×
10.05.2014
216.012.c098

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ РАДИОГРАФИЧЕСКОГО ИЗОБРАЖЕНИЯ БЫСТРОПРОТЕКАЮЩИХ ПРОЦЕССОВ В НЕОДНОРОДНОМ ОБЪЕКТЕ ИССЛЕДОВАНИЯ И РАДИОГРАФИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Использование: для получения радиографического изображения быстропротекающих процессов в неоднородном объекте исследования. Сущность изобретения заключается в том, что при получении радиографического изображения быстропротекающих процессов в неоднородном объекте исследований выполняют радиографию областей объекта исследований с различными оптическими толщинами в соответствующих им различных энергетических диапазонах, при этом осуществляют пространственно-временную томографию объекта исследований, обеспеченную по меньшей мере тремя лучами с независимыми пространственными координатами, сходящимися в центре расположения объекта исследования. Технический результат: повышение информативности радиографии быстропротекающих процессов в неоднородном объекте исследования. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к области импульсной рентгеновской техники, в частности к способам и устройствам для получения изображения быстропротекающих процессов в оптически непрозрачных объектах исследования, и может быть использовано при радиографии разноплотных динамических объектов большой оптической толщины с целью повышения информативности радиографии.

Известен способ получения рентгеновского изображения быстропротекающего процесса [1, журнал ЖТФ, 1957, т.27, №2, с.43-57]. Способ заключается в облучении объекта исследования импульсным рентгеновским излучением определенного энергетического диапазона с последующим получением теневого изображения регистрируемого быстропротекающего процесса. Известно устройство получения рентгеновского изображения быстропротекающего процесса [1], реализующее этот способ. Данная двухэлектродная импульсная рентгеновская трубка состоит из анода в виде стержня небольшого диаметра с торцом, заточенным под конус, цилиндрического полого катода, соосно расположенного с анодом и удаленного от него на некотором расстоянии по оси. Трубка служит источником рентгеновского излучения, обеспечивающим формирование импульса излучения длительностью, существенно меньшей длительности регистрируемого процесса. Напротив рентгеновской трубки за объектом исследования установлена система регистрации теневого изображения.

Следствием недостатков способа и устройства является снижение резкости рентгеновских снимков от периферии к центру, уменьшение контраста изображения объектов с низкой плотностью, что делает невозможным получение достоверной информации о быстропротекающем процессе для объектов с различной оптической толщиной.

Наиболее близким к заявляемому изобретению является радиографическая (в частности, рентгеновская) установка для получения изображения быстропротекающего процесса [2, патент РФ на полезную модель 87810 от 20.10.2009], реализующая способ регистрации радиографического изображения быстропротекающих процессов в неоднородных объектах исследования, состоящий в обеспечении радиографии областей объекта исследований с различными оптическими толщинами в соответствующих им различных энергетических диапазонах. Данная установка содержит основной источник рентгеновского излучения, формирующий импульс излучения длительностью, существенно меньшей длительности регистрируемого процесса, и, по меньшей мере, один добавочный источник рентгеновского излучения с отличным от основного энергетическим спектральным диапазоном, различающимся с вышеназванным как минимум на порядок по граничной энергии. Энергетические диапазоны источников заданы в соответствии с оптической толщиной более плотной области объекта исследования и менее плотной. Напротив источников излучения за объектом исследования установлены соответствующие им системы регистрации. Источники излучения пространственно разнесены с обеспечением возможности получения изображений в различных ракурсах без перекрытия энергетических диапазонов излучения от источников. Рентгеновская установка снабжена системой синхронизации источников излучения и коллиматорами.

К недостаткам установки можно отнести низкую информативность рентгенографии по изучению объекта исследования, получение изображения объекта не более чем в трех ракурсах.

Создание заявляемого радиографического комплекса позволит приступить к решению задачи восстановления распределения плотности материала в объекте исследования на основе теневых радиограмм, не прибегая к предположениям о симметрии объекта.

Технический результат при создании комплекса заключается в существенном повышении информативности радиографии путем просвечивания объекта под разными углами в трех координатных проекциях и в разные моменты времени.

Данный технический результат достигается за счет того, что в отличие от известного способа получения радиографического изображения быстропротекающих процессов в неоднородном объекте исследования, состоящего в обеспечении радиографии областей объекта исследований с различными оптическими толщинами в соответствующих им различных энергетических диапазонах, в предложенном способе осуществляется пространственно временная томография объекта исследований.

