×
27.04.2014
216.012.bd20

Результат интеллектуальной деятельности: СПОСОБ АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к информатике и может быть использовано для автоматической идентификации объектов на изображениях. Согласно способу производят сканирование исходного фотоизображения с высоким разрешением. Матрицу полученных отсчетов приводят к масштабу эталонной матрицы путем нормирования пикселей яркости масштабным коэффициентом. Производят разложение полученного изображения на три двумерные матрицы в палитре стандартных цветов RGB. Методами пространственного дифференцирования функции сигнала матриц выделяют контурные рисунки объектов. Поверхности рельефов объектов внутри выделенных контуров аппроксимируют мозаикой треугольников. Площадь мозаик в каждом из каналов рассчитывают по формуле Герона и производят сравнение полученных площадей рельефов поверхности объектов с их значениями для эталонов по критерию достоверности: Технический результат - автоматизация распознавания с высокой достоверностью. 7 ил.
Основные результаты: Способ автоматической идентификации объектов на изображениях включает сканирование исходного фотоизображения с высоким линейным и амплитудным разрешением, приведение матрицы полученных отсчетов I(х, y) к масштабу эталонной матрицы путем нормирования пикселов масштабным коэффициентом , разложение полученного изображения на три двумерные матрицы в стандартной палитре цветов RGB, выделение методами пространственного дифференцирования контурных рисунков объекта в каждом из каналов RGB, аппроксимацию поверхности рельефов объекта внутри выделенных контуров мозаикой треугольников в окнах |2×2| элементов, расчет по формуле Герона площадей мозаики треугольников в каждом из каналов, сравнение полученных площадей с их значениями для эталонных объектов в каждом из каналов и их суммой, идентификацию образа объекта по совпадению площадей поверхности рельефов объекта (S) и эталона (S) с установленной достоверностью: ,где: I - максимальная величина шкалы параметра используемого сканера;I - максимальная амплитуда пиксела сигнала в матрице;I - текущее значение пиксела сигнала в матрице.

Изобретение относится к информатике и может найти применение в системах сбора, преобразования, переработки информации в различных сферах человеческой деятельности: криминалистике, космонавтике.

Дистанционное зондирование Земли из космоса в интересах разведки полезных ископаемых, лесного хозяйства, экологии, мониторинга почвенных покровов осуществляют путем получения цифровых изображений подстилающей поверхности. Селективными признаками объектов на изображениях являются: цвет, тон, текстура, топология. Существуют многофункциональные программы редактирования, ретуширование изображений, работа со слоями в палитре RGB, CMYK, Lab и др. в интерактивном режиме [см., например, Минько П.А. Обработка графики в Photoshop CS2. М.: Изд. «Эксмо», 2007 г., стр.71-89, стр.145-151].

Пока не существуют универсальные методы автоматической идентификации объектов на изображениях. Наибольший объем информации для обнаружения объектов на изображениях и их идентификации содержится в их форме. Психологически, восприятие образов человеком-оператором происходит на уровне абриса, т.е. контура формы объекта. Контур - это край, где наиболее быстро изменяется градиент функции сигнала.

Известен способ выделения контура рисунка объекта [см., например, Дуда P.O., Харт П.Е. Распознавание образов и анализ сцен. Перев. с англ., М.: Мир, 1976 г., §7-3, «Пространственное дифференцирование», стр.287-288, рис.7.3] - аналог. Контурный рисунок получают путем вычисления градиента скалярной функции яркости I(х, у) видеоизображения в каждой точке как:

Для получения контурного рисунка выбирают регулярный оператор с апертурой окна |2×2| элемента:

I, j i, j+1
i+l, j i+l, j+l

Элементы окна связаны по диагоналям (двум взаимно ортогональным направлениям) операцией вычитания. Вычисляют оператор Робертса в каждой точке:

R(i, j)=|I(i, j)-I(i+1, j+1)|-|I(i+1, j)-I(i,j+1)|,

выводят на экран точки, для которых R(i, j)≥порог.

Недостатками аналога следует считать:

- не все признаки сигнала изображения используются для идентификации объекта, в частности в аналоге используют один параметр сигнала - амплитуду;

- недостаточная достоверность при визуальном анализе объекта оператором.

