×
27.03.2014
216.012.ae68

Результат интеллектуальной деятельности: ТЕПЛОНОСИТЕЛЬ НА ОСНОВЕ СОЕДИНЕНИЙ КРЕМНИЯ

Вид РИД

Изобретение

№ охранного документа
0002510363
Дата охранного документа
27.03.2014
Аннотация: Изобретение относится к области химии и может быть использовано для создания теплоносителей. Предложен теплоноситель на основе кремнийорганических соединений. Теплоноситель содержит соединения на основе органодисилазанов или органоциклосилазанов. Заявленные соединения обладают стабильностью в потоке нейтронов при температуре выше 350°C, которую оценивают по отсутствию изменения молекулярной массы соединения после его облучения нейтронами. Заявленные в качестве теплоносителя соединения имеют температуру кипения ниже 126°C. Техническим результатом является повышенная эффективность заявленного теплоносителя при его использовании в ядерном реакторе и других подобных системах теплорегулирования. 4 з.п. ф-лы, 4 табл.

Изобретение относится к теплоносителям, в том числе неэлектропроводным жидкостям, для различных систем терморегулирования, в частности для атомных реакторов, электрических машин, а также может использоваться в качестве заменителей антифриза и тосола.

Известны теплоносители, в состав которых в качестве основного компонента входят различные гликоли (например, RU 2370512, 2009).

Недостатком теплоносителей на основе гликолей является многокомпонентный сложный состав, включающий 4 антикоррозионные присадки, что усложняет технологию их получения. Кроме того, присутствие воды в составе не обеспечивает диэлектрические свойства теплоносителя.

Известны ингибирующие коррозию теплоносители, содержащие соединения азота из класса триазолов, коллоидную двуокись кремния, поверхностно-активное вещество и, возможно, добавки различных спиртов (US 7662304, 2010; US 20090266519, 2009).

К недостаткам этих теплоносителей можно отнести наличие в составе воды, гидролизующей компоненты ингибирующего теплоносителя, приводя к изменению его вязкости и повышению его проводимости.

В области низкотемпературных теплоносителей широко представлены кремнийорганические соединения из класса силоксанов (RU 2221826, 2004).

Однако при повышенных температурах вязкость теплоносителя будет возрастать за счет увеличения его молекулярной массы, при этом теплоноситель будет осаждаться на теплопередающей поверхности, что приводит к снижению эффективности теплопередачи.

Из уровня техники известен способ получения и использования высокотемпературного теплоносителя (RU 1832696, 1989).

Стабильность полученного теплоносителя зависит от содержания в нем кислорода. При остаточной концентрации кислорода менее 0,5 об. термостабилизация не достигается, а более 5 об. теряется однородность продукта при хранении.

Наиболее близким по технической сущности является использование в качестве теплоносителя полибутилсилазана: (C4H9Si)15(NH)18 (см. GB 921049, 1963).

Однако из-за наличия объемных радикалов, связанных с атомом кремния, не обеспечивается стабильность известного теплоносителя в условиях высоких температур в течение длительного времени, в том числе в потоке нейтронов. Высокая молекулярная масса соединения обусловливает высокую вязкость теплоносителя, что приводит к ухудшению процесса теплообмена.

Задачей изобретения является разработка нового неэлектропроводного теплоносителя, обладающего высокими эксплуатационными характеристиками, в том числе в потоке нейтронов и при эксплуатации в герметичном объеме в течение длительного времени.

Поставленная задача решается описываемым теплоносителем на основе неэлектропроводных соединений кремния, в качестве которых используют органодисилазаны или органоциклосилазаны, обладающие стабильностью в потоке нейтронов при температуре выше 350°C, характеризующиеся отсутствием изменения молекулярной массы соответствующего соединения после его облучения потоком нейтронов, при этом органодисилазаны выбирают из группы: гекаметилдисилазан, гексаметил(N-метил)дисилазан,1 бис(1,1-диметил-1-фенил)силазан, 1,1-диметил-1-фенил-3,3,3-триметилдисилазан, 1,1,1-трифенил-3,3,3-триметилдисилазан, 1,1,1-триэтил-3,3,3-триметилдисилазан, 1-метил, 1-дифенил-3,3,3-триметилдисилазан, а органоциклосилазаны выбирают из группы: гексаметилциклотрисилазан, октаметилциклотрисилазан, гексафенилциклотрисилазан, 1,3,5-метилфенилциклотрисилазан(транс), 1,3,5-метилфенилциклотрисилазан(цис), гексаэтилциклотрисилазан, (N-метил)гексаметилциклотрисилазан, (N-метил)октаметилциклотрисилазан.

Предпочтительно выбирают соединение, обладающее стабильностью в потоке нейтронов 1014 n/cm2 при рабочей температуре выше 400°C и давлении 250-300 ат.

Предпочтительно выбирают соединение, обеспечивающее давление насыщенных паров при 350-450°C не выше 12 атм.

В качестве теплоносителя выбирают соединения, характеризующиеся температурой кипения при атмосферном давлении не менее 126°C.

Предпочтительно, выбранное соединение содержит изотопы 29Si или 30Si и изотопы 15N.

В общем случае заявленные соединения могут быть получены известным способом, а именно: аммонолизом органохлорсиланов. Методики получения описаны в следующих источниках информации: К.А.Андрианов. Л.М.Хананашвили. Технология элементоорганических мономеров и полимеров. - «Химия», 1973, с.177-180; К.А.Андрианов, Л.М.Хананашвили. Технология элементоорганических мономеров и полимеров - «Химия», 1983, с.208-211).

Соединения, содержащие изотопы 29Si или 30Si и изотопы 15N, получают путем взаимодействия соответствующих органохлорсиланов, содержащих изотопы 29Si или 30Si, с аммиаком или амином, содержащим изотоп 15N.

Заявленные в качестве теплоносителя органодисилазаны можно представить общей химической формулой: (1R 2R 4R Si)2- N 3R, где 1R, 2R, 3R, 4R означают одинаковые или разные радикалы, при этом независимо друг от друга представляют собой: 1R=Ph, Me, 2Et; 2R=Me, Et, Ph; 3R=H D, метил D, этил D, пропил D, 4R=Ph; Et; пропил D.

Заявленные в качестве теплоносителя органоциклосилазаны могут быть представлены общей химической формулой , причем n=3, 4; 1R, 2R, 3R, 4R означают одинаковые или разные радикалы, которые независимо друг от друга представляют собой: 1R=Ph, Me, Et; 2R=Me, Et, Ph; 3R=H D, алкил D (метил D, этил D, пропил D), 4R=Ph; Et; пропил D.

В объеме заявленной совокупности признаков достигается новый технический результат, заключающийся в эффективности использования заявленных соединений в качестве теплоносителей, особенно в качестве теплоносителей ядерных реакторов.

Ниже приведены примеры осуществления изобретения, оформленные в виде таблиц, содержащих конкретные физические, теплофизические и иные характеристики, определяющие эффективность работы заявленных соединений под действием облучения, и характеристики прототипа.

Таблица 1
Характеристики прототипа

п.п.
Структурная формула Т кип, °C / Р, мм рт.ст. Молекулярная масса*
До облучения После облучения
прототип (C4H9Si)15(NH)18 1425 1500

Таблица 2
Характеристики гексаорганодисилазанов
Структурная формула T кип, Давление Молекулярная масса
п.п. °C/ P, мм рт.ст. насыщенных паров при T≥350°C До облучения После облучения
1 [(CH3)3Si]2NH 126/760 ≤12 атм 161.4 Изменений нет
2 [(CH3)3Si]2NCH3 148/760 ≤12 атм 175.4 Изменений нет
3 [(CH3)2PhSi]2NH 96.9/0.1 ≤12 атм 285.5 Изменений нет
4 (CH3)2PhSiNHSi (CH3)3 75.9/1 ≤12 атм 223.0 Изменений нет
5 Ph3SiNHSi (CH3)3 186/2 ≤12 атм 347 Изменений нет
6 (C2H5)3SiNHSi(CH3)3 194.3/738 ≤12 атм 203 Изменений нет
7 (CH3)Ph2SiNHSi (CH3)3 173.5/3.5 ≤12 атм 285 Изменений нет

Таблица 3
Характеристики гексаорганоциклотрисилазанов
№ п.п. Структурная формула T кип, °С / Р, мм рт.ст. Давление насыщенных паров при T≥350°C Молекулярная масса
До облучения После облучения
1 [(CH3)2SiNH]3 51-52/4 ≤12 атм 219.51 Изменений нет
2 [(CH3)2SiNH]4 56-57/1 ≤12 атм 292.7 Изменений нет
3 *[Ph2SiNH]3 213.5 ≤12 атм 597 Изменений нет
4 **[CH3PhSiNH]3 транс 246/2-5 ≤12 атм 408 Изменений нет
5 ***[CH3PhSiNH]3 цис 280/7-8 ≤12 атм 408 Изменений нет
6 [(C2H5)2SiNH]3 128-129/1 ≤12 атм 309 Изменений нет

*-T пл, **Т пл. - 61.6-62.6, ***Тпл - 116.5.

Молекулярная масса соединений, указанных в таблицах, определена криоскопическим методом (по температуре замерзания) до и после облучения в течение 1 часа в потоке нейтронов 1014 n/cm2 при рабочей температуре выше 350°C.

Следует заметить, что все соединения, представленные в таблицах 2 и 3, при атмосферном давлении имеют температуру кипения не менее 126°C. Для части соединений, представленных в таблице, температура кипения указана при давлении ниже атмосферного (реальные условия использования), поэтому в соответствующей графе таблицы значение температуры кипения меньше чем 126°С. Однако при 760 мм рт.ст. температуры кипения этих соединений превышают 190°C, что соответствует характеристике, заявленной в п.4 формулы изобретения.

Ниже представлены подробные теплофизические характеристики двух соединений, одно из которых выбрано из группы органодисилазанов, а другое - из группы органоциклосилазанов.

Таблица 4
Теплофизические характеристики гексаметилдисилазана и гексаметилциклотрисилазана
Характеристики Соединения
п.п. [(CH3)3Si]2NH [(CH3)2SiNH]3
1 Диэлектрическая проницаемость, 1000 Hzz 2.27 2.57
2 Показатель преломления, 1.4080 1.4070
3 Плотность ,г/см3 0.7742 1.095
4 Теплота испарения, АН исп, ккал/моль 9.2 (при 70°C) -
5 Теплота образования, ккал/моль, (298 K) -91.8 132
6 Вязкость, сСт, при 20°C 0.9 1.7
7 Теплоемкость Ср, 82.5(298.1 K) 2.64 кДж/кг·K
кал/моль·град кал/моль·K
8 Поверхностное натяжение, 5, дн/см, при 25°C 18.16() 19.02
9 Коэффициент теплопроводности, λ, ккал/м·час·град 0.0985(при 25°C), 0094*(при 60°C) 0.6 Вт/м·K
10 Удельная 5.4·10-14 1.10-13
электропроводность, см-1·Ом-1 при 20±2°C, при 100±2°C 5.1·10-13

Испытаны теплофизические параметры всех заявленных соединений. Результаты испытаний оказались аналогичны результатам, приведенным в таблице 4.

Как следует из описания, все заявленные соединения характеризуются высокими температурами кипения, что обеспечивает низкую плотность паров. Например, температура разложения гексаметилтрисилазана составляет при давлении 2 кбар в атмосфере азота более 1300°C. После облучения мощностью 400 кВ при температурах более 350°C давление насыщенных паров не превышает 12 атм. Не выявлено изменение молекулярной массы заявленных теплоносителей под действием потока нейтронов в реальных условиях работы, что свидетельствует об их стабильности, т.е. возможности их эксплуатации в герметичном объеме в течение длительного времени. Кроме того, заявленные в качестве теплоносителя соединения достаточно инертны и не подвержены взаимодействию с конструкционными металлическими материалами. Таким образом, из результатов испытаний, представленных в описании, можно сделать вывод, что предложенные соединения являются эффективными теплоносителями, в том числе в условиях работы ядерного реактора. Заявленные соединения эффективны также в качестве заменителей антифриза и тосола.

Источник поступления информации: Роспатент

Showing 21-30 of 79 items.
10.05.2014
№216.012.c228

Способ регенерации ионообменной мембраны

Изобретение относится к электрохимическим производствам, в частности к технологии получения хлора и гидроокисей щелочных металлов электролизом раствора хлорида щелочного металла в электролизере с синтетической ионообменной мембраной. Регенерацию ионообменной мембраны, применяемой для получения...
Тип: Изобретение
Номер охранного документа: 0002515453
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.c9d9

Способ получения 7,8(7,9)-додекагидродикарба-нидо-ундекаборатов алкиламмония

Изобретение относится к способу получения незамещенных 7,8(7,9)-додекагидродикарба-нидо-ундекаборатов алкиламмония. Способ включает взаимодействие незамещенных о(м)-карборанов с алкиламинами в среде низших алифатических спиртов. Получение незамещенных...
Тип: Изобретение
Номер охранного документа: 0002517439
Дата охранного документа: 27.05.2014
27.06.2014
№216.012.da06

Способ региоселективного синтеза моногалогенпроизводных 1,2-, 1,7-, 1,12-дикарба-клозо-додекаборанов(12)

Изобретение относится к технологии получения борорганических соединений, в частности к способу региоселективного синтеза моногалогенпроизводных 1,2-, 1,7-, 1,12-дикарба-клозо-додекаборанов(12). Способ включает взаимодействие о(м,п)-карборанов с галогенирующими агентами в среде кислотного...
Тип: Изобретение
Номер охранного документа: 0002521592
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.ddb8

Магнитный эластомер

Изобретение относится к композиционным магнитным материалам. Предложен композиционный магнитный эластомер, состоящий из матрицы высокоэластичного полимера и наполнителя из магнитных частиц, причем в качестве наполнителя используются частицы электропроводящего магнитного наполнителя в...
Тип: Изобретение
Номер охранного документа: 0002522546
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.ddfc

Способ улучшения адгезии к металлам силиконовых композиционных материалов, получаемых по реакции полиприсоединения

Изобретение относится к силиконовым композиционным материалам. Способ улучшения адгезии к металлам силиконовых композиционных материалов включает получение по реакции полиприсоединения композиционного материал, содержащего полидиметилсилоксан с концевыми винильными группами общей формулы...
Тип: Изобретение
Номер охранного документа: 0002522614
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de2c

Способ нерпрерываемого производства пучка ионов карборана с постоянной самоочисткой ионного источника и компонент системы экстракции ионного имплантатора

Изобретение относится к области очистки поверхностей газонаполненных разрядных приборов в процессе покрытия материалов ионами, вводимыми в разрядное пространство. Технический результат - увеличение производительности установки. В ионизационную камеру подают рабочее вещество на основе карборана...
Тип: Изобретение
Номер охранного документа: 0002522662
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e4b8

Способ получения поли(органо)(алкокси)(гидрокси)силоксанов с заданной степенью поликонденсации

Изобретение относится к химии и технологии получения поли(органо)(алкокси)(гидрокси)силоксанов с заданными степенями поликонденсации (n1). Предложен способ получения поли(органо)(алкокси)(гидрокси)силоксанов с заданными степенями поликонденсации (n1) ацидогидролитической поликонденсацией...
Тип: Изобретение
Номер охранного документа: 0002524342
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e613

Способ получения гетероаннулярных 1,1'-бис-(диметилалкоксисилил)ферроценов

Изобретение относится к способам получения симметричных дизамещенных 1,1′-бис-(триорганосилил)ферроценов. Предложен способ получения гетероаннулярных 1,1′-бис-(диметилалкоксисилил)-ферроценов взаимодействием безводного хлористого железа и диметилалкоксисилилциклопентадиенов в среде...
Тип: Изобретение
Номер охранного документа: 0002524692
Дата охранного документа: 10.08.2014
27.09.2014
№216.012.f968

Керамическая суспензия для создания защитных высокотемпературных антиокислительных покрытий на углеродных материалах

Изобретение относится к области химической промышленности, авиