×
20.05.2014
216.012.c325

Результат интеллектуальной деятельности: МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к малоактивируемым жаропрочным радиационно стойким сталям, используемым в ядерной энергетике, в частности, для изготовления деталей активных зон атомных реакторов на быстрых нейтронах и оборудования термоядерных реакторов. Сталь содержит, мас.%: углерод 0,16-0,25, кремний 0,30-1,30, марганец 0,50-2,00, хром 10,00-13,50, вольфрам 0,50-2,50 и/или молибден 0,60-0,90, ванадий 0,20-0,40, никель 0,50-0,80, ниобий 0,20-0,40 и/или тантал 0,01-0,30, бор 0,001-0,008, церий 0,001-0,02 и/или нитрид циркония, алюминий 0,005-0,02, железо и примеси - остальное. Сталь обладает жаропрочностью до температуры 710°C при сохранении низкого уровня наведенной радиоактивности и быстрого ее спада. 3 з.п. ф-лы, 3 табл.

Изобретение относится к металлургии жаропрочных сталей, используемых в ядерной энергетике, в частности, для изготовления деталей активных зон атомных реакторов на быстрых нейтронах и оборудования термоядерных реакторов.

Известна малоактивируемая радиационно стойкая сталь, содержащая углерод, кремний, марганец, хром, никель, ванадий, медь, молибден, кобальт, вольфрам, иттрий, ниобий, алюминий и железо при следующем соотношении компонентов, мас.%: углерод - 0,13-0,18; кремний - 0,20-0,35; марганец - 0,30-0,60; хром - 2,0-3,5; никель - 0,01-0,05; ванадий - 0,10-0,35; медь - 0,01-0,10; молибден - 0,01-0,05; кобальт - 0,01-0,05; вольфрам -1,0-2,0; иттрий - 0,05-0,15; ниобий - 0,01-0,05; алюминий - 0,01-0,10; железо - остальное.

При этом суммарное содержание никеля, кобальта, молибдена, ниобия и меди в известной стали составляет не более 0,2 мас.%, а отношение (V+0,3W)/C изменяется в пределах от 3 до 6. Сталь отличается низким уровнем наведенной активности, но не является жаропрочной при температуре, превышающей 500°C.

(RU №2135623, МКИ 6 C22C 38/52, опубликовано 27.08.1999]

Известна малоактивируемая жаропрочная радиационно стойкая сталь, содержащая углерод, кремний, марганец, хром, вольфрам, ванадий, титан, бор, церий и/или иттрий, цирконий, тантал, азот и железо при следующем соотношении, мас.%: углерод - 0,10-0,21; кремний - 0,10-0,80; марганец - 0,50-2,00; хром - 10,00-13,50; вольфрам - 0,80-2,50; ванадий - 0,05-0,40; титан - 0,03-0,30; бор - 0,001-0,008; церий и/или иттрий в сумме - 0,001-0,10; цирконий - 0,05-0,20; тантал - 0,05-0,20; азот - 0,02-0,15; железо - остальное.

При этом отношение суммарного содержания ванадия, титана, циркония и тантала к суммарному содержанию углерода и азота составляет от 2 до 9.

Однако жаропрочность этой стали 650°C недостаточна при температурах в активной зоне реакторов нового поколения 650-710°C.

(RU №2211878, C22C 38/32, опубликовано 10.09.2003)

Задачей изобретения и техническим результатом является создание стали, обладающей жаропрочностью до температуры 710°C при сохранении низкого уровня наведенной радиоактивности и быстрого ее спада.

Технический результат достигается тем, что малоактивируемая жаропрочная радиационно стойкая сталь содержит углерод, кремний, марганец, хром, вольфрам и/или молибден, ванадий, никель, ниобий и/или тантал, бор, церий и/или нитрид циркония, алюминий, железо и неизбежные примеси при следующем соотношении компонентов, мас.%:

Углерод 0,16-0,25
Кремний 0,30-1,30
Марганец 0,50-2,00
Хром 10,0-13,50
Вольфрам и (или) 0,50-2,50
Молибден 0,60-0,90
Ванадий 0,20-0,40
Никель 0,50-0,80
Ниобий и (или) 0,20-0,40
Тантал 0,01-0,30
Бор 0,001-0,008
Церий и (или) 0,001-0,020
Нитрид циркония 0,05-0,20
Алюминий 0,005-0,02
Железо и примеси остальное

Технический результат также достигается, если сталь также содержит, по меньшей мере, один элемент, выбранный из группы, мас.%: титан 0,03-0,30, азот 0,08-0,17, кальций 0,005-0,02, цирконий 0,05-0,20; суммарное содержание примесей легкоплавких металлов - свинца, висмута, олова, сурьмы и мышьяка, не превышает 0,05 мас.%, а содержание неизбежных примесей серы, фосфора и кислорода не превышает, мас.%: сера≤0,008; фосфор≤0,008 и кислород≤0,005.