Ближайшим аналогом к заявляемому техническому решению является «Способ обнаружения аномалий подстилающей поверхности». Патент РФ №2160912, кл. G01V 8/00, 2000 г. Способ ближайшего аналога включает получение изображения подстилающей поверхности в виде цифровой матрицы функции яркости I(х, y) от пространственных координат, разбиение изображения на сравнительно однородные по тону участки на основе априорных данных, вычисление фрактальной размерности каждого участка, составление матрицы эталонов из коэффициентов фрактальной размерности каждого участка, разницы между текущим и эталонным значениями фрактальной размерности за пороговый уровень для анализируемого участка.

Недостатками ближайшего аналога являются:

- неопределенность разбиения изображения на мозаику участков, приводящая к погрешности вычисления фрактальной размерности;

- не все независимые признаки изображения используются при идентификации;

- малый интервал изменения функции фрактальной размерности изображения, в пределах 2,1…2,7, что снижает достоверность идентификации.

Задача, решаемая заявляемым способом, состоит в автоматической, достоверной идентификации объектов на изображениях путем выделения контурного рисунка объекта и количественного сравнения площади рельефа поверхности объекта внутри контура с эталоном.

Технический результат достигается тем, что способ автоматической идентификации объектов на изображениях включает сканирование исходного фотоизображения с высоким линейным и амплитудным разрешением, приведение матрицы полученных отсчетов I(х, y) к масштабу эталонной матрицы путем нормирования пикселов масштабным коэффициентом , разложение полученного изображения на три двумерные матрицы в стандартной палитре цветов RGB, выделение методами пространственного дифференцирования контурных рисунков объекта в каждом из каналов RGB, аппроксимацию поверхности рельефов объекта А внутри выделенных контуров мозаикой треугольников в окнах |2×2| элементов, расчет по формуле Герона площадей мозаики треугольников в каждом из каналов, сравнение полученных площадей с их значениями для эталонных объектов в каждом из каналов и их суммой, идентификацию образа объекта по совпадению площадей поверхности рельефов объекта (Sоб) и эталона (Sэтал) с установленной достоверностью:

,

где: Imax шкалы - максимальная величина шкалы параметра используемого сканера;

Imax - максимальная амплитуда пиксела сигнала в матрице;

I - текущее значение пиксела сигнала в матрице.

Изобретение поясняется чертежами, где:

фиг.1 - исходное изображение;

фиг.2 - контурный рисунок объекта в одном из слоев RGB;

фиг.3 - последовательность разбиения матрицы изображения на окна;

фиг.4 - разбиение окна на две пары смежных треугольников;

фиг.5 - функциональная схема устройства, реализующая способ.

Техническая сущность изобретения состоит в следующем. Многие научные задачи при дистанционных исследованиях из космоса решаются путем получения изображения подстилающей поверхности: обнаружение очагов землетрясений, выделение областей экологических аномалий, пожарищ, разведка объектов военной инфраструктуры, позиционных районов расположения войск и т.д.

До настоящего времени задача распознавания объектов на изображениях подстилающей поверхности решается, как правило, оператором по набору дешифровочных признаков. Как отмечалось выше, наибольший объем информации содержит форма объекта, а на изображении - его контурный рисунок. Самым высоким разрешением обладают фотоснимки с разрешением порядка 200 точек на 1 мм. Для цифровой обработки необходимо преобразовать изображение в цифровую матрицу, а всякое преобразование информации ведет к потерям. Для уменьшения потерь используют сканер высокого разрешения. Средняя яркость изображений зависит от условий съемки: времени суток, высоты Солнца, состояния среды (атмосферы), параметров аппаратуры.

Для исключения влияния перечисленных факторов на достоверность идентификации необходимо сравниваемые изображения привести к единому масштабу, т.е. пронормировать пикселы яркости исходной матрицы, умножив их амплитуду на масштабный коэффициент, упомянутый выше. После масштабирования исходного изображения осуществляют разложение матрицы на три ортогональных, в стандартной палитре цветов RGB. Методами пространственного дифференцирования функции сигнала матриц способа-аналога выделяют контурные рисунки объекта во всех трех каналах. Выделенный контурный рисунок в одном из каналов иллюстрируется фиг.2. Программа выделения контуров приведена ниже, в примере реализации. Идентификацию объектов по форме осуществляют путем расчета площади рельефа их поверхности в границах выделенных контуров в каналах R, G, В и сравнения их с эталонными значениями.

