×
27.03.2014
216.012.aeef

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ И СРЕДНЕГО РАЗМЕРА ЧАСТИЦ ПЫЛИ

Вид РИД

Изобретение

Аннотация: Способ включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком. Используют измерительный канал, содержащий исследуемую среду, зондируемую световым пучком, и дополнительный канал, который заполнен очищенной от пыли газовой смесью. Далее в обоих каналах происходит разделение светового потока на широкий и узкий, преобразование световых потоков в электрические сигналы, вычитание сигнала, пропорционального узкому световому пучку опорного канала, из сигнала, пропорционального узкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, а также вычитание сигнала, пропорционального широкому световому пучку опорного канала, из сигнала, пропорционального широкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, который определяет по полученным сигналам о широком и узком пучках общую концентрацию пыли и размер частиц пыли. Технический результат - повышение точности измерений среднего размера и концентрации частиц пыли. 2 ил.
Основные результаты: Фотоэлектрический способ определения размеров и концентрации частиц пыли, включающий преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока на широкий и узкий, преобразование данных потоков в электрические сигналы, отличающийся тем, что используют измерительный канал, содержащий исследуемую среду, зондируемую световым пучком, и дополнительный канал, который заполнен очищенной от пыли газовой смесью, далее в обоих каналах происходит разделение светового потока на широкий и узкий, преобразование световых потоков в электрические сигналы, вычитание сигнала, пропорционального узкому световому пучку опорного канала из сигнала, пропорционального узкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, а также вычитание сигнала, пропорционального широкому световому пучку опорного канала, из сигнала, пропорционального широкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, который определяет по полученным сигналам о широком и узком пучкам общую концентрацию пыли и размер частиц пыли.

Изобретение относится к измерительной технике.

Промышленная применимость изобретения заключается в определении общей концентрации и среднего размера частиц пыли и, в свою очередь, общей доли респирабельной фракции пыли, вызывающей профессиональные легочные заболевания рабочих.

Известен оптический пылемер (Пат. России №2095792, кл. МПК G01N 21/85) для непрерывного измерения запыленности газов. Принцип работы устройства заключается в следующем: в оптическом пылемере первый излучатель расположенный перед рабочей камерой, формирует измерительный канал и оптически связан с фотоприемником через защитные окна рабочей камеры, второй излучатель, расположенный за рабочей камерой, формирует контрольный канал и оптически связан с фотоприемником, третий излучатель расположен внутри устройства за рабочей камерой и формирует дополнительный контрольный канал и оптически связан с фотоприемником через защитное окно. При поочередном снятии показаний со всех излучателей определяется уровень запыленности в измерительном канале и сравнивается с данными, полученными с контрольных каналов.

Недостатком этого устройства является отсутствие возможности определения среднего размера частиц.

Известен способ определения дисперсной среды (Шифрин К.С, Мороз Б.З., Сахаров А.Н. "Определение характеристик дисперсной среды по данным ее прозрачности" - ДАН СССР, 1971, т.199, №3 с 581-598), на основе которого составлено регистрационное устройство для измерения методом флюктуации (Шифрин К.С "Введение в оптику океана", Санкт-Петербург: "Гидрометеоиздат", 1983 - с.220-227) выбранное в качестве прототипа.

На фиг.1 изображена блок-схема устройства, работающего по данному способу.

Принцип работы по указанному способу заключается в следующем. Параллельный пучок от источника света 1, промодулированный модулятором 2, проходит сквозь смотровые окна 3, 4 кюветы 4 с исследуемой средой и попадает на светоделительное зеркало 6, которое пропускает центральную часть пучка, а остальной свет посылает на фотоприемник 9; из прошедшего света диафрагмой 7 формируется узкий пучок, который поступает на фотоприемник 8. С фотоприемников сигналы поступают на блок 10, в котором происходит электрическое выравнивание и вычитание сигналов, затем разностный сигнал подается на усилитель 11 и далее на синхронный детектор 12, опорный сигнал на который поступает от фотодиода 13. Последний освещается светом, промодулированным модулятором 2. Спектр флюктуации регистрируется на записывающем блоке 14.

Недостатком указанного способа является низкая точность измерений среднего размера и концентрации частиц пыли.

Задачей предлагаемого изобретения является повышение точности измерений среднего размера и концентрации частиц пыли.

