×
10.04.2014
216.012.b1f7

Результат интеллектуальной деятельности: НАНОСТРУКТУРНЫЙ ИК-ПРИЕМНИК (БОЛОМЕТР) С БОЛЬШОЙ ПОВЕРХНОСТЬЮ ПОГЛОЩЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области создания детекторов инфракрасного излучения и касается болометрического ИК-детектора. Детектор состоит из мембраны площадью S с термочувствительным элементом (ТЧЭ) и поглотителем электромагнитной энергии (ПЭЭ), прикрепленной к подложке с помощью токопроводящих шинок. ТЧЭ и ПЭЭ объединены в одном элементе, который выполнен в виде покрытия из тонкопленочного монокристального материала BiSb (0l/χ, где χ - температуропроводность среды, непосредственно контактирующей с мембраной, χ - температуропроводность материала мембраны. Технический результат заключается в упрощении конструкции и повышении удельной обнаружительной способности устройства. 1 ил.
Основные результаты: Наноструктурный ИК-приемник (болометр) с большой поверхностью поглощения, состоящий из диэлектрической мембраны площадью S с термочувствительным элементом (ТЧЭ) и поглотителем электромагнитной энергии (ПЭЭ), прикрепленной к твердой подложке с помощью токопроводящих шинок, отличающийся тем, что с целью упрощения конструкции и, в итоге, повышения удельной обнаружительной способности D* (ТЧЭ) и (ПЭЭ) объединены в одном элементе, который выполнен в виде покрытия из тонкопленочного монокристального материала BiSb (0l/χ, где χ - температуропроводность среды, непосредственно контактирующей с мембраной (в данном случае воздух), χ - температуропроводность материала мембраны.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к болометрическому детектору и устройству для детектирования инфракрасного излучения, использующему такой детектор. Изобретение может применяться, в частности, в тепловизионной технике, и может быть использовано в тепловизорах смотрящего типа в качестве чувствительного элемента матричных приемников, и предназначено для работы во всем ИК-диапазоне длин волн М для создания тепловых изображений предметов в ночное время суток.

УРОВЕНЬ ТЕХНИКИ

В области техники, относящейся к инфракрасным детекторам, известны болометрические приемники, которые, как правило, включают в себя: средство поглощения инфракрасного излучения и преобразования его в тепло (поглотитель); средство термоизоляции детектора, обеспечивающее возможность максимального возрастания его температуры в результате воздействия инфракрасного излучения; термометрическое средство, в котором в случае болометрического детектора используют резистивный элемент.

Обычно болометр состоит из мембраны, на которой расположен термочувствительный элемент (ТЧЭ) и поглотитель электромагнитной энергии (ПЭЭ). Часто функции ТЧЭ и ПЭЭ совмещаются в одном элементе, например, в случае болометров, изготовленных на основе VOx. Если в качестве (ТЧЭ) применяется полупроводник типа аморфного кремния, то ПЭЭ изготавливают обычно нанесением пленки металла, которая имеет небольшой коэффициент поглощения: обычно всего несколько процентов. Иногда ограничиваются тем, что роль ПЭЭ выполняет мембрана, изготовленная из окиси кремния и нитрида кремния. Чтобы получить низкую теплопроводность между болометром и его окружением, болометр помещается на длинных шинках с небольшой площадью поперечного сечения, состоящих из материалов с низкой теплопроводностью, как правило, покрытых тонким слоем металла, который обеспечивает электрический контакт между болометром и электронной схемой считывания сигнала. Тепловая проводимость между чувствительным элементом (ЧЭ) болометра и его контактной областью может быть на уровне 3,5 10-8 Вт/K.

Фактор заполнения пикселя определяет долю занимаемой болометрами площади пикселя, которая используется для поглощения падающего инфракрасного излучения. Остальные области пикселей занимают контактные области болометра, интервалы между болометрами, и соседними мембранами болометров, и переходными окнами, которые соединяют болометр и пластину с интегральной схемой считывания. Обычные одноуровневые инфракрасные матричные болометры, как правило, имеют коэффициент заполнения от 60% до 70%.