Легирование титаном, цирконием, азотом и кальцием в составе стали обеспечивает уменьшение активируемости под действием нейтронного облучения и увеличивает скорость спада наведенной активности стали.

Ограничение содержания свинца, висмута, олова, сурьмы и мышьяка увеличивает сопротивление стали низкотемпературному радиационному охрупчиванию (НТРО) в условиях нейтронного облучения.

Высокий уровень жаропрочности обеспечивается за счет образования стабильной мартенситно-ферритной структуры с наличием упрочняющих твердый раствор элементов внедрения (С, N, В) и элементов замещения (W и (или) Mo, V, Nb и/или Ta, Cr, Ni), упрочняющих карбидных (MeC, Ме2С, Me23C6 и др.), нитридных (MeN, Me2N) и карбонитридных (MeCN) фаз, а также частиц фазы Лавеса типа Fe2(W,Mo).

Высокое сопротивление низкотемпературному радиационному охрупчиванию (НТРО) обеспечивается за счет ограниченного содержания в структуре стали δ-феррита, предпочтительного выделения в структуре стали карбидов, нитридов и карбонитридов V, Ti, Nb и/или Ta и Zr по сравнению с аналогичными соединениями хрома, дополнительное ограничение содержания в стали легкоплавких элементов (меди, свинца, висмута, олова, сурьмы и мышьяка), а также серы, фосфора и кислорода в еще большей степени способствует увеличению сопротивления стали НТРО.

Создание малоактивируемой жаропрочной радиационно стойкой стали осуществляют путем введения в структуру стали мелкодисперсных частиц нитрида циркония, равномерно распределенных в объеме стали. При этом сохраняется комплексное легирование стали элементами с быстрым спадом наведенной радиационной активности и создается определенное соотношение между γ°-стабилизирующими элементами (С, N, Mn, Ni) и α-стабилизирующими элементами (Cr, Mo, W, Nb, V, Ta, Ti, Zr, Mo, Nb и др.).

Введение в состав стали мелкодисперсных нитридов циркония позволяет образовать большое количество центров кристаллизации, равномерно распределенных в объеме металла.

В процессе затвердевания стали химически стойкие частицы нитрида циркония, находясь в расплаве, обладают повышенной устойчивостью к диссоциации и будут являться центрами кристаллизации аустенитных зерен, что существенно измельчает первичное аустенитное зерно, увеличивает площадь границ аустенитных зерен, что существенно уменьшает количество карбидов и нитридов ванадия и ниобия, выпадающих по границам аустенитных зерен, и увеличивает их дисперсность. Это обеспечивает увеличение прочностных свойств и одновременно показателей пластичности и вязкости, а также образует выделения, которые увеличивают прочность при повышенных температурах. Нитрид циркония также играет роль дополнительного зародыша фаз, выделяемых при ползучести, благодаря чему образуется более мелкодисперсное распределение фаз и повышается жаропрочность стали.

Содержанием алюминия в количестве 0,005-0,02 мас.% благоприятно изменяет форму неметаллических включений, очищает и упрочняет границы зерен, повышает их пластичность, ударную вязкость и жаропрочность, что приводит к повышению служебных и технологических свойств стали.

Выплавку стали по изобретению проводили в 150-кг индукционной печи, с разливкой металла на слитки (5 плавок), из которых после ковки изготавливались образцы для определения механических свойств и жаропрочности.

В качестве известной стали был выбран металл (сталь ЭП823 - плавка 6) промышленного способа производства, термически обработанный по типовому режиму: нормализация от 1050°C, отпуск при 720°C в течение 3 ч.(Табл.1).

Испытания на растяжение проводили на цилиндрических образцах пятикратной длины с диаметром расчетной части 6 мм в соответствии с ГОСТ 1497-84 при комнатной температуре и по ГОСТ 9651-84 при повышенных температурах (табл.2). В качестве критерия жаропрочности использовались испытания на длительную прочность, которые проводились по ГОСТ 10145-62 (табл.3).

В таблице 2 приведены механические свойства сталей в зависимости от температуры испытаний, полученные после термообработки: нормализация от 1050°C, отпуск при температуре 730°C, охлаждение на воздухе.

Результаты испытаний на длительную прочность (табл.3) показали, что предлагаемая сталь является более жаропрочной при 650 и 710°C, чем сталь-прототип.