Данный технический результат достигается за счет того, что в отличие от известного радиографического комплекса для получения изображения быстропротекающих процессов в неоднородном объекте исследования, содержащего синхронизированные по времени радиографические источники излучения, обеспечивающие радиографию областей объекта исследования с различными оптическими толщинами в соответствующих им различных энергетических диапазонах, с соответствующими им системами регистрации, в предложенном комплексе источники излучения установлены, по меньшей мере, в двух плоскостях с расположением их в каждой из плоскостей вокруг проекции объекта исследований на эту плоскость. Пара источников в одной плоскости и один источник в другой плоскости формируют тройку лучей с независимыми пространственными координатами, сходящихся в центре расположения объекта исследования.

Кроме того, радиографический комплекс может отличаться тем, что источники излучения являются многоимпульсными.

Физическая основа заявляемого подхода такова. В прототипе каждое получаемое изображение отражает двумерный характер распределения материала в объекте исследований и ограничивает информационную картину при регистрации быстропротекающего процесса, что обусловлено особенностью расположения источников излучения относительно объекта исследований. Для восстановления распределения плотности материала в объекте исследований с определенной долей достоверности требуется проведение сложных математических расчетов, опирающихся на предположения о симметрии объекта исследования.

В предложенном техническом решении впервые при регистрации быстропротекающих процессов в разноплотных областях объекта исследований предложено следующее - должны быть созданы условия для получения теневых изображений в разных ракурсах в 3-мерном измерении с целью обеспечения пространственно временной томографии. Это существенно повысит информативность измерений.

В заявленном случае это обеспечено тем, что пространственное расположение источников излучения по меньшей мере в двух плоскостях с их расположением в каждой из плоскостей вокруг проекции объекта исследований на эту плоскость позволило увеличить, по сравнению с прототипом, по меньшей мере до 6 количество источников излучения в каждой из плоскостей и качественно расширить ракурсный диапазон радиографии и, как следствие, существенно повысить информативность экспериментальных исследований.

Включение источников излучения может быть как одновременное (синхронное), так и разновременное, что позволит получать изображение объекта в разных ракурсах и в разные моменты времени, а многоимпульсность источников позволит получать изображение объекта в каждом ракурсе в разные моменты времени.

Источники излучения могут быть как одинаковые, так и разные, обеспечивающие радиографию разных областей объекта исследования в соответствующих им различных энергетических диапазонах, согласно целям и задачам экспериментальных исследований.

На фиг. изображен перспективный радиографический комплекс для получения изображения быстропротекающих процессов во взрывном рентгенографическом эксперименте. Здесь, для наглядности, взят вариант с разнотипными источниками излучения, различающимися по энергетическому спектральному диапазону рентгеновского излучения (по прототипу - основные источники и добавочные источники), где 1 - источники жесткого рентгеновского излучения типа БИМ, 2 - источники мягкого рентгеновского излучения, 3 - взрывозащитная камера (ВЗК), 4 - объект исследования, 5 - система регистрации, 6 - плоскости расположения источников.

В данном радиографическом комплексе источники излучения установлены в двух плоскостях с расположением их в каждой по 5 бетатронов типа БИМ [3, Павловский А.И., Кулешов Г.Д., Склизков Г.В., Зысин Ю.А., Герасимов А.И. Сильноточные безжелезные бетатроны // ДАН СССР. 1965. Т.160. №1. С.68.] и по одному источнику мягкого рентгеновского излучения вокруг проекции объекта исследования на эти плоскости.

Для осуществления заявляемого способа регистрации при уменьшенных размерах источников излучения, по сравнению с прототипом, в заявляемом радиографическом комплексе необходимо введение ограничений на габариты источников излучения при сохранении их предельно достижимых параметров. Это возможно в реализуемом случае при использовании малогабаритных источников рентгеновского излучения (1), создание которых осуществлено на базе БИМ [3]. Применение такого источника излучения в качестве комплектующего модуля-излучателя позволит максимально рационально разместить, например, 12 синхронизованных по времени источников излучения в двух горизонтальных плоскостях (по 6 на каждой) с расположением их по 5 типа малогабаритного БИМ [3] и по одному источнику мягкого рентгеновского излучения (2) в каждой из плоскостей вокруг проекции объекта исследований на эти плоскости, источники типа БИМ многоимпульсные. При такой компоновке расстояние от малогабаритного источника излучения типа БИМ до объекта (4) составит 3 метра. Сборка достаточно компактна в зоне расположения источников излучения типа БИМ, диаметр с зоной обслуживания составит порядка 20 метров. Использование такого количества малогабаритных бетатронов типа БИМ в сочетании с одним источником мягкого рентгеновского излучения позволит увеличить на порядок, по сравнению с прототипом, число информационных квантов в опыте. На фиг. представлен вариант с горизонтальным расположением взрывозащитной камеры (3) с объектом исследования (4), но возможен вариант и с вертикальным расположением ВЗК.