Поставленная задача решается тем, что фотоэлектрический способ определения размеров и концентрации частиц пыли, включающий преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока на широкий и узкий, преобразование данных потоков в электрические сигналы, электрическое вычитание этих сигналов, синхронное детектирование и регистрацию спектра флюктуации в записывающем блоке, для повышения точности измерений вводятся кроме вышеописанного измерительного канала дополнительный опорный канал, который заполнен очищенной от пыли газовой смесью, по своему составу аналогичной отходящим газам конкретного предприятия, зондируемый вторым световым пучком, далее в обоих каналах происходит разделение светового потока на широкий и узкий, преобразование световых потоков в электрические сигналы, вычитание сигнала, пропорционального узкому световому пучку опорного канала из сигнала, пропорционального узкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, а также вычитание сигнала, пропорционального широкому световому пучку опорного канала из сигнала, пропорционального широкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, который определяет по полученным сигналам о широком и узком пучкам, общую концентрацию пыли и размер частиц пыли.

Технический результат, который может быть получен при осуществлении изобретения, состоит в повышении точности измерения концентрации, а так же определении среднего размера частиц пыли.

На фиг.2 изображена блок-схема устройства, работающего по данному способу.

Устройство содержит источник импульсного напряжения 1, последовательно соединенный с источником света 2, последовательно соединенный и оптически связанный со входом устройства разделения светового потока 3, первый выход которого последовательно соединен и оптически связан с защитным окном 4, защитным окном 5 измерительного канала 6; второй выход устройства разделения светового потока последовательно соединен и оптически связан с защитным окном 13 опорного канала 15, который заполнен очищенной от пыли газовой смесью, по своему составу аналогичной отходящим газам конкретного предприятия и защитным окном 14 опорного канала; защитное окно 5 оптически связано со светоразделительным зеркалом 7, пропускающим центральную часть светового пучка на диафрагму 8, формирующую узкий световой поток, поступающий на фотоприемник 9, который в свою очередь соединен с усилителем 10, последовательно соединенным с сумматором 24, который в свою очередь последовательно соединен с синхронным детектором 25, который также связан с источником импульсного напряжения 1 и микроконтроллером 26, а широкий световой пучок со светоразделительного зеркала 7 попадает на фотоприемник 11, который последовательно соединен с усилителем 12, последовательно соединенным с сумматором 22, который в свою очередь последовательно соединен с синхронным детектором 23, который также связан с источником импульсного напряжения 1 и микроконтроллером 26; аналогично второе защитное окно 14 опорного канала 15 оптически связано со вторым светоразделительным зеркалом 16, пропускающим центральную часть светового пучка на диафрагму 17, формирующую узкий световой поток, поступающий на фотоприемник 18, который в свою очередь соединен с усилителем 19, последовательно соединенным с сумматором 24, который в свою очередь последовательно соединен с синхронным детектором 25, который также связан с источником импульсного напряжения 1 и микроконтроллером 26, а широкий световой пучок со светоразделительного зеркала 16 попадает на фотоприемник 20, который последовательно соединен с усилителем 21, последовательно соединенным с сумматором 22, который в свою очередь последовательно соединен с синхронным детектором 23, который также связан с источником импульсного напряжения 1 и микроконтроллером 26.

Работа данного устройства по предлагаемому способу основана на так называемом методе флюктуации. Измерение прозрачности позволяет определить оптическую толщину системы τ. Наблюдения показывают, что если частиц в пучке много, то прозрачность системы испытывает заметные флюктуации. Эти флюктуации вызваны случайными перемещениями частиц, при этом частицы по разному перекрывают друг друга. Во флюктуациях содержится ценная информация о свойствах изучаемой дисперсной системы. Дисперсия прозрачности, помимо τ зависит непосредственно от числа частиц в изучаемом объекте, так что одновременное измерение прозрачности и дисперсии среды дает нам метод определения как среднего размера, так и концентрации частиц.

При разделении светового потока, с помощью большего по площади пучка света мы определяем прозрачность системы, а по ней уже оптическую толщину системы, а с помощью сжатого, дисперсию среды; после вычитания и всех преобразований мы можем определить число частиц в пучке и их размеры по следующим формулам:

Формула (2) выражает закон Бугера-Ламберга, где I - интенсивность света, прошедшего сквозь дисперсную среду, I0 - интенсивность падающего пучка, τ - оптическая толщина системы. Основным является соотношение:

с помощью которого по измеренным дисперсии D и оптической толщине τ находим N - среднее число частиц в просвечиваемом объекте и, следовательно, - концентрацию частиц и so - средний поперечник ослабления света частицей, здесь φ(τ) - функция, связывающая дисперсию D с τ и N, значения которой приведены в (Шифрин К.С "Введение в оптику океана", Санкт-Петербург: «Гидрометеоиздат», 1983 - с 221).

Функция φ(τ) имеет следующие оценки:

Для определения среднего разброса полученных значений найдем коэффициент вариации γ интенсивности прошедшего пучка:

где s=so/S - относительная безразмерная площадь.

При малой оптической толщине системы τ коэффициент вариации равен:

В свою очередь при большой τ:

Поскольку при τ→0 нет взаимного затенения и γ также →0, а при τ→∞ дисперсия спадает медленнее, чем квадрат интенсивности и γ→∞.

Используя оценку (5) найдем, что при любых τ:

Из формулы (6) видно, что при заданном τ надо стремиться иметь s=s0/S как можно больше, т.е. стараться работать с максимально узкими пучками.

Приведем теперь окончательные формулы, позволяющие определить средний поперечник ослабления света частицей s0 и концентрацию частиц через среднюю интенсивность прошедшего пучка I, дисперсию сигнала D и площадь сечения пучка S:

где l - момент случайной величины Y.

Работа устройства по данному способу осуществляется следующим образом: генератор функционально-импульсной развертки 1, являющийся источником импульсного напряжения, подает импульсное напряжение на источник светового излучения 2, оптически связанный со входом устройства разделения светового потока 3, основное назначение которого направить разделенные световые потоки в измерительный канал 6 и опорный канал 15.

Импульсное световое излучение проходит через окна 4, 5 измерительного канала 6 и ослабляется пылью по закону Бугера-Ламберта-Бера и поступает на светоразделительное зеркало 7, основной задачей которого является разделение пучка света на два, причем один из них максимально узкий по отношению к другому, такое разделение необходимо для одновременного измерения дисперсии и прозрачности среды, по большему пучку определяется прозрачность среды, а по сжатому в свою очередь дисперсия, больший пучок попадает на фотоприемник 11, преобразующий свет в электрический сигнал, затем этот сигнал поступает на усилитель 12 и затем на сумматор 22, в котором происходит электрическое вычитание сигналов измерительного и опорного каналов, который в свою очередь последовательно соединен с синхронным детектором 23, который также связан с источником импульсного напряжения 1 и микроконтроллером 26, в свою очередь центральная часть светового пучка со светоразделительного зеркала 7 поступает на диафрагму 8, формирующую узкий световой поток, поступающий на фотоприемник 9, преобразующий световой поток в электрический сигнал, затем этот сигнал поступает на усилитель 10, затем сигнал поступает на сумматор 24, который в свою очередь последовательно соединен с синхронным детектором 25, который также связан с источником импульсного напряжения 1 и микроконтроллером 26.

Рассмотрим работу опорного канала 15. Импульсное световое излучение проходя через окна 13, 14 опорного канал 15 изменяется незначительно и поступает на светоразделительное зеркало 16, основной задачей которого является разделение пучка света на два, причем один из них максимально узкий по отношению к другому, такое разделение необходимо для одновременного измерения дисперсии и прозрачности среды, по большему пучку определяется прозрачность среды, а по сжатому в свою очередь дисперсия, больший пучок попадает на фотоприемник 20, преобразующий свет в электрический сигнал, затем этот сигнал поступает на усилитель 21 и затем на сумматор 22, в котором происходит электрическое вычитание сигналов измерительного и опорного каналов, который в свою очередь последовательно соединен с синхронным детектором 23, который также связан с источником импульсного напряжения 1 и микроконтроллером 26 в свою очередь центральная часть светового пучка со светоразделительного зеркала 16 поступает на диафрагму 17, формирующую узкий световой поток, поступающий на фотоприемник 18, преобразующий световой поток в электрический сигнал, затем этот сигнал поступает на усилитель 19, затем сигнал поступает на сумматор 24, который в свою очередь последовательно соединен с синхронным детектором 25, который также связан с источником импульсного напряжения 1 и микроконтроллером 26.

Таким образом, рассмотренный способ, в отличие от известных, позволяет получить более высокую точность измерения концентрации и размеров частиц за счет введения дополнительного опорного канала, позволяющего уменьшить уровень относительных ошибок при измерениях, что в свою очередь повышает точность измерения среднего размера и концентрации частиц пыли.

Фотоэлектрический способ определения размеров и концентрации частиц пыли, включающий преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока на широкий и узкий, преобразование данных потоков в электрические сигналы, отличающийся тем, что используют измерительный канал, содержащий исследуемую среду, зондируемую световым пучком, и дополнительный канал, который заполнен очищенной от пыли газовой смесью, далее в обоих каналах происходит разделение светового потока на широкий и узкий, преобразование световых потоков в электрические сигналы, вычитание сигнала, пропорционального узкому световому пучку опорного канала из сигнала, пропорционального узкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, а также вычитание сигнала, пропорционального широкому световому пучку опорного канала, из сигнала, пропорционального широкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, который определяет по полученным сигналам о широком и узком пучкам общую концентрацию пыли и размер частиц пыли.
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ И СРЕДНЕГО РАЗМЕРА ЧАСТИЦ ПЫЛИ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ И СРЕДНЕГО РАЗМЕРА ЧАСТИЦ ПЫЛИ
Источник поступления информации: Роспатент

Showing 31-40 of 83 items.
20.08.2014
№216.012.ea21

Источник опорного напряжения

Устройство относится к области электротехники и может использоваться при проектировании стабилизаторов напряжения, аналого-цифровых и цифроаналоговых преобразователей и других устройств автоматики. Техническим результатом является повышение стабильности выходного напряжения при изменении тока...
Тип: Изобретение
Номер охранного документа: 0002525745
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.efc7

Широкополосный усилитель мощности

Изобретение относится к области радиотехники и связи. Техническим результатом является уменьшение уровня нелинейных искажений и шумов различного происхождения в цепи нагрузки ШНУ с неинвертирующим выходным каскадом. Широкополосный усилитель мощности содержит неинвертирующий выходной каскад (1),...
Тип: Изобретение
Номер охранного документа: 0002527202
Дата охранного документа: 27.08.2014
20.09.2014
№216.012.f4a4

Сотовая система питьевого водоснабжения

Изобретение относится к системам водоснабжения преимущественно малоэтажных поселений, расположенных в районах без вечномерзлых грунтов. Система состоит из кольцевых водопроводов, проложенных по высоким опорам и замкнутых на циркуляционную насосную станцию с пунктом подогрева. Система разделена...
Тип: Изобретение
Номер охранного документа: 0002528461
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f643

Способ определения драпируемости материалов для одежды

Изобретение относится к легкой промышленности Способ заключается в подготовке образца материала в форме круга, закреплении его на держателе, выполненном в виде полусферы с иглой и жестко закрепленном на основании, выполненном в виде полой камеры, с круговыми отверстиями, направленными в сторону...
Тип: Изобретение
Номер охранного документа: 0002528876
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fb9d

Управляемый усилитель и аналоговый смеситель сигналов

Изобретение относится к области радиотехники и связи и может быть использовано в радиоприемных устройствах, фазовых детекторах и модуляторах, а также в системах умножения частоты. Достигаемый технический результат: получение на выходе не только амплитудных изменений выходного сигнала под...
Тип: Изобретение
Номер охранного документа: 0002530259
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fb9e

Температурно стабильный источник опорного напряжения на основе стабилитрона

Изобретение относится к области электротехники и может использоваться при проектировании стабилизаторов напряжения, аналого-цифровых и цифроаналоговых преобразователей и других элементов автоматики. Техническим результатом является повышение температурной стабильности выходного напряжения....
Тип: Изобретение
Номер охранного документа: 0002530260
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fba0

Быстродействующий аттенюатор для входных цепей аналого-цифровых интерфейсов

Изобретение относится к области электротехники, радиотехники, связи и может использоваться в структуре различных интерфейсов, измерительных приборах. Технический результат заключается в расширении диапазона рабочих частот устройства и повышении его быстродействия при работе с импульсными...
Тип: Изобретение
Номер охранного документа: 0002530262
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fba1

Быстродействующий истоковый повторитель напряжения

Изобретение относится к области радиотехники и связи и может использоваться в различных аналоговых устройствах на полевых и биполярных транзисторах в качестве выходного (буферного) усилителя. Техническим результатом является расширение диапазона рабочих частот ИПН при наличии емкости на выходе...
Тип: Изобретение
Номер охранного документа: 0002530263
Дата охранного документа: 10.10.2014
27.11.2014
№216.013.0be7

Быстродействующий датчик физических величин с потенциальным выходом

Изобретение относится к области информационно-измерительной техники и автоматики и может быть использовано в датчиках, обеспечивающих измерение различных физических величин. Датчик физических величин с потенциальным выходом содержит сенсор (1) с внутренней емкостью (2) и внутренним...
Тип: Изобретение
Номер охранного документа: 0002534455
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0cea

Способ определения параметров взвешенных частиц произвольной формы

Изобретение относится к технике автоматизации измерений и может быть использовано при анализе взвешенных частиц произвольной формы. Согласно способу производят освещение потока частиц световым пучком и регистрацию параметров световых сигналов, формируемых частицами при их пролете через...
Тип: Изобретение
Номер охранного документа: 0002534723
Дата охранного документа: 10.12.2014
Showing 31-40 of 232 items.
10.04.2013
№216.012.3502

Широкополосный дифференциальный усилитель с парафазным выходом

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов. Техническим результатом является расширение диапазона рабочих частот за счет обеспечения повышения верхней граничной частоты. Усилитель содержит первый (1) и второй...
Тип: Изобретение
Номер охранного документа: 0002479113
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3503

Избирательный усилитель

Изобретение относится к области радиотехники и связи. Техническим результатом является уменьшение общего энергопотребления избирательного усилителя. В усилителе коллектор первого (1) входного транзистора связан с эмиттером выходного транзистора (5) через последовательно соединенные первый (9)...
Тип: Изобретение
Номер охранного документа: 0002479114
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3504

Избирательный усилитель

Изобретение относится к области радиотехники и связи и может использоваться в устройствах фильтрации радиосигналов, телевидении, радиолокации. Техническим результатом является уменьшение общего энергопотребления. Избирательный усилитель содержит источник сигнала (1), связанный с базой первого...
Тип: Изобретение
Номер охранного документа: 0002479115
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3505

Избирательный усилитель

Изобретение относится к области радиотехники и связи и может использоваться в устройствах фильтрации радиосигналов, телевидении, радиолокации и т.п. Техническим результатом является уменьшение общего энергопотребления за счет повышения добротности АЧХ ИУ и его коэффициента усиления по...
Тип: Изобретение
Номер охранного документа: 0002479116
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.3571

Конструкция теплозащитного пакета с переборками

Предлагаемое техническое решение относится к швейной промышленности и может использоваться при изготовлении верхней одежды с объемными несвязными утеплителями, обеспечивая заданный уровень качества готовых изделий. Конструкция теплозащитного пакета с переборками содержит внешний и внутренний...
Тип: Изобретение
Номер охранного документа: 0002479234
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.3ae6

Колодочный тормоз

Изобретение относится к области автомобилестроения и может быть использовано в качестве колесного тормоза автомобиля и других транспортных средств. Колодочный тормоз содержит барабан с цилиндрической рабочей поверхностью, установленный на корпусе с возможностью вращения, и взаимодействующую с...
Тип: Изобретение
Номер охранного документа: 0002480639
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3b15

Способ определения технического состояния бытового холодильного прибора

Предложен способ определения технического состояния бытового холодильного прибора, включающий измерение температур в его отделениях, измерение времени работы компрессора, в котором техническое состояние бытового холодильного прибора оценивается по скорости понижения температуры в его отделениях...
Тип: Изобретение
Номер охранного документа: 0002480686
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3b4e

Способ акустико-эмиссионного контроля процесса импрегнирования

Использование: для акустико-эмиссионного контроля процесса импрегнирования. Сущность: заключается в том, что выполняют регистрацию акустико-эмиссионного сигнала в пропиточном автоклаве, при этом производится выделение огибающей регистрируемого сигнала в реальном масштабе времени, оценка...
Тип: Изобретение
Номер охранного документа: 0002480743
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3b91

Источник опорного напряжения отрицательной полярности

Изобретение относится к области электротехники и может использоваться при проектировании стабилизаторов напряжения, аналого-цифровых и цифроаналоговых преобразователей и других элементов автоматики и вычислительной техники. Технический результат заключается в повышении температурной...
Тип: Изобретение
Номер охранного документа: 0002480810
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3be5

Избирательный усилитель

Изобретение относится к области радиотехники и связи и может использоваться в устройствах СВЧ-фильтрации радиосигналов систем сотовой связи, спутникового телевидения, радиолокации. Технический результат заключается в повышении добротности АЧХ усилителя и его коэффициента усиления по напряжению...
Тип: Изобретение
Номер охранного документа: 0002480894
Дата охранного документа: 27.04.2013
+ добавить свой РИД