На фиг.3 представлена иллюстрация последовательности разбиения матрицы на окна из 4-х смежных пикселей. Каждый пиксель характеризуется разрешением по координатам Δx, Δy, амплитудой, глубиной ΔН, которые считаются известными из технических характеристик средств. Размер контура определяется числом строк и столбцов матрицы. Алгоритм вычисления элементарной площади окна четырехточечного шаблона основан на триангуляции, т.е. разбиении его диагоналями 1-4 и 3-2 на две пары смежных треугольников. Процедура разбиения иллюстрируется фиг.4. Площадь каждого треугольника вычисляют по формуле Герона. Предварительно, по теореме Пифагора, рассчитывают длины сторон треугольников. В соответствии с фиг.4 длины сторон треугольника, например, с вершинами 1-3-4 равны:

; ;

диагональ

Существуют два способа триангуляции - по главной диагонали (слева-сверху - направо-вниз) и по вспомогательной диагонали (справа-сверху - налево-вниз). Площадь вычисляется обоими способами, а в качестве результата выбирается среднегеометрическое. Если хотя бы одна вершина треугольника находится за границей участка - площадь треугольника считается равной нулю. Если все вершины принадлежат участку, площадь треугольника вычисляется по формуле Герона.

Пример реализации способа.

Заявленный способ может быть реализован по схеме фиг.5. Функциональная схема устройства фиг.5 содержит аппаратно-программный вход-выход 1 сети Интернет, флеш-карту 2 клиентских изображений в одном из общеупотребимых форматов, цифровой сканер 3, преобразующий клиентские снимки в стандартной палитре цветов RGB в специальный формат, ПЭВМ 4 пограммной обработки изображений в стандартной конфигурации элементов: процессор 5, оперативное запоминающее устройство 6, винчестер 7, дисплей 8, принтер 9, клавиатура 10, реализованные на микропроцессорной базе видеокарты 11 эталонных объектов, цифровой дискриминатор сравнения объектов 12.

Процедура автоматической идентификации образов объектов состоит в следующем. Текущие изображения объектов, подлежащие идентификации, перекачиваются из «Интернета» или флеш-карты в ПЭВМ. Оператор осуществляет предварительную сортировку отображаемых на дисплее снимков визуально.

На фиг.1а представлено исходное изображение поэт А.А.Блок в 1920 г. В качестве эталонного использовано изображение А.А.Блока - студента Петербургского университета 1902 г., фиг.1б. Специализированной программой обработки изображений выделяют контурный рисунок объекта (контурный рисунок лица А.А.Блока)

Результат программной обработки иллюстрируется фиг.2. Затем вычисляют площадь поверхности рельефа внутри выделенного контура, для чего записывают на винчестер специализированную программу, текст которой приведен выше.

Обрабатываемый участок может иметь произвольную конфигурацию. Для его обработки следует выполнить выделение границы участка «залив» окрестности белым цветом (максимум яркости в шкале квантования принтера).

Для вычисления площади поверхности участка просматривается весь контур последовательно, шаблоном, из четырех соседних точек, образующих квадрат. Шаблон сканирует контур слева-направо, сверху-вниз, а для каждого элемента изображения вычисляется элементарная площадь, затем все элементарные площади суммируются. Для повышения точности расчета площади поверхности рельефа вычисления осуществляют двумя методами триангуляции, а суммарную площадь рельефа находят как среднегеометрическое . Поскольку исходное и эталонное изображения приводятся к одному масштабу, то площадь рельефа измеряют в условных единицах: разрешение Δx=Δy=1, а единица глубины - шаг квантования шкалы яркости.

Расчетные результаты параметров сигнала изображения составили:

RGB - изображение

Площадь рельефа Sr = 434346.935

Площадь проекции Sp = 59700.000

Максимальная интенсивность Imax = 255

Минимальная интенсивность Imin = 40

Средняя интенсивность Isr = 158.54935

Обработано точек count = 60200

Blue - изображение

Площадь рельефа Sr = 459476.328

Площадь проекции Sp = 59700.000

Максимальная интенсивность Imax = 255

Минимальная интенсивность Imin = 25

Средняя интенсивность Isr = 140.05271

Обработано точек count = 60200

Green - изображение

Площадь рельефа Sr = 415642.552

Площадь проекции Sp = 59700.000

Максимальная интенсивность Imax = 255

Минимальная интенсивность Imin = 48

Средняя интенсивность Isr = 161.33251

Обработано точек count = 60200

Red - изображение

Площадь рельефа Sr = 440343.389

Площадь проекции Sp = 59700.000

Максимальная интенсивность Imax = 255

Минимальная интенсивность Imin = 34

Средняя интенсивность Isr = 148.34257

Обработано точек count = 60200

Аналогичные вычисления параметров сигнала изображения эталона RGB изображения: Sp = 418218.659.

С возрастом (из-за морщин) площадь рельефа поверхности лица увеличивается, поэтому площадь эталона меньше площади анализируемого объекта. Критерий расхождения образа объекта с эталоном в суммарном канале RGB составил:

Поскольку в ортогональных каналах сигналы считаются статистически независимыми, результирующая достоверность идентификации образа объекта по трем ортогональным каналам (по вероятности) составит:

PΣ≈(1-0,961)3≈0,99996, т.е. расхождение в пятом знаке.

Эффективность способа определяется такими показателями, как оперативность, достоверность, документальность, воспроизводимость, точность.

Способ реализован на существующей технической базе. ПЭВМ типа «Intel», сканер типа «Panasonic» разрешением 1024 точки на дюйм, видеокарты типа «NVidia», имеющих в своем составе графический чип GTX 250 с 512 арифметико-логическими устройствами, а также оперативную память 2 Гбайт.

Способ автоматической идентификации объектов на изображениях включает сканирование исходного фотоизображения с высоким линейным и амплитудным разрешением, приведение матрицы полученных отсчетов I(х, y) к масштабу эталонной матрицы путем нормирования пикселов масштабным коэффициентом , разложение полученного изображения на три двумерные матрицы в стандартной палитре цветов RGB, выделение методами пространственного дифференцирования контурных рисунков объекта в каждом из каналов RGB, аппроксимацию поверхности рельефов объекта внутри выделенных контуров мозаикой треугольников в окнах |2×2| элементов, расчет по формуле Герона площадей мозаики треугольников в каждом из каналов, сравнение полученных площадей с их значениями для эталонных объектов в каждом из каналов и их суммой, идентификацию образа объекта по совпадению площадей поверхности рельефов объекта (S) и эталона (S) с установленной достоверностью: ,где: I - максимальная величина шкалы параметра используемого сканера;I - максимальная амплитуда пиксела сигнала в матрице;I - текущее значение пиксела сигнала в матрице.
СПОСОБ АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ
СПОСОБ АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ
СПОСОБ АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ
СПОСОБ АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ
СПОСОБ АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ
Источник поступления информации: Роспатент

Showing 31-35 of 35 items.
19.01.2018
№218.016.0a0e

Способ идентификации загрязнений морской поверхности

Изобретение относится к области для контроля экологического загрязнения шельфовых, прибрежных зон. Способ включает зондирование прибрежных акваторий, содержащих эталонные участки средствами, установленными на воздушно-космическом носителе с получением синхронных изображений в ультрафиолетовом и...
Тип: Изобретение
Номер охранного документа: 0002632176
Дата охранного документа: 02.10.2017
20.01.2018
№218.016.1773

Фильтр

Изобретение предназначено для фильтрования. Фильтр содержит корпус, помещенную внутрь корпуса несущую трубу и рабочие модули, закрепленные поперек несущей трубы. Каждый из рабочих модулей содержит расположенные на удалении друг от друга первый и второй фильтровальные пакеты, каждый из которых...
Тип: Изобретение
Номер охранного документа: 0002635802
Дата охранного документа: 16.11.2017
20.01.2018
№218.016.17a8

Способ мониторинга надпочвенного покрова импактных районов арктики

Изобретение относится к дистанционным методам изучения почвенного покрова и может быть использовано для мониторинга почвенного покрова арктических районов. Сущность: с помощью средств, установленных на воздушно-космическом носителе, получают синхронные изображения в ультрафиолетовом и ближнем...
Тип: Изобретение
Номер охранного документа: 0002635823
Дата охранного документа: 16.11.2017
17.02.2018
№218.016.2bcd

Устройство экспресс-анализа примесных газов в атмосфере

Изобретение может быть использовано в санитарно-эпидемиологическом контроле промышленных регионов. Устройство выполнено из набора контроллеров, разнесенных по площади исследуемого района, каждый контроллер содержит несколько разнотипных газовых датчиков с электронной схемой в составе...
Тип: Изобретение
Номер охранного документа: 0002643200
Дата охранного документа: 31.01.2018
04.04.2018
№218.016.2f30

Измеритель эталонных спектров волнения морской поверхности

Измеритель выполнен на базе СВЧ-генератора в режиме затягивания частоты, нагруженного на волноводную секцию в составе последовательно подключенных направленного ответвителя, аттенюатора, фазовращателя, рупорной антенны на конце волноводной секции; часть энергии генератора через направленный...
Тип: Изобретение
Номер охранного документа: 0002644628
Дата охранного документа: 13.02.2018
Showing 51-58 of 58 items.
29.05.2019
№219.017.656a

Способ определения стока поглощаемого из атмосферы углерода древесной растительностью

Изобретение относится к мониторингу природных объектов при помощи космических средств и может найти применение в экологических целях. Сущность: способ состоит в зондировании лесов космическими средствами, получении изображений лесов в виде матриц элементов зависимости функции яркости сигнала от...
Тип: Изобретение
Номер охранного документа: 0002342636
Дата охранного документа: 27.12.2008
29.05.2019
№219.017.657d

Поляризационный датчик предвестника землетрясений

Изобретение относится к области сейсмологии и может быть использовано в национальных системах сейсмического контроля для краткосрочного предсказания землетрясений. Сущность: датчик содержит канал приема поляризованного светового потока, отраженного от подстилающей поверхности, и тракт обработки...
Тип: Изобретение
Номер охранного документа: 0002343507
Дата охранного документа: 10.01.2009
29.05.2019
№219.017.696e

Устройство регистрации предвестников землетрясений

Изобретение относится к области сейсмологии и может быть использовано при прогнозировании землетрясений. Сущность: устройство содержит два измерительных канала, размещенных на космическом носителе, тракт передачи результатов измерений на наземные средства обработки. Один из измерительных...
Тип: Изобретение
Номер охранного документа: 0002446418
Дата охранного документа: 27.03.2012
29.05.2019
№219.017.6a33

Способ определения концентрации аэрозолей в атмосфере мегаполисов

Область использования: экология, дистанционные методы мониторинга природных сред, система санитарно-эпидемиологического контроля промышленных регионов. Способ включает зондирование атмосферы гиперспектрометром, установленном на космическом носителе, расчет суммарной концентрации загрязнителей в...
Тип: Изобретение
Номер охранного документа: 0002468396
Дата охранного документа: 27.11.2012
29.05.2019
№219.017.6a3e

Способ определения загрязнения атмосферы мегаполисов вредными газами

Изобретение относится к экологии, а именно к дистанционным методам мониторинга природных сред и санитарно-эпидемиологическому контролю промышленных регионов. Способ включает синхронную съемку цифровой видеокамерой и гиперспектрометром, установленными на космическом носителе с положением входной...
Тип: Изобретение
Номер охранного документа: 0002460059
Дата охранного документа: 27.08.2012
09.06.2019
№219.017.778f

Способ прогноза землетрясений

Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: выявляют сейсмоопасные территории с разломами в земной коре. Получают с летательного аппарата изображения подстилающей поверхности сейсмоопасной территории в виде зависимости...
Тип: Изобретение
Номер охранного документа: 0002298818
Дата охранного документа: 10.05.2007
10.10.2019
№219.017.d438

Способ определения уровня загрязнения морской поверхности

Изобретение относится к области дистанционного зондирования подстилающей поверхности и может найти применение при контроле гидрологических процессов на морской поверхности и экологического загрязнения шельфовых зон. Способ определения уровня загрязнения морской поверхности включает зондирование...
Тип: Изобретение
Номер охранного документа: 0002702423
Дата охранного документа: 08.10.2019
21.12.2019
№219.017.efe9

Измеритель загрязнений морской поверхности

Изобретение относится к средствам дистанционного контроля загрязнений морской поверхности. Сущность: измеритель состоит из элементов, размещенных на аэрокоптере (3), и наземного центра (10) тематической обработки. На аэрокоптере (3) размещены два канала зондирования: оптический,...
Тип: Изобретение
Номер охранного документа: 0002709598
Дата охранного документа: 18.12.2019
+ добавить свой РИД