Так как основы заявляемой стали и стали-прототипа близки, то полученные ранее данные расчета кинетики спада наведенной активности (мощности дозы - излучения) в сталях после предполагаемого облучения в термоядерном реакторе ДЕМО в течение 10 лет и последующей выдержки до 500 лет свидетельствуют о сохранении заявляемой сталью низкой наведенной активности стали-прототипа (в особенности для составов стали, где вместо молибдена введен вольфрам, а вместо ниобия введен тантал, а также цирконий и титан, эти элементы, являясь малоактивируемыми, не увеличивают наведенную активность заявляемой стали), особенно заметной после выдержки свыше 10 лет. После выдержки в течение 50 лет с заявляемой сталью можно работать без специальной защиты и отправлять ее на переплав для повторного использования.

Таким образом, предложенная сталь может быть использована в ядерной энергетике для изготовления элементов активных зон атомных реакторов, например оболочек твэлов реакторов на быстрых нейтронах типа БН. Использование стали обеспечит высокий народно-хозяйственный эффект за счет повышения свойств жаропрочности и сопротивления низкотемпературному радиационному охрупчиванию.

Предлагаемая сталь прошла широкие лабораторные опробования в ОАО НПО «ЦНИИТМАШ» и рекомендована к промышленному опробованию.

Таблица 1
Химический состав предлагаемой и известной стали
Содержание компонентов, мас.% Номер плавки
1 2 3 4 5 6
Углерод 0,16 0,20 0,25 0,18 0,20 0,16
Кремний 0,30 1,10 1,00 1,20 0,40 1,18
Марганец 0,50 1,20 2,00 2,00 0,80 0,60
Хром 10,00 12,50 13,50 13,00 12,00 10,90
Никель 0,50 0,70 0,50 0,50 0,80 0,80
Молибден 0,60 0,90 - 0,85 0,90 0,76
Вольфрам 0,50 1,80 2,00 1,50 - 0,69
Ниобий 0,20 0,25 - 0.40 0,30 0,33
Тантал - 0,01 0,15 0,10 0,25 -
Ванадий 0,20 0,25 0,10 0,35 0,25 0,30
Бор 0,001 0,003 0,007 0,006 0,008 0,006
Кальций 0,005 0,005 0,01 0,020 0,02 -
Церий 0,001 0,015 0,005 0,020 0,02 0,10
Алюминий 0,005 0,015 0,008 0,008 0,02 0,02
Нитрид циркония - 0,20 0,10 0,015 0,40 -
Титан - 0,035 0,03 - - -
Азот - 0,08 0,15 - 0,17 0,04
Сера 0,008 0,006 0,008 0,008 0,008 0,008
Фосфор 0,008 0,015 0,009 0,008 0,009 0,01
кислород 0,006 0,004 0,005 0,003 0,005 0,006
∑Pb ,Bi, Sb, As, Sn 0,004 0,003 0,004 0,005 0,006 0,006
Железо Остальное Остальное Остальное Остальное Остальное Остальное

Таблица 2
Механические свойства предлагаемой и известной сталей
Состав стали T исп., °C σ0,2, Н/мм2 σ b, Н/мм2 δ, %
1 20 850 950 15
650 500 550 20
710 360 380 25
2 20 870 970 14
650 510 560 20
710 365 395 24
3 20 865 1150 15
650 520 570 20
710 350 375 25
4 20 850 950 15
650 500 550 20
710 360 380 25
5 20 870 970 14
650 510 560 20
710 365 395 24
Известная 20 700 820 16
650 320 420 18
710 280 295 25

Таблица 3
Пределы длительной прочности стали в зависимости от температуры испытания
Состав стали T исп., °C Длительная прочность, Н/мм2, за время 105 ч
1 650 120
710 105
2 650 123
710 104
3 650 135
710 110
4 650 130
710 123
5 650 125
710 105
6 650 108
710 85

Источник поступления информации: Роспатент

Showing 531-540 of 632 items.
10.04.2019
№219.017.060a

Формирователь цифровой последовательности с равномерным распределением

Изобретение относится к устройствам автоматики и вычислительной техники и может быть использовано в качестве генератора цифровых случайных сигналов с равномерным распределением. Техническим результатом изобретения является снижение уровня корреляции генерируемых чисел. Формирователь цифровой...
Тип: Изобретение
Номер охранного документа: 0002417406
Дата охранного документа: 27.04.2011
10.04.2019
№219.017.0844

Ударный стенд

Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие перегрузок. Устройство содержит камеру высокого давления, соединенную с полостью ствола, установленный в стволе контейнер в виде полого поршня, стол, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002438110
Дата охранного документа: 27.12.2011
11.04.2019
№219.017.0b4b

Управляющее устройство для переключателя

Изобретение относится к электротехнике и может быть использовано в качестве привода для переключателей, работающих в условиях вибрационных, линейных и ударных воздействий, а также в аварийных ситуациях. Управляющее устройство для переключателя содержит первый электродвигатель с редуктором, цепь...
Тип: Изобретение
Номер охранного документа: 0002684405
Дата охранного документа: 09.04.2019
11.04.2019
№219.017.0b54

