цикл (2,5÷3 часа с учетом откачки вакуумной камеры, ионной обработки в тлеющем разряде и нанесением высокоотражающего слоя из серебра и защитного слоя из нержавеющей стали) изготавливают около 1 м2 терморегулирующего материала;

- снизить стоимость работ на 25÷30% за счет сокращения времени получения терморегулирующего материала, а также за счет отсутствия, практически, брака готовой продукции.


ТЕРМОРЕГУЛИРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И СПОСОБ ЕГО КРЕПЛЕНИЯ К ПОВЕРХНОСТИ КОРПУСА КОСМИЧЕСКОГО ОБЪЕКТА
ТЕРМОРЕГУЛИРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И СПОСОБ ЕГО КРЕПЛЕНИЯ К ПОВЕРХНОСТИ КОРПУСА КОСМИЧЕСКОГО ОБЪЕКТА
Источник поступления информации: Роспатент

Showing 91-100 of 374 items.
27.09.2014
№216.012.f7b5

Шариковый замок

Изобретение относится к области машиностроения. Шариковый замок содержит рабочую поверхность, выполненную в виде конической поверхности. На штоке выполнены посадочный буртик и посадочный фланец. На втулке выполнен стыковочный фланец с посадочным отверстием и заходной фаской, стыковочный фланец...
Тип: Изобретение
Номер охранного документа: 0002529250
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f84f

Способ прогнозирования работоспособности космонавта на поверхности планеты марс

Изобретение относится к медицине, а именно к физиологии. После 4-6 месяцев геоорбитального полета и посадки на Землю с перегрузкой 4 g, космонавта в первые послеполетные сутки облачают в планетарный скафандр под штатным избыточным давлением при суммативном весе космонавта и скафандра, равным...
Тип: Изобретение
Номер охранного документа: 0002529404
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fa8e

Пневмопривод с тормозным устройством

Пневмопривод предназначен для раскрытия посадочного устройства пилотируемого космического корабля. Пневмопривод содержит силовой цилиндр, первый и второй клапанные распределители, при этом первый клапанный распределитель связан с задатчиком команды начала движения, пневмовход через...
Тип: Изобретение
Номер охранного документа: 0002529988
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc58

Устройство и способ измерения плотности падающих тепловых потоков при тепловакуумных испытаниях космических аппаратов

Заявленное изобретение относится к космической технике и может быть использовано для контроля теплообмена космического аппарата. Указанное устройство выполнено из сборок, в каждой из которых чувствительный элемент размещен на электроизолирующей подложке. Указанные сборки выполнены в виде...
Тип: Изобретение
Номер охранного документа: 0002530446
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fce3

Устройство для доставки объекта

Изобретение относится к области космической техники и может быть использовано для доставки сферических объектов экипажем пилотируемого космического аппарата (КА) из рабочего отсека КА на внешнюю поверхность КА и далее на целевую орбиту объекта. Устройство содержит держатель, на котором...
Тип: Изобретение
Номер охранного документа: 0002530585
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.017f

Способ ориентирования перемещаемого в пилотируемом аппарате прибора и система для его осуществления

Группа изобретений относится к методам и средствам прицеливания (наведения) бортовых приборов, преимущественно аэрокосмического пилотируемого аппарата (ПА). Предлагаемый способ включает определение положения и ориентации свободно перемещаемого прибора внутри ПА. Для этого подают команды на...
Тип: Изобретение
Номер охранного документа: 0002531781
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.06ca

Способ получения цветного декоративного покрытия на технической ткани для эксплуатации в условиях космического пространства

Изобретение относится к области материаловедения, а именно к получению цветных декоративных покрытий на технических тканях с помощью кремнийорганических эмалей, и может быть использовано для изображения надписей и рисунков, эксплуатируемых в условиях космического пространства. В способе...
Тип: Изобретение
Номер охранного документа: 0002533139
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0896

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к термокомпрессорам. В термокомпрессионном устройстве, содержащем источник газа высокого давления с подключенными к нему баллонами-компрессорами, источник холода и объединенную магистраль заправки баллонов-компрессоров, снабженную первым...
Тип: Изобретение
Номер охранного документа: 0002533599
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.089c