В описанной постановке эксперимента реализован заявляемый способ, состоящий в осуществлении пространственно-временной томографии объекта исследований. Он реализован следующим образом.

После включения 12-ти расположенных по 6 в каждой из плоскостей синхронизованных по времени источников излучения (1, 2), направленных на объект исследования, происходит облучение объекта исследований (4) в разных ракурсах. Результатом облучения является получение, с учетом возможности трехкадровой регистрации от одного основного источника, до 32 радиографических изображений на соответствующих каждому источнику излучения регистраторах (5), позволяющих отразить 3-мерную динамическую картину быстропротекающего процесса, происходящего в объекте исследования. Математическая обработка позволит восстановить динамическую картину процессов, происходящих в объекте исследования.

Таким образом, радиографический комплекс, имеющий в своем составе источники излучения, обеспечивающие радиографию областей объекта исследования с различными оптическими толщинами в соответствующих им различных энергетических диапазонах, например, типа БИМ и источника мягкого рентгеновского излучения, которые установлены по меньшей мере в двух плоскостях с расположением их в каждой из плоскостей вокруг проекции объекта исследований на эти плоскости (в частности, по 5 БИМ и 1 источник мягкого рентгеновского излучения на каждой плоскости), где пара источников в одной плоскости и один источник в другой плоскости формируют тройку лучей с независимыми пространственными координатами, сходящихся в центре расположения объекта исследования, и с учетом возможности трехкадровой регистрации от каждого основного источника излучения, позволит сделать до 32 снимков быстропротекающего процесса, что существенно увеличит информативность радиографических (рентгенографических) исследований.


СПОСОБ ПОЛУЧЕНИЯ РАДИОГРАФИЧЕСКОГО ИЗОБРАЖЕНИЯ БЫСТРОПРОТЕКАЮЩИХ ПРОЦЕССОВ В НЕОДНОРОДНОМ ОБЪЕКТЕ ИССЛЕДОВАНИЯ И РАДИОГРАФИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 451-460 of 586 items.
21.07.2018
№218.016.72f7

Устройство контроля работы генератора

Изобретение относится к импульсной технике и может быть использовано для повышения надежности цифровых систем транспортных устройств в условиях воздействия механических ударов. Устройство контроля работы генератора содержит основной и резервный генераторы, первый и второй логические элементы,...
Тип: Изобретение
Номер охранного документа: 0002661354
Дата охранного документа: 16.07.2018
25.08.2018
№218.016.7ec8

Способ балансировки магниторезистивного датчика

Изобретение относится к датчикам для измерения угла поворота, основанным на анизотропном магниторезистивном эффекте в тонких магнитных пленках, и может быть использовано в системах управления подвижными объектами. Технический результат – балансировка углового магниторезистивного датчика. Способ...
Тип: Изобретение
Номер охранного документа: 0002664868
Дата охранного документа: 23.08.2018
29.08.2018
№218.016.807a

Формирователь меток времени

Изобретение относится к измерительной технике и автоматике. Технический результат заключается в увеличении информационной емкости кода номера меток времени. Технический результат достигается за счет формирователя меток времени, который содержит выходную шину, первый генератор, первый счетчик...
Тип: Изобретение
Номер охранного документа: 0002665283
Дата охранного документа: 28.08.2018
29.08.2018
№218.016.8096

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники. Технический результат – повышение точности дифференциального измерительного преобразователя за счет введения блока коррекции, осуществляющего корректировку выходной характеристики преобразования. Дифференциальный измерительный...
Тип: Изобретение
Номер охранного документа: 0002665219
Дата охранного документа: 28.08.2018
05.09.2018
№218.016.8347

Гидропривод

Гидропривод предназначен для грузоподъемных машин. Гидропривод содержит два трехпозиционных крана управления, гидроцилиндр, цилиндр, поршень, шток, трубу, которая закреплена со стороны поршневой полости в торце цилиндра и соединена с левой гидролинией от первого трехпозиционного крана,...
Тип: Изобретение
Номер охранного документа: 0002665762
Дата охранного документа: 04.09.2018
14.09.2018
№218.016.87fe

Устройство для перемотки ленточного сверхпроводника

Изобретение относится к устройствам, специально предназначенным для изготовления сверхпроводников или обработки приборов с использованием сверхпроводимости. Устройство для перемотки ленточного сверхпроводника содержит корпус, внутри которого установлена труба для намотки ленты, катушку для...
Тип: Изобретение
Номер охранного документа: 0002666900
Дата охранного документа: 13.09.2018
03.10.2018
№218.016.8cf6