Широкополосное согласующее устройство замедляющей системы

Изобретение относится к области электронной техники, в частности к устройствам согласования замедляющих систем сверхвысокочастотных приборов О-типа с длительным взаимодействием. Широкополосное согласующее устройство замедляющей системы содержит металлический цилиндрический корпус, внутри...
Тип: Изобретение
Номер охранного документа: 0002684428
Дата охранного документа: 09.04.2019
13.04.2019
№219.017.0c68

Инфразвуковой микробарометр

Изобретение относится к метрологии, в частности к инфразвуковым микробарометрам. Инфразвуковой микробарометр состоит из корпуса, содержащего приемную и опорную камеры. Камеры разделены мембраной и соединены дросселем, обеспечивающим фильтрацию длиннопериодных колебаний атмосферного давления....
Тип: Изобретение
Номер охранного документа: 0002684672
Дата охранного документа: 11.04.2019
17.04.2019
№219.017.1637

Способ навигации летательных аппаратов

Изобретение относится к области радиолокационного приборостроения и может быть использовано при построении различных радиолокационных или аналогичных систем, предназначенных для навигации летательных аппаратов (ЛА) путем определения местоположения и управления движением ЛА. Технический...
Тип: Изобретение
Номер охранного документа: 0002471152
Дата охранного документа: 27.12.2012
17.04.2019
№219.017.164a

Способ разбраковки кмоп микросхем, изготовленных на кнд структурах, по радиационной стойкости

Изобретение относится к области электронной техники, в частности предназначено для разбраковки КМОП микросхем, изготовленных на КНД ("кремний на диэлектрике") структурах, по радиационной стойкости. Технический результат: не требуется облучение каждой микросхемы источниками радиационного...
Тип: Изобретение
Номер охранного документа: 0002444742
Дата охранного документа: 10.03.2012
17.04.2019
№219.017.164c

Способ изготовления магниторезистивного датчика

Изобретение относится к области магнитометрии и может быть использовано при изготовлении датчиков перемещений, устройств измерения электрического тока и магнитных полей, при изготовлении датчиков угла поворота, устройств с гальванической развязкой, магнитометров, электронных компасов и т.п....
Тип: Изобретение
Номер охранного документа: 0002463688
Дата охранного документа: 10.10.2012
19.04.2019
№219.017.3118

Способ зарядки емкостного накопителя энергии

Изобретение относится к преобразовательной технике. Управление инвертором осуществляют в автоколебательном режиме с частотой, определяемой резонансным контуром, причем управляющие импульсы формируют с возможностью переключения инвертора при нулевом значении тока в резонансном контуре, а...
Тип: Изобретение
Номер охранного документа: 0002416143
Дата охранного документа: 10.04.2011
29.04.2019
№219.017.42da

Способ извлечения урана из трудновскрываемых руд

Изобретение относится к извлечению ценных компонентов из первичных и смешанных руд и может быть использовано для способа извлечения урана и сопутствующих металлов из трудновскрываемых руд. Способ включает окислительный обжиг при температуре 500-700°С и сернокислотное выщелачивании урана. Обжигу...
Тип: Изобретение
Номер охранного документа: 0002368681
Дата охранного документа: 27.09.2009
Showing 521-523 of 523 items.
16.05.2023
№223.018.61ac

Экономнолегированная хладостойкая высокопрочная сталь

Изобретение относится к области металлургии, а именно к высокопрочным хладостойким сталям, и может быть использовано при производстве сосудов высокого давления, применяемых для хранения и перевозки сжатых газов в широком диапазоне температур, в том числе эксплуатируемых при температуре...
Тип: Изобретение
Номер охранного документа: 0002746599
Дата охранного документа: 16.04.2021
21.05.2023
№223.018.69aa

Способ испытаний на высокоинтенсивные ударные воздействия приборов и оборудования

Изобретение относится к способам испытаний на высокоинтенсивные ударные воздействия приборов и оборудования, может быть использовано для испытаний приборов и оборудования в авиационной и ракетно-космической технике. Способ заключается в создании ударного воздействия в виде нестационарной...
Тип: Изобретение
Номер охранного документа: 0002794872
Дата охранного документа: 25.04.2023
21.05.2023
№223.018.69ab

Способ испытаний на высокоинтенсивные ударные воздействия приборов и оборудования

Изобретение относится к способам испытаний на высокоинтенсивные ударные воздействия приборов и оборудования, может быть использовано для испытаний приборов и оборудования в авиационной и ракетно-космической технике. Способ заключается в создании ударного воздействия в виде нестационарной...
Тип: Изобретение
Номер охранного документа: 0002794872
Дата охранного документа: 25.04.2023
+ добавить свой РИД