Центробежное рабочее колесо

Изобретение может быть использовано в составе электронасосных агрегатов систем терморегулирования изделий ракетно-космической техники, а также в химической промышленности. Центробежное рабочее колесо содержит единый со ступицей ведущий диск, покрывной диск с центральным входным отверстием и...
Тип: Изобретение
Номер охранного документа: 0002533605
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.089e

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий космической техники. Электронасосный агрегат содержит металлический корпус, установленный на корпусе бесконтактный электродвигатель постоянного тока с выполненным заодно с ним электронным...
Тип: Изобретение
Номер охранного документа: 0002533607
Дата охранного документа: 20.11.2014
Showing 91-100 of 296 items.
20.09.2014
№216.012.f4c8

Устройство фиксации предметов в невесомости

Изобретение относится к космической технике, а именно к средствам обеспечения деятельности космонавтов в условиях невесомости. Устройство фиксации предметов в невесомости содержит фиксатор в виде проволоки (из материала, обладающим свойством остаточной пластической деформации) в неметаллической...
Тип: Изобретение
Номер охранного документа: 0002528497
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f4cf

Страховочное устройство для условий невесомости

Изобретение относится к космической технике, а именно к средствам обеспечения деятельности и безопасности космонавтов в процессе работы в открытом космосе. Страховочное устройство для условий невесомости содержит страховочный фал (СФ), гильзы с резьбой на наружной поверхности, пальцы, пружина...
Тип: Изобретение
Номер охранного документа: 0002528504
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f4d4

Фиксатор предметов в невесомости

Изобретение относится к космической технике, а именно к средствам обеспечения деятельности космонавтов в условиях невесомости. Фиксатор предметов в невесомости содержит проволоку (из материала, обладающего свойством остаточной пластической деформации) в неметаллической оболочке, кольца на...
Тип: Изобретение
Номер охранного документа: 0002528509
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f4db

Устройство фиксации предметов в невесомости

Изобретение относится к космической технике, а именно к средствам обеспечения деятельности космонавтов в условиях невесомости. Устройство фиксации предметов в невесомости содержит фиксатор в виде проволоки (из материала, обладающего свойством остаточной пластической деформации) в...
Тип: Изобретение
Номер охранного документа: 0002528516
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f5e6

Разъемное соединение

Изобретение предназначено для использования в области ракетно-космической техники, в частности в устройствах разделения криогенных заправочных магистралей. Техническим результатом изобретения является обеспечение герметичности при возникновении внешних изгибающих воздействий со стороны сменного...
Тип: Изобретение
Номер охранного документа: 0002528783
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f5e8

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств (термокомпрессоров). Технический результат достигается тем, что в термокомпрессионном устройстве, содержащем источник газа высокого давления с подключенным к нему...
Тип: Изобретение
Номер охранного документа: 0002528785
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f7b5

Шариковый замок

Изобретение относится к области машиностроения. Шариковый замок содержит рабочую поверхность, выполненную в виде конической поверхности. На штоке выполнены посадочный буртик и посадочный фланец. На втулке выполнен стыковочный фланец с посадочным отверстием и заходной фаской, стыковочный фланец...
Тип: Изобретение
Номер охранного документа: 0002529250
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f84f

Способ прогнозирования работоспособности космонавта на поверхности планеты марс

Изобретение относится к медицине, а именно к физиологии. После 4-6 месяцев геоорбитального полета и посадки на Землю с перегрузкой 4 g, космонавта в первые послеполетные сутки облачают в планетарный скафандр под штатным избыточным давлением при суммативном весе космонавта и скафандра, равным...
Тип: Изобретение
Номер охранного документа: 0002529404
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fa8e

Пневмопривод с тормозным устройством

Пневмопривод предназначен для раскрытия посадочного устройства пилотируемого космического корабля. Пневмопривод содержит силовой цилиндр, первый и второй клапанные распределители, при этом первый клапанный распределитель связан с задатчиком команды начала движения, пневмовход через...
Тип: Изобретение
Номер охранного документа: 0002529988
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc58

Устройство и способ измерения плотности падающих тепловых потоков при тепловакуумных испытаниях космических аппаратов

Заявленное изобретение относится к космической технике и может быть использовано для контроля теплообмена космического аппарата. Указанное устройство выполнено из сборок, в каждой из которых чувствительный элемент размещен на электроизолирующей подложке. Указанные сборки выполнены в виде...
Тип: Изобретение
Номер охранного документа: 0002530446
Дата охранного документа: 10.10.2014
+ добавить свой РИД