Аналоги предлагаемого изобретения описаны в литературе, см., например, патент РФ на изобретение №2356017 от 20.05.2009; патент РФ на изобретение №2383875 от 15.03.2006; Филачев A.M., Андрюшин С.Я. Состояние разработок микроболометрических матриц в Государственном научном центре «НПО Орион». Прикладная физика, №5, 2000, с.5-17.

В предшествующем уровне техники описан ряд различных вариантов компоновки разнообразных составляющих элементов детекторов с целью максимизации полезной площади болометра, которые значительно усложняют конструкцию болометров. Максимизация достигается за счет более рационального использования площади проводящих шинок, соединяющих болометр со схемой считывания. Однако это не приводит к увеличению основного параметра - удельной обнаружительной способности D*, потому что авторы не учитывают влияния на характеристики детектора избыточного шума, связанного, в частности, с эффектами истечения заряда с межкристаллитных острий в поликристаллических пленках.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

В заявленном ИК-приемнике (болометре) предлагается упростить его конструкцию, заменив три элемента: термочувствительный элемент (ТЧЭ), поглотитель электромагнитной энергии (ПЭЭ) и контакты на мембране, одним элементом, выполненным на мембране, который выполнен в виде покрытия из тонкопленочного монокристального материала Bi1-xSbx (0<x<12), максимально покрывающего поверхность мембраны. Этот элемент включает полоску шириной а и длиной b, отделенную узким зазором шириной l от остальной части покрытия, кроме концов полоски ширины а, соединенных с остальной частью покрытия, которая разделена зазором m на две части, каждая из которых соединена со своей токопроводящей шинкой, а обе эти части электрически соединены указанной полоской.

Поглощение энергии излучения происходит на всей площади элемента, максимально покрывающего поверхность мембраны, причем тонкопленочный монокристальный материал Bi1-xSbx (0<х<12) выполняет как функции поглотителя ИК-излучения, так и термочувствительного элемента (ТЧЭ), при этом величина шума за счет применения в качестве ТЧЭ монокристальных пленок, в которых отсутствуют межострийные шумы, характерные для поликристаллических материалов, снижена до предельного уровня шумов Найквиста-Джонсона.

Зазор, отделяющий полоску от остальной части элемента, не влияет существенно на величину средней температуры мембраны в силу малости зазора. В самом деле, постоянная времени выхода температуры (τ) на стационарное состояние при воздействии прямоугольным импульсом излучения составляет:

τ=S/χ1,

где S - площадь мембраны, χ1 - температуропроводность среды, непосредственно контактирующей с мембраной (в данном случае воздух).

С другой стороны, оценка характерного времени (t) «выравнивания» температур указанной полоски остальной части элемента и мембраны дает:

t=l22,

где l - ширина зазора, χ2 - температуропроводность материала мембраны.

Когда выполняется соотношение: τ>t, т.е.

S/χ1>l22,

можно считать, что средние температуры полоски и мембраны одинаковы.

При выполнении условий: R/2Z<1, где R - удельное поверхностное сопротивление пленки, Z=120π Ом - импеданс свободного пространства, и величине зазора между мембраной и подложкой, равного λ/4, коэффициент поглощения ИК-приемника может составить величину 70%-80% в широком диапазоне длин волн Δλ.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖА

Изобретение поясняется чертежом, на котором представлен схематичный план вида ИК-приемника (болометра) в аксонометрической проекции: к подложке 1 (обычно кремний) прикреплена диэлектрическая мембрана 2, на которую нанесено покрытие 3 из тонкопленочного монокристального материала Bi1-xSbx (0<х<12), мембрана 2 крепится к подложке шинками 4, на которой расположены токопроводящие шинки 5, соединяющие ИК-приемник с контактами 6, необходимыми для подключения болометра в измерительную схему, в покрытии 3 выполнена полоска 7, которая отделена зазорами шириной l от остальной части покрытия, кроме концов полоски шириной а, соединенных с остальной частью покрытия, разделенного щелью 8 на две части, каждая из которых соединена со своей токопроводящей шинкой, а обе эти части электрически соединены указанной полоской 7, которая является термочувствительным элементом, а 3 является основным поглотителем электромагнитной энергии и одновременно выполняет роль контактов к полоске 7.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Для практического осуществления предложенного изобретения болометрический детектор был изготовлен на пластине из кремния, на который было нанесено четырехслойное тонкопленочное покрытие, имеющее такой же коэффициент линейного расширения, как и у кремния (SiO2+Si3N4+SiO2+Si3N4), под которым была вытравлена полость глубиной 2,5 мкм (основная поверочная длина волны λ=10 мкм) и площадью 70×70 мкм2. Таким образом с помощью фотолитографии была изготовлена теплоизолированная от подложки из кремния мембрана 2, на которую наносили покрытие 3 из тонкопленочного монокристального материала Bi1-xSbx, где x=8%. Этот материал относится к классу полуметаллов с концентрацией свободных электронов 10-5 на атом. Температурный коэффициент сопротивления ТЧЭ равен 0,7%/K, а монокристальное исполнение пленок обеспечивает предельно низкий уровень шумов , где k = постоянная Больцмана, R0 - полное сопротивление ТЧЭ. В покрытии была выполнена полоска 7 шириной 0,1 мкм. Полоска имеет следующие геометрические параметры: длина 50 мкм, толщина пленки ~80 нм, полная приемная площадь ~60×60 мкм2. R0~130 кОм. Измерения уровня шума и вольт/ваттной чувствительности проводилось при напряжении смещения U на ТЧЭ~11 В. Не обнаружено зависимости напряжения шумов Uш от величины приложенного напряжения смещения, и в полосе 1 Гц Uш оказалось равным 47 нВ.

Устройство работает следующим образом. При воздействии на болометрический приемник импульсом прямоугольной формы электромагнитной волны происходит интенсивное поглощение энергии всем покрытием, что приводит к нагреву полоски 7 и остальной части покрытия и изменению его эффективного сопротивления на величину ΔR=R0αΔT, где ΔT - изменение температуры, а α - эффективный температурный коэффициент сопротивления.

Измерения вольт/ваттной чувствительности W проводились с использованием излучающего черного тела при температуре 500 K, светофильтра из InSb и механического модулятора. Получены оценочные значения W~4500 В/Вт и D*~2,6*109 Вт-1 смГц, τ~10-2 с.

Наноструктурный ИК-приемник (болометр) с большой поверхностью поглощения, состоящий из диэлектрической мембраны площадью S с термочувствительным элементом (ТЧЭ) и поглотителем электромагнитной энергии (ПЭЭ), прикрепленной к твердой подложке с помощью токопроводящих шинок, отличающийся тем, что с целью упрощения конструкции и, в итоге, повышения удельной обнаружительной способности D* (ТЧЭ) и (ПЭЭ) объединены в одном элементе, который выполнен в виде покрытия из тонкопленочного монокристального материала BiSb (0l/χ, где χ - температуропроводность среды, непосредственно контактирующей с мембраной (в данном случае воздух), χ - температуропроводность материала мембраны.
НАНОСТРУКТУРНЫЙ ИК-ПРИЕМНИК (БОЛОМЕТР) С БОЛЬШОЙ ПОВЕРХНОСТЬЮ ПОГЛОЩЕНИЯ
Источник поступления информации: Роспатент

Showing 11-19 of 19 items.
20.07.2014
№216.012.df52

Способ получения наноструктуированных слоев магнитных материалов на кремнии для спинтроники

Изобретение относится к области электротехники, в частности к способам получения магнитных сред для записи информации с высокой плотностью. Способ получения наноструктурированных слоев магнитных материалов на кремнии для спинтроники включает магнетронное распыление составной мишени, состоящей...
Тип: Изобретение
Номер охранного документа: 0002522956
Дата охранного документа: 20.07.2014
27.08.2014
№216.012.ef04

Газотурбинная установка с подачей паро-топливной смеси

Газотурбинная установка с подачей паро-топливной смеси содержит компрессор для сжатия воздуха, топливный насос для подачи топлива, средства для подачи паро-топливной смеси, камеру сгорания, газовую турбину, электрогенератор для выработки электроэнергии, механические средства для передачи...
Тип: Изобретение
Номер охранного документа: 0002527007
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ef07

Газотурбинная установка с впрыском водяного пара

Газотурбинная установка с впрыском водяного пара в контур ГТУ содержит компрессор для сжатия воздуха, топливный насос, средства для подачи топлива, камеру сгорания, газовую турбину, электрогенератор для выработки электроэнергии, механические средства для передачи механической энергии от турбины...
Тип: Изобретение
Номер охранного документа: 0002527010
Дата охранного документа: 27.08.2014
10.10.2014
№216.012.fcb0

Способ изготовления сегнетоэлектрического конденсатора

Изобретение может быть использовано в микроэлектронике при изготовлении широкого класса управляемых электрическим полем элементов, в частности для производства энергонезависимых сегнетоэлектрических запоминающих устройств. Для изготовления сегнетоэлектрического конденсатора на подложку (1)...
Тип: Изобретение
Номер охранного документа: 0002530534
Дата охранного документа: 10.10.2014
10.12.2015
№216.013.9934

Матричный датчик давления

Изобретение относится к устройствам полимерной электроники, в частности к матричным устройствам для преобразования давления в электрический сигнал. Матричные датчики давления используются для определения формы предметов, воздействующих на датчик, и могут использоваться в робототехнике,...
Тип: Изобретение
Номер охранного документа: 0002570840
Дата охранного документа: 10.12.2015
27.02.2016
№216.014.c0fb

Излучающая гетероструктура с внутренним усилением инжекции

Изобретение относится к полупроводниковым приборам, а более конкретно к светодиодам и лазерам на основе гетероструктур. В активную область известного типа излучающих p-n-гетероструктур предлагается ввести дополнительный узкозонный слой. Этот слой играет роль поглотителя излучения из более...
Тип: Изобретение
Номер охранного документа: 0002576345
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.e818

Гетероструктура для автоэмиттера

Изобретение относится к структурам для автоэмиттеров. Изобретение обеспечивает значительное увеличение рабочих токов автокатода, повышение стойкости устройств к деградации и увеличение их рабочего ресурса. В гетеропереходной структуре на поверхности n-слоя со стороны n-p гетерограницы...
Тип: Изобретение
Номер охранного документа: 0002575137
Дата охранного документа: 10.02.2016
25.08.2017
№217.015.bed7

Широкополосный измерительный приемник излучения миллиметрового диапазона с независимой калибровкой

Устройство предназначено для измерения плотности потока энергии электромагнитного излучения в миллиметровом диапазоне длин волн и может быть также использовано в качестве образцового приемника для калибровки средств измерения. Приемник представляет собой тонкопленочный, с известным...
Тип: Изобретение
Номер охранного документа: 0002616721
Дата охранного документа: 18.04.2017
20.01.2018
№218.016.116b

Способ измерения функции распределения коллоидных частиц по размерам в водном растворе

Изобретение относится к физике коллоидов и может быть использовано для определения функции распределения коллоидных частиц по размерам. Заявлен способ измерения функции распределения коллоидных частиц по размерам в водных растворах, включающий помещение исследуемого коллоидного раствора в...
Тип: Изобретение
Номер охранного документа: 0002634096
Дата охранного документа: 23.10.2017
Showing 11-20 of 24 items.
27.08.2014
№216.012.ef07

Газотурбинная установка с впрыском водяного пара

Газотурбинная установка с впрыском водяного пара в контур ГТУ содержит компрессор для сжатия воздуха, топливный насос, средства для подачи топлива, камеру сгорания, газовую турбину, электрогенератор для выработки электроэнергии, механические средства для передачи механической энергии от турбины...
Тип: Изобретение
Номер охранного документа: 0002527010
Дата охранного документа: 27.08.2014
10.10.2014
№216.012.fcb0

Способ изготовления сегнетоэлектрического конденсатора

Изобретение может быть использовано в микроэлектронике при изготовлении широкого класса управляемых электрическим полем элементов, в частности для производства энергонезависимых сегнетоэлектрических запоминающих устройств. Для изготовления сегнетоэлектрического конденсатора на подложку (1)...
Тип: Изобретение
Номер охранного документа: 0002530534
Дата охранного документа: 10.10.2014
10.12.2015
№216.013.9934

Матричный датчик давления

Изобретение относится к устройствам полимерной электроники, в частности к матричным устройствам для преобразования давления в электрический сигнал. Матричные датчики давления используются для определения формы предметов, воздействующих на датчик, и могут использоваться в робототехнике,...
Тип: Изобретение
Номер охранного документа: 0002570840
Дата охранного документа: 10.12.2015
27.02.2016
№216.014.c0fb

Излучающая гетероструктура с внутренним усилением инжекции

Изобретение относится к полупроводниковым приборам, а более конкретно к светодиодам и лазерам на основе гетероструктур. В активную область известного типа излучающих p-n-гетероструктур предлагается ввести дополнительный узкозонный слой. Этот слой играет роль поглотителя излучения из более...
Тип: Изобретение
Номер охранного документа: 0002576345
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.e818

Гетероструктура для автоэмиттера

Изобретение относится к структурам для автоэмиттеров. Изобретение обеспечивает значительное увеличение рабочих токов автокатода, повышение стойкости устройств к деградации и увеличение их рабочего ресурса. В гетеропереходной структуре на поверхности n-слоя со стороны n-p гетерограницы...
Тип: Изобретение
Номер охранного документа: 0002575137
Дата охранного документа: 10.02.2016
25.08.2017
№217.015.bed7

Широкополосный измерительный приемник излучения миллиметрового диапазона с независимой калибровкой

Устройство предназначено для измерения плотности потока энергии электромагнитного излучения в миллиметровом диапазоне длин волн и может быть также использовано в качестве образцового приемника для калибровки средств измерения. Приемник представляет собой тонкопленочный, с известным...
Тип: Изобретение
Номер охранного документа: 0002616721
Дата охранного документа: 18.04.2017
20.01.2018
№218.016.116b

Способ измерения функции распределения коллоидных частиц по размерам в водном растворе

Изобретение относится к физике коллоидов и может быть использовано для определения функции распределения коллоидных частиц по размерам. Заявлен способ измерения функции распределения коллоидных частиц по размерам в водных растворах, включающий помещение исследуемого коллоидного раствора в...
Тип: Изобретение
Номер охранного документа: 0002634096
Дата охранного документа: 23.10.2017
29.03.2019
№219.016.f77f

Тонкопленочный тепловой датчик с волноводным входом для измерения мощности импульсного свч излучения

Изобретение относится к измерительной технике и может быть использовано для измерения величины потока импульсного излучения в СВЧ и миллиметровом диапазонах. Согласно изобретению на диэлектрический клин толщиной d с высокой теплопроводностью χ, помещаемый внутрь волновода, нанесен адсорбирующий...
Тип: Изобретение
Номер охранного документа: 0002447453
Дата охранного документа: 10.04.2012
29.05.2019
№219.017.6950

Мультипольная магнитная ловушка для плазмы

Изобретение относится к области физики плазмы. Мультипольная магнитная ловушка для плазмы содержит три миксины, которые расположены в параллельных плоскостях на расстоянии друга от друга с образованием в сечении треугольника, каждая вершина которого является центром сечения соответствующей...
Тип: Изобретение
Номер охранного документа: 0002430493
Дата охранного документа: 27.09.2011
29.06.2019
№219.017.9c3f

Способ определения нелинейности выходной характеристики акселерометра

Изобретение относится к измерительной технике и может быть использовано для измерения нелинейности выходной характеристики акселерометров. Способ заключается в установке эталонного акселерометра на вибростенде вместе с тестируемым и измерении разности выходных сигналов акселерометров, которая...
Тип: Изобретение
Номер охранного документа: 0002398242
Дата охранного документа: 27.08.2010
+ добавить свой РИД