Система управления неустойчивостью внутреннего срыва плазмы в режиме реального времени в установках типа токамак

Изобретение относится к cистеме управления неустойчивостью внутреннего срыва плазмы в режиме реального времени в установках типа Токамак. Система содержит автоматизированное рабочее место АРМ оператора 13, соединенное с комплексом СВЧ-нагрева плазмы 6, вакуумную камеру 1 с установленными в ней...
Тип: Изобретение
Номер охранного документа: 0002668231
Дата охранного документа: 27.09.2018
11.10.2018
№218.016.9081

Способ корпусирования отражательной линии задержки

Изобретение относится к области разработки и производства электронных компонентов, в частности линий задержки, функционирующих на поверхностных акустических волнах. Техническим результатом предлагаемого решения является снижение паразитных емкостей отражательной линии задержки (ОЛЗ) и повышение...
Тип: Изобретение
Номер охранного документа: 0002669006
Дата охранного документа: 05.10.2018
11.10.2018
№218.016.9082

Пороговый датчик инерционного типа

Изобретение относится к области приборостроения, а именно к пороговым датчикам инерционного типа, и предназначено для контроля за достижением ускорений движущихся объектов пороговых уровней, в том числе при столкновении с другими объектами, например, при транспортных авариях. Пороговый датчик...
Тип: Изобретение
Номер охранного документа: 0002669014
Дата охранного документа: 05.10.2018
19.10.2018
№218.016.93a8

Способ удаления перенапылённых углеводородных слоёв

Изобретение относится к технологии очистки вакуумных камер и других элементов в вакууме, находящихся в труднодоступных для очистки местах, от перенапыленных углеводородных слоев и может быть использовано в установках с обращенными к плазме элементами из углеродных материалов и в технологических...
Тип: Изобретение
Номер охранного документа: 0002669864
Дата охранного документа: 16.10.2018
Showing 451-456 of 456 items.
09.06.2019
№219.017.7a32

Высокочастотный генератор на основе разряда с полым катодом

Изобретение относится к высокочастотной технике и может быть использовано при создании генераторов высокочастотного (ВЧ) излучения. Высокочастотный генератор на основе разряда с полым катодом содержит газоразрядную камеру, образованную полым катодом, обращенным открытой полостью в сторону...
Тип: Изобретение
Номер охранного документа: 0002387039
Дата охранного документа: 20.04.2010
09.06.2019
№219.017.7adc

Устройство проводки пучка заряженных частиц

Заявленное изобретение относится к ускорительной технике и сильноточной электронике. Устройство проводки может быть использовано при конструировании систем ввода пучка заряженных частиц в различные ускорители, работающие в режиме однократных импульсов. В заявленном устройстве фокусирующая...
Тип: Изобретение
Номер охранного документа: 0002356193
Дата охранного документа: 20.05.2009
19.06.2019
№219.017.849d

Способ сохранения числа электронов в процессе ускорения в бетатроне

Изобретение относится к ускорительной технике и может быть использовано при разработке и усовершенствовании индукционных циклических ускорителей. Техническим результатом предлагаемого изобретения является устранение поперечной неустойчивости электронного пучка и сохранение числа захваченных в...
Тип: Изобретение
Номер охранного документа: 0002281622
Дата охранного документа: 10.08.2006
15.10.2019
№219.017.d5a0

Способ формирования сверхвысоких импульсных давлений в системе ударник - исследуемый образец

Изобретение относится к электротехнике. Техническим результатом является увеличение скорости ударника и, как следствие, повышение давления в системе ударник - исследуемый образец за счет создания магнитного поля с обеих сторон от ударника и изменения закона нарастания давления от времени при...
Тип: Изобретение
Номер охранного документа: 0002702747
Дата охранного документа: 11.10.2019
16.11.2019
№219.017.e30b

Коллиматор для жесткого рентгеновского излучения

Изобретение относится к коллиматору для жесткого рентгеновского излучения. Тело коллиматора сформировано набором пластин толщиной d, выполненных из материала с высоким коэффициентом поглощения рентгеновского излучения, к каждой такой пластине с одной стороны прикреплены 2i+1, где i от 1 до n -...
Тип: Изобретение
Номер охранного документа: 0002706219
Дата охранного документа: 15.11.2019
29.02.2020
№220.018.078b

Разъемный соединитель

Изобретение относится к области электротехники и может быть использовано для быстрого и надежного соединения кабельных сильноточных высоковольтных линий с электрофизическими установками, а более конкретно - с электромагнитами. Техническим результатом является возможность соединителя пропускать...
Тип: Изобретение
Номер охранного документа: 0002715377
Дата охранного документа: 27.02.2020
+ добавить свой РИД