×
10.04.2014
216.012.afa3

Результат интеллектуальной деятельности: СПОСОБ ГЕНЕРАЦИИ НЕИНДУКЦИОННОГО ТОРОИДАЛЬНОГО ЗАТРАВОЧНОГО ТОКА ПРИ СТАЦИОНАРНОЙ РАБОТЕ ТЕРМОЯДЕРНОГО РЕАКТОРА

Вид РИД

Изобретение

№ охранного документа
0002510678
Дата охранного документа
10.04.2014
Аннотация: Изобретение относится к физике высокотемпературной плазмы и может найти применение в управляемом термоядерном синтезе, в радиационном материаловедении, для исследований в физике космической плазмы. В заявленном изобретении используется механизм неиндукционной генерации тороидального затравочного тока за счет нагрева ионов малой добавки, движущихся по потато орбитам, при помощи широкополосного генератора излучения на ионно-циклотронной частоте в конечной области близи магнитной оси установки. Техническим результатом является создание затравочного тока, необходимо для создания стационарного токамака-реактора. 1 з.п. ф-лы.

Изобретение относится к физике высокотемпературной плазмы и может найти применение в управляемом термоядерном синтезе.

Известен способ создания неиндукционного тока в замкнутых магнитных ловушках типа «Токамак», работающих в импульсном режиме, при помощи бутстреп-тока, см., например, М.Kikuchi, M.Azumi, S.Tsuji, H.Kubo, Nuclear Fusion, 1990, V.30, P.343.

Недостатком известного способа является то, что плотность бутстреп-тока мала вблизи магнитной оси установки и растет к периферии, что создает немонотонное распределение плотности тока и существенно усложняет стационарную работу реактора. В связи с этим для стационарной работ термоядерного реактора типа «Токамак» вблизи оси установки необходимо генерировать каким-либо образом дополнительный, так называемый «затравочный» ток (смотри R.J.Bickerton, J.W.Connor and J.B.Taylor, Natural physical science 229, 110 (1971), B.B.Kadomtsev, V.D.Shzfranov, in Proceedings of the 4th International Conference on Plasma Physics and Controlled nuclear Fusion Research (Vienna: IAEA, 1971) Vol.2, P.479.)

Известен способ, в котором при помощи излучения узкополосного генератора ионно-циклотронной частоты (f=f0(1±2%)) греют все частицы, проходящие в области, в которой частота f является резонансной (M.Laxaback, T.Hellsten, Modelling of minority ion cyclotron current drive during the activated phase of ITER, Nucl. Fusion, v.45, p.1510, 2005).

Недостатком известного способа является то, что полоса частот генераторов, используемых в настоящее время для нагрева плазмы, не превышает ±2% относительно основной частоты, что приводит к тому, что создаваемый таким способом ток составляет 0.2-0.5% от омического, что недостаточно для обеспечения стационарной работы реактора.

Также известно техническое решение по патенту РФ №2019874, опубл. 15.09.1994, «СПОСОБ ПОДДЕРЖАНИЯ СТАЦИОНАРНОГО ТОКА В ПЛАЗМЕ ТОРОИДАЛЬНЫХ ТЕРМОЯДЕРНЫХ УСТАНОВОК ТИПА ТОКАМАК».

Изобретение относится к физике высокотемпературной плазмы и может быть использовано при разработке установок управляемого термоядерного синтеза. Сущность изобретения: для упрощения создания и поддержания стационарного тока в токамаке и других тороидальных системах электронам плазмы передают дополнительный импульс от электронов пучка, проникающего в центр плазмы. Это достигается при взаимодействии двух или более встречных многократно обходящих тор электронных пучков. Источники плазмы расположены около стенки камеры, а электроны инжектируются вдоль магнитного поля. Расположение источников плазмы и ее параметры выбирают из условия I1>I2>Ip/n, где Ip - ток в плазме; n - число прохождений пучков вокруг тора; I1, I2 - токи пучков. Кроме этого, необходимо, чтобы энергия частиц пучков была больше тепловой энергии плазмы.

Недостатком известного решения является то, что использование взаимодействия двух или более встречных многократно обходящих тор электронных пучков усложняет реализацию и увеличивает стоимость стационарного термоядерного реактора.

В предлагаемом изобретении используется тот факт, что потато орбиты пересекают экваториальную плоскость в любой точке экваториальной плоскости токамака, причем существует область, в которой нет частиц, с параметрами, соответствующими потато орбитам, но движущихся в обратном направлении. Сечение этой области для установки ИТЭР соответствует окружности с радиусом, равным r=0.11a, где 2a - полный размер плазменного шнура в экваториальной плоскости. Нагрев ионов на всех потато орбитах внутри упомянутой области создает продольный затравочный ток.

Так как эффективный нагрев плазмы в магнитном поле при помощи излучения на ионно-циклотронной частоте происходит только при помощи нагрева ионов, по массе отличающихся от ионов основной плазмы, а содержание таких ионов в установке не превышает 1-10%, то такие ионы называются ионами малой добавки. Наиболее близким техническим решением - прототипом (имеет признаки: Способ генерации неиндукционного тороидального затравочного тока при стационарной работе термоядерного реактора, включающий введение в плазму излучения на ионно-циклотронной частоте и высокочастотный нагрев ионов, движущихся по потато орбитам, проходящим вблизи магнитной оси токамака) является способ генерации неиндукционного тока при стационарной работе самоподдерживающегося термоядерного реактора, предложенного в работе L-G.Eriksson and F.Porcelly, Dynamics of energetic ion orbits in magnetically confined plasmas, Plasma physics and controlled fusion, v.43, p.R145, 2001. Для реализации этого предложения рассматривается нагрев ионов на потато орбите, проходящей через магнитную ось, у которой продольная скорость обращается в нуль на оси (под термином: «потато орбита» следует понимать траекторию движения частицы, на которой направление продольной скорости частицы совпадает с направлением омического тока в токамаке «…potato bootstrap current…»),- См. например:K.C.Shaing et al., Steady State Tokamak Equilibria Without External Current Drive, Phys. Rev. Letters, 79, 3652, 1997.

В этом способе для создания стационарного термоядерного реактора на основе системы «Токамак» предлагалось использовать высокочастотный нагрев только ионов, движущихся по потато орбитам, проходящих через магнитную ось токамака. При этом создают ловушку со стационарным тороидальным магнитным полем, заполняют ее плазмой с плотностью и температурой, необходимыми для осуществления самоподдерживающихся термоядерных реакций, и генерируют диамагнитный ток ионов, проходящих только через магнитную ось, при этом используется излучение узкополосного генератора ионной циклотронной частоты. Недостатком известного способа является то, что диамагнитный ток рассчитывался только на магнитной оси установки, где плотность бутстреп тока близка к нулю, а при удалении от оси установки плотность бутстреп-тока нарастает. Такое сильно немонотонное распределение плотности тока делает невозможным устойчивое удержание плазмы.

Техническим результатом предложенного изобретения является использование механизма генерации затравочного тока в рассматриваемой области при увеличении поперечной энергии частиц малой добавки (например 3He), движущихся по этим орбитам при помощи излучения широкополосного генератора ионной циклотронной частоты, что позволяет существенно увеличивать неиндукционный продольный ток по сравнению с током, получаемым известными методами, в частности, по сравнению с прототипом.

Для достижения указанного технического результата предложен способ генерации неиндукционного тороидального затравочного тока при стационарной работе термоядерного реактора, включающий введение в формируемую в вакуумной камере реактора плазму излучения на ионно-циклотронной частоте и высокочастотный нагрев ионов, движущихся по потато орбитам, проходящим вблизи магнитной оси токамака,причем, дополнительно в плазму вводят ионы 3He, высокочастотный нагрев которых производят посредством широкополосного (Δf=±0.04f0) излучения генератора ионной циклотронной частоты, причем нагрев осуществляют в области с радиусом до вблизи магнитной оси установки, где: A=R/a - аспектное отношение, ρi - ларморовский радиус иона, q - коэффициент запаса устойчивости, R и а - большой и малый радиусы токамака,

при этом

- при формировании плазмы вакуумную камеру реактора заполняют смесью дейтерия, трития, а ионы 3He добавляют в количестве от 1 до 5% относительно количества ионов основной плазмы.

Для достижения технического результата в способе генерации неиндукционного тороидального затравочного тока при стационарной работе термоядерного реактора создают ловушку со стационарным тороидальным магнитным полем, заполняют ее плазмой с плотностью и температурой, необходимыми для осуществления самоподдерживающихся термоядерных реакций, добавляют в нее ионы малой добавки (в дейтериево-тритиевой плазме это могут быть ионы 3Не), увеличивают поперечную энергию ионов малой добавки при помощи излучения широкополосного генератора ионно-циклотронной частоты.

В способе генерации тороидального затравочного тока при стационарной работе самоподдерживающегося термоядерного реактора осуществляют следующую последовательность операций.

Вакуумную камеру термоядерного реактора типа «Токамак» заполняют смесью дейтерия и трития с небольшим (порядка 1-5%) количеством 3He. Внутри камеры создают тороидальное магнитное поле и возбуждают вихревое электрическое поле, осуществляют пробой газа, возбуждают омический (индукционный) ток, в результате чего камера установки заполняется плазмой. Регулируют величину вихревого электрического поля, величину поступающей в камеру из дополнительного устройства дейтерий-тритиевой смеси и, используя систему дополнительного нагрева ионов и электронов, достигают рабочих параметров плазмы. Одновременно при помощи излучения широкополосного генератора ионно-циклотронной частоты увеличивают поперечную энергию ионов добавки, что приводит к генерации тороидального затравочного тока в конечной области вблизи магнитной оси установки. Величина этого тока определяется величиной запаса устойчивости вблизи оси установки, величиной области, в которой производится нагрев, сортом и количеством ионов малой добавки.

В предложенном способе генерации тороидального затравочного тока вблизи магнитной оси термоядерного реактора при стационарной работе термоядерного реактора используется увеличение поперечной энергии потато частиц за счет использования излучения широкополосного генератора ионно-циклотронной частоты, пересекающих экваториальную плоскость установки в области, в которой нет частиц, движущихся в противоположном направлении (термин: «потато частиц» подразумевает частицы (ионы), движущиеся по «потато орбите»).

Практически реализация предложенного решения поясняется приведенными ниже параметрами работы и соотношениями используемых регулируемых величин.

А именно: в предложенном способе генерации неиндукционного тороидального затравочного тока и полоидального магнитного поля в токамаке для обеспечения стационарной работы термоядерного реактора дополнительно генерируют неиндукционный тороидальный затравочный ток с использованием частиц, движущихся по потато орбитам в конечной области вблизи магнитной оси. Параметры этой области определены ниже.

Для оценки используем следующие параметры установки ИТЭР:

Большой радиус установки R=6.2 м
Малый радиус установки a=2 м
Напряженность магнитного поля на оси
установки B0=5.3 Тл
Коэффициент запаса устойчивости на оси q=1
Плотность ионов 3Не nHe=1019 м-3
Поперечная энергия ускоренных ионов 3He 1 МэВ
Величина омического тока 15 МА

Радиус области, в которой необходимо производить нагрев ионов

где А=R/а - аспектное отношение, ρi - ларморовский радиус иона.

Для ИТЕР r/a=0.114. Ширина полосы ионно-циклотронных частот генерации

где .

Расчеты показывают, что предлагаемый метод позволяет создать вблизи оси установки ИТЕР неиндукционный тороидальный затравочный ток величиной 1 МА, т.е. ток, максимальная величина которого составляет 6.7% от величины омического тока, что более чем в 10 раз превышает величину неиндукционного тока, создаваемого известным способом.


СПОСОБ ГЕНЕРАЦИИ НЕИНДУКЦИОННОГО ТОРОИДАЛЬНОГО ЗАТРАВОЧНОГО ТОКА ПРИ СТАЦИОНАРНОЙ РАБОТЕ ТЕРМОЯДЕРНОГО РЕАКТОРА
Источник поступления информации: Роспатент

Showing 81-90 of 259 items.
20.07.2015
№216.013.64ef

Способ восстановления физико-механических свойств внутрикорпусных устройств водо-водяного энергетического реактора ввэр-1000

Изобретение относится к восстановительной термической обработке узлов водо-водяных энергетических реакторов (ВВЭР) и направлено на повышение ресурса и обеспечение безопасной эксплуатации реакторов ВВЭР-1000. Указанный результат достигается тем, что способ восстановления физико-механических...
Тип: Изобретение
Номер охранного документа: 0002557386
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64f7

Способ выращивания эпитаксиальных пленок монооксида европия на кремнии

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, в частности тонких пленок на основе монооксида европия, и может быть использовано для создания устройств спинтроники, например спиновых транзисторов и инжекторов спин-поляризованного тока. Способ выращивания...
Тип: Изобретение
Номер охранного документа: 0002557394
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.67c4

Комбинированный сверхпроводник

Изобретение относится к области прикладной сверхпроводимости и может быть использовано при изготовлении сверхпроводящих обмоток, сверхпроводящих накопителей энергии, дипольных и квадрупольных магнитов для ускорителей заряженных частиц. Комбинированный сверхпроводник содержит провода 1,...
Тип: Изобретение
Номер охранного документа: 0002558117
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.69df

Тепловыделяющая сборка стержневых твэлов (варианты) и способ ее работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР (PWR) и кипящих реакторах типа ВК (BWR). Предложена конструктивная схема ТВС со стержневыми твэлами, расположенными наклонно к вертикальной оси и образующими конусные и щелевые коллекторы для...
Тип: Изобретение
Номер охранного документа: 0002558656
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.744a

Способ генерации энергии в анаэробной системе

Изобретение относится преимущественно к области энергетики, в частности анаэробной энергетики, и может быть использовано в воздухонезависимых энергоустановках (ЭУ) с тепловыми двигателями и электрохимическими генераторами. Способ генерации энергии в анаэробной системе включает реакцию водорода...
Тип: Изобретение
Номер охранного документа: 0002561345
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.746b

Способ получения радионуклида никель-63

Изобретение относится к реакторной технологии получения радионуклидов и может быть использовано для производства радионуклида Ni, являющегося основой для создания миниатюрных автономных источников электрической энергии с длительным сроком службы, работающих на бета-вольтаическом эффекте. Способ...
Тип: Изобретение
Номер охранного документа: 0002561378
Дата охранного документа: 27.08.2015
20.10.2015
№216.013.84d2

Способ управления энергетической установкой

Изобретение относится к области управления энергетическими установками, включая стационарные и транспортные ядерные энергетические установки, в том числе с жидко-металлическим теплоносителем ядерного реактора и закритическими параметрами пара. Давление пара регулируют управлением положения...
Тип: Изобретение
Номер охранного документа: 0002565605
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8579

Способ управления ядерной энергетической установкой

Изобретение относится к области управления энергетическими установками (ЯЭУ), включая стационарные и транспортные ядерные энергетические установки, в том числе с жидкометаллическим теплоносителем ядерного реактора и закритическими параметрами пара. Технический результат - повышение точности...
Тип: Изобретение
Номер охранного документа: 0002565772
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.8fd1

Подводная ядерная термоэлектрическая установка

Изобретение относится к ядерным термоэлектрическим установкам. Для достижения этого результата предложена подводная ядерная термоэлектрическая установка, содержащая расположенные в газоплотной защитной оболочке легководный ядерный реактор и блоки термоэлектрические (БТЭ), равномерно...
Тип: Изобретение
Номер охранного документа: 0002568433
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8ffe

Способ разложения карбонатов

Изобретение может быть использовано в химической, горнодобывающей промышленности. Способ разложения карбонатов включает измельчение исходного сырья, разложение карбонатов за счет подвода внешней энергии, отвод конверсионного газа, охлаждение целевого продукта. В качестве карбонатов используют...
Тип: Изобретение
Номер охранного документа: 0002568478
Дата охранного документа: 20.11.2015
Showing 81-90 of 150 items.
20.07.2015
№216.013.62fd

Электрохимический преобразователь энергии

Изобретение относится к автономным системам и установкам энергообеспечения, использующим различные виды топлива. Электрохимический преобразователь энергии содержит электроды, электрический соединитель и слой твердого электролита, выполненный из смеси оксидов металлов, включающих диоксид...
Тип: Изобретение
Номер охранного документа: 0002556888
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64ef

Способ восстановления физико-механических свойств внутрикорпусных устройств водо-водяного энергетического реактора ввэр-1000

Изобретение относится к восстановительной термической обработке узлов водо-водяных энергетических реакторов (ВВЭР) и направлено на повышение ресурса и обеспечение безопасной эксплуатации реакторов ВВЭР-1000. Указанный результат достигается тем, что способ восстановления физико-механических...
Тип: Изобретение
Номер охранного документа: 0002557386
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64f7

Способ выращивания эпитаксиальных пленок монооксида европия на кремнии

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, в частности тонких пленок на основе монооксида европия, и может быть использовано для создания устройств спинтроники, например спиновых транзисторов и инжекторов спин-поляризованного тока. Способ выращивания...
Тип: Изобретение
Номер охранного документа: 0002557394
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.67c4

Комбинированный сверхпроводник

Изобретение относится к области прикладной сверхпроводимости и может быть использовано при изготовлении сверхпроводящих обмоток, сверхпроводящих накопителей энергии, дипольных и квадрупольных магнитов для ускорителей заряженных частиц. Комбинированный сверхпроводник содержит провода 1,...
Тип: Изобретение
Номер охранного документа: 0002558117
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.69df

Тепловыделяющая сборка стержневых твэлов (варианты) и способ ее работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР (PWR) и кипящих реакторах типа ВК (BWR). Предложена конструктивная схема ТВС со стержневыми твэлами, расположенными наклонно к вертикальной оси и образующими конусные и щелевые коллекторы для...
Тип: Изобретение
Номер охранного документа: 0002558656
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.744a

Способ генерации энергии в анаэробной системе

Изобретение относится преимущественно к области энергетики, в частности анаэробной энергетики, и может быть использовано в воздухонезависимых энергоустановках (ЭУ) с тепловыми двигателями и электрохимическими генераторами. Способ генерации энергии в анаэробной системе включает реакцию водорода...
Тип: Изобретение
Номер охранного документа: 0002561345
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.746b

Способ получения радионуклида никель-63

Изобретение относится к реакторной технологии получения радионуклидов и может быть использовано для производства радионуклида Ni, являющегося основой для создания миниатюрных автономных источников электрической энергии с длительным сроком службы, работающих на бета-вольтаическом эффекте. Способ...
Тип: Изобретение
Номер охранного документа: 0002561378
Дата охранного документа: 27.08.2015
20.10.2015
№216.013.84d2

Способ управления энергетической установкой

Изобретение относится к области управления энергетическими установками, включая стационарные и транспортные ядерные энергетические установки, в том числе с жидко-металлическим теплоносителем ядерного реактора и закритическими параметрами пара. Давление пара регулируют управлением положения...
Тип: Изобретение
Номер охранного документа: 0002565605
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8579

Способ управления ядерной энергетической установкой

Изобретение относится к области управления энергетическими установками (ЯЭУ), включая стационарные и транспортные ядерные энергетические установки, в том числе с жидкометаллическим теплоносителем ядерного реактора и закритическими параметрами пара. Технический результат - повышение точности...
Тип: Изобретение
Номер охранного документа: 0002565772
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.8fd1

Подводная ядерная термоэлектрическая установка

Изобретение относится к ядерным термоэлектрическим установкам. Для достижения этого результата предложена подводная ядерная термоэлектрическая установка, содержащая расположенные в газоплотной защитной оболочке легководный ядерный реактор и блоки термоэлектрические (БТЭ), равномерно...
Тип: Изобретение
Номер охранного документа: 0002568433
Дата охранного документа: 20.11.2015
+ добавить свой РИД