×
10.04.2014
216.012.b43c

ТЕПЛООБМЕННАЯ ТРУБА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором теплообмена в виде дискретных канавок, поперечных к потоку, причем канал выполнен с геометрическими соотношениями: l=(90-100)h; l=(90-100)h; l'/l=0,05; h/D=0.03, где l - длина канавки, мм; l - длина выступа, мм; l' - длина участка выступа между неглубокими канавками, мм; h - высота выступа, мм; D - внутренний диаметр теплообменной трубы, мм. Технический результат - повышение энергетической эффективности за счет снижения гидросопротивления. 4 ил., 1 табл.
Основные результаты: Теплообменная труба, канал которой выполнен с канавками и выступами, отличающаяся тем, что канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором теплообмена в виде дискретных канавок, поперечных к потоку, причем канал выполнен с геометрическими соотношениямиl=(90-100)h; l=(90-100)h; l'/l=0,05; h/D=0.03, гдеl - длина канавки, мм,l - длина выступа, мм,l' - длина участка выступа между неглубокими канавками, мм,h - высота выступа, мм,D - внутренний диаметр теплообменной трубы, мм.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники.

Известна теплообменная труба [Гортышов Ю.Ф., Олимпиев В.В., Абдрахманов А.Р. Расчет турбулентной теплоотдачи и сопротивления в каналах с поперечными кольцевыми канавками. // Изв. вузов. Авиационная техника. 1997. №3. С.56-68], канал которой выполнен с узкими кольцевыми канавками на внутренней поверхности трубы (канал «1»). В этом канале взаимодействие потока и стенки и существо механизма ИТО (интенсификации теплообмена) полностью определяется теплообменом и трением в пристенных внутренних пограничных слоях (ВПС) 1 и 2, турбулизацию которых обеспечивает рециркуляционная зона (РЗ). Совершенство механизма ИТО заключается в том, что в канале РЗ размещена в канавке, что позволяет сократить размеры РЗ. Опыты с кольцевыми канавками проведены только для наружной поверхности труб в межтрубном потоке теплообменного аппарата (ТА), в ограниченном диапазоне характеристических параметров - ; Re=3·103-2·104, где - относительный шаг выступов, Re - число Рейнольдса.

Наиболее близким аналогом к заявляемому изобретению является теплообменная труба [Леонтьев А.И., Олимпиев В.В. Влияние интенсификаторов теплообмена на теплогидравлические свойства каналов (обзор). // Теплофизика высоких температур. 2007. №6. С.925-953], канал которой выполнен с выступами и канавками (канал «2»). В канале «2» в качестве интенсификатора теплообмена (ИТ) служат узкие выступы на внутренней поверхности трубы (l<t, где l - длина канавки, t - длина типового участка канала с выступом и канавкой). Идея схемы потока следующая. После каждого выступа образуется РЗ1, на поверхности которой и далее за точкой присоединения xk≈6h, где h - высота выступа, развивается турбулентный внутренний пограничный слой - ВПС1 (толщиной δ). Под РЗ1 формируется возвратный ВПС2 (Малая Р32 не учитывается). Участок канала с шагом t - типовой (повторяющийся). Теплогидродинамическое взаимодействие потока со стенкой полностью определяется процессами переноса внутри ВПС1 и 2. Основной вклад в интенсификацию теплообмена вносят факторы повышенной теплоотдачи в зоне присоединения и малого термического сопротивления тонкого обновленного турбулизированного ВПС1 за точкой присоединения. Главное назначение отрывной рециркуляционной области течения - РЗ1 - производство дополнительной турбулентности, воздействие которой на обновленный ВПС1 стимулирует процесс теплообмена около стенки (Отрыв потока, обновление ПС и образование РЗ1 - результат действия выступа).

Недостатком известных теплообменных труб является высокое гидросопротивление и низкая эффективность.

Задачей, на решение которой направлено заявляемое изобретение, является повышение энергетической эффективности за счет снижения гидросопротивления.

Технический результат достигается тем, что в теплообменной трубе, согласно заявляемому изобретению, канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором теплообмена в виде дискретных канавок, поперечных к потоку, причем канал выполнен с геометрическими соотношениями

l2=(90-100)h; l1=(90-100)h; l'/l1=0,05; h/D=0.03,

где

l2 - длина канавки, мм,

l1 - длина выступа, мм,

l'- длина участка выступа между неглубокими канавками, мм,

h - высота выступа, мм,

D - внутренний диаметр теплообменной трубы, мм.

Сущность изобретения поясняется чертежами и таблицей, где на фиг.1 изображен канал предлагаемой теплообменной трубы (канал «3»), на фиг.2, 3, 4, табл.1 показаны результаты расчетов эффективности (интенсивность теплоотдачи, коэффициент гидравлического сопротивления, относительный энергетический коэффициент) каналов «7», «2» и «3».

Таким образом, для достижения технического результата предложена заявляемая конструкция теплообменной трубы, канал которой (канал «3») является последовательностью широких канавок l2=(90-100)h и широких выступов l1=(90-100)h, на выступах которого в качестве дополнительных ИТ используются дискретные поперечные к потоку канавки 4 (одна или несколько). Модель течения (и механизм ИТО) в канале «3» основывается на тонких (обновленных) внутренних пограничных слоях - ВПС1, ВПС2 и ВПС3, которые турбулизируются (под воздействием внешней турбулентности) вихревыми возмущениями от рециркуляционной зоны РЗ1, образующейся за обратным уступом при входе потока в канавку (l2), и возмущениями, возникающими на прямом уступе при натекании потока на выступ (Р32) и канавкой 4. При h/D<0.05 происходит быстрая перестройка ВПС1 и ВПС3 к состоянию «стандартного» турбулентного ПС (ТПС) на гладкой стенке [Леонтьев А.И., Олимпиев В.В. Влияние интенсификаторов теплообмена на теплогидравлические свойства каналов (обзор) // ТВТ. 2007. №6. С.925-953]. При соотношениях толщин соответствующих пограничных слоев и пристенное течение в канале можно рассматривать как течение на плоской стенке, и для расчета ВПС воспользоваться моделью пограничного слоя на пластине. Предлагаемая в данной работе модель расчета канала «3», построенная на основе представлений по ВПС, подобна тем, формирующимся при обтекании ИТ, что использовались в [Олимпиев В.В. Расчет теплообмена и гидросопротивления турбулентного потока в дискретно шероховатых каналах. //Изв. вузов. Авиационная техника. 1991. №4. С.69-72. Олимпиев В.В. Анализ результатов расчета по модели внутренних пограничных слоев теплоотдачи и сопротивления труб с поперечными кольцевыми выступами.// Изв. вузов. Авиационная техника. 1995. №3. С.103-106].

Расчет канала «3» строится следующим образом. Местные коэффициенты теплоотдачи для ВПС1 на отрезке от хк до l2 вычисляются по соотношению

где число Нуссельта Nuxx/λ; х - текущая координата; λ - коэффициент теплопроводности теплоносителя (жидкости); Rex=wx/v; w - среднерасходная скорость жидкости в канале; ν - кинематический коэффициент вязкости жидкости; Tw, Tf - температуры стенки и потока.

Затем вводится поправка αхистx, учитывающая влияние внешней турбулентности Tu на теплоотдачу в ВПС1 [Жукаускас А.А. Конвективный перенос в теплообменниках. М.: Наука. 1982]

,

где αхист - истинное значение коэффициента местной теплоотдачи; Tu - локальное значение степени турбулентности; Tumax=10% (или 0.1) [Олимпиев В.В. Расчет теплообмена и гидросопротивления турбулентного потока в дискретно шероховатых каналах // Изв. вузов. Авиационная техника. 1991. №4. С.69-72. Олимпиев В.В. Анализ результатов расчета по модели внутренних пограничных слоев теплоотдачи и сопротивления труб с поперечными кольцевыми выступами // Изв. вузов. Авиационная техника. 1995. №3. С.103-106.], Tumax - максимальное значение Tu.

Местные коэффициент сопротивления и касательное напряжение τwx трения для ВПС1 рассчитываются по формулам

где ρ - плотность теплоносителя.

Расчет для ВПС3 (на отрезках l') проводится аналогично ВПС1.

Локальные коэффициенты теплоотдачи для ВПС2 (на длине РЗ1 - L) вычисляются с помощью универсальной функции для обратного уступа αx2xk=f(x/xk) [Основы теплопередачи в авиационной и ракетно-космической технике. / Под общ. ред. B.C. Авдуевского и др. М.: Машиностроение. 1992.], где рассчитывается по формуле (1) при x=xk. Трение для ВПС2 рассчитывается аналогично.

Осреднение местных параметров ВПС1, ВПС2 и ВПС3 позволяет получить средние значения коэффициента теплоотдачи α и касательного напряжения трения τw на участке t (и во всем канале).

Суммарные потери давления на этом участке можно рассчитать по формуле

где Δpmp=Rmp/(πD2/4) - потери давления на трение, Rmp=πDtτw - сила трения; Δpp и Δpc - местные потери давления на внезапные расширение и сужение канала при обтекании канавки l2 (определяются по [Идельчик И.Е. Справочник по гидравлическим сопротивлениям. М.: Машиностроение. 1992]). Коэффициент сопротивления ξ на участке t (и во всем канале) рассчитывается из формулы Дарси

Расчеты проводились для тех же условий, что и в [Гортышов Ю.Ф., Олимпиев В.В., Попов И.А. Эффективность промышленно перспективных интенсификаторов теплоотдачи // Изв. РАН. Энергетика. 2002. №3. С.102-118]. Относительная высота выступа была принята из рекомендованного в [Эффективные поверхности теплообмена / Э.К. Калинин, Г.А. Дрейцер, И.З. Копп, А.С. Мякочин. М.: Энергоатомиздат, 1998.] диапазона, а число Рейнольдса составляла 104-106. Были проведены многовариантные расчеты с различными сочетаниями геометрических параметров ИТ для каналов всех типов. При расчете канала «3» параметр l'/l1 изменялся в пределах 0-1.

В качестве критерия эффективности канала и оптимального выбора размера ИТ, как и в работах [Леонтьев А.И., Олимпиев В.В. Влияние интенсификаторов теплообмена на теплогидравлические свойства каналов (обзор) //ТВТ. 2007. №6. С.925-953. Rudy M.P. et all. Developments in Enhanceed Heat Transfer Technology from a Petroleum Industry Perspective in 2012// Proceedings of the ASME 2012 Heat Transfer Conference. July 8-12, 2012, Puerto Rico.] служил относительный энергетический коэффициент

,

где Nuгл и ξгл - число Нуссельта и коэффициент сопротивления трения для гладкого канала.

При сопоставлении вариантов для канала одного типа (при каждом значении числа Рейнольдса) показателем наиболее высокой эффективности канала и оптимальных размеров ИТ являлось максимальное значение относительного энергетического коэффициента, для которого даны все материалы расчетов.

Некоторые результаты расчетов для всех каналов даны в табл.1 и на фиг.2-4. При детальной оценке можно отметить, что , при этом превышает примерно на 28%. Относительная теплоотдача не зависит от числа , т.к. характер функций Nu=f(Re") идентичный для гладкого канала и каналов «1;2;3». Модели всех каналов объективно отражают их свойства: при повышенных числах Re и нарастание сопротивления обгоняет увеличение теплоотдачи , табл.1.

Размерные коэффициенты ξ для всех каналов автомодельны относительно числа Re-ξ/(Re), - что свойственно дискретной и песчано - зернистой шероховатости Никурадзе в режиме полного проявления шероховатости. Расчеты подтвердили сделанное в настоящей работе предположение - сопротивление канала «1» оказалось несколько меньше , фиг.3. На всем диапазоне чисел Re сопротивление канала «3» заметно ниже величины (до 43%), фиг.3, что, вероятно, связано с меньшим количеством РЗ на единицу длины в канале «3». Улучшенная теплоотдача и пониженное сопротивление привели к повышенной эффективности канала «3» по сравнению с др., табл.1, фиг.4.

В равных условиях эффективность канала «3» выше, чем показатель проверенного практикой высокоэффективного канала «2», фиг.4.

Таблица 1
Эффективность и оптимальные размеры каналов
Канал «1» (t/h=100)
Re 10000 250000 500000 750000 1000000
Nu/Nuгл 1,406 1,406 1,406 1,406 1,406
ξ/ξгл 0,948 2,12 2,521 2,79 2,998
1.483 0,663 0,558 0,504 0,469
Канал «2» (t/h=100)
Re 10000 250000 500000 750000 1000000
Nu/Nuгл 1,414 1,414 1,414 1,414 1,414
ξ/ξгл 2,093 3,465 3,914 4,211 4,44
0,676 0,408 0,361 0,336 0,319
Канал «3»(l'/l1=0,05)
Re 10000 250000 500000 750000 1000000
Nu/Nuгл 1,953 1,953 1,953 1,953 1,953
ξ/ξгл 1,94 2,642 2,853 2,99 3,094
1,007 0,739 0,685 0,653 0,631

Теплообменная труба, канал которой выполнен с канавками и выступами, отличающаяся тем, что канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором теплообмена в виде дискретных канавок, поперечных к потоку, причем канал выполнен с геометрическими соотношениямиl=(90-100)h; l=(90-100)h; l'/l=0,05; h/D=0.03, гдеl - длина канавки, мм,l - длина выступа, мм,l' - длина участка выступа между неглубокими канавками, мм,h - высота выступа, мм,D - внутренний диаметр теплообменной трубы, мм.
ТЕПЛООБМЕННАЯ ТРУБА
ТЕПЛООБМЕННАЯ ТРУБА
ТЕПЛООБМЕННАЯ ТРУБА
ТЕПЛООБМЕННАЯ ТРУБА
Источник поступления информации: Роспатент

Showing 81-90 of 164 items.
20.08.2015
№216.013.710c

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию...
Тип: Изобретение
Номер охранного документа: 0002560510
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.710e

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002560512
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.710f

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002560513
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7110

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002560514
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.716b

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации...
Тип: Изобретение
Номер охранного документа: 0002560605
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.716c

Способ утилизации теплоты тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано для утилизации теплоты тепловой электрической станции (ТЭС). Осуществляют подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от...
Тип: Изобретение
Номер охранного документа: 0002560606
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.716d

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. В теплообменнике-охладителе сетевой воды осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой...
Тип: Изобретение
Номер охранного документа: 0002560607
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.716e

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Проводят утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи охлаждающей жидкости посредством...
Тип: Изобретение
Номер охранного документа: 0002560608
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7171

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии. Способ утилизации теплоты тепловой электрической станции...
Тип: Изобретение
Номер охранного документа: 0002560611
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7172

Способ работы тепловой электрической станции

Изобретение относится к области энергетики к утилизации теплоты тепловой электрической станции (ТЭС). Осуществляют подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от потребителей по обратному...
Тип: Изобретение
Номер охранного документа: 0002560612
Дата охранного документа: 20.08.2015
Showing 81-90 of 179 items.
27.07.2015
№216.013.685c

Способ голографического контроля неплоскостности кольцевых поверхностей

Изобретение относится к области оптического приборостроения и может быть использовано для контроля неплоскостности кольцевых поверхностей. В способе голографического контроля формируется первый опорный пучок с помощью светоделителя и зеркал и объектный пучок, включающий проекционный объектив,...
Тип: Изобретение
Номер охранного документа: 0002558269
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6dc1

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с...
Тип: Изобретение
Номер охранного документа: 0002559655
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f9f

Способ определения частоты трехфазного напряжения

Изобретение относится к области информационно-измерительной и вычислительной техники и может быть использовано в электроэнергетике для контроля усредненных значений частоты в промышленных трехфазных электрических сетях. Для определения частоты первой гармоники F промышленного трехфазного...
Тип: Изобретение
Номер охранного документа: 0002560145
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70fd

Способ работы тепловой электрической станции

Изобретение относится к способу утилизации тепловой энергии на тепловых электрических станциях (ТЭС). Технический результат заключается в повышении коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической...
Тип: Изобретение
Номер охранного документа: 0002560495
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70fe

Способ работы тепловой электрической станции

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой тепловой электростанцией (ТЭС). Отработавший пар поступает из паровой турбины в паровое пространство конденсатора и полученный конденсат с помощью насоса направляют в систему регенерации. В ТЭС используют...
Тип: Изобретение
Номер охранного документа: 0002560496
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70ff

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с...
Тип: Изобретение
Номер охранного документа: 0002560497
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7100

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, низкопотенциальной...
Тип: Изобретение
Номер охранного документа: 0002560498
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7101

Способ работы тепловой электрической станции

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой на тепловых электрических станциях (ТЭС). Технический результат изобретения заключается в повышении коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации...
Тип: Изобретение
Номер охранного документа: 0002560499
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7102

Способ работы тепловой электрической станции

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой тепловой электрической станцией (ТЭС). Отработавший пар направляют из паровой турбины в паровое пространство конденсатора и полученный конденсат с помощью его конденсатного насоса направляют в систему регенерации....
Тип: Изобретение
Номер охранного документа: 0002560500
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7104

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002560502
Дата охранного документа: 20.08.2015
+ добавить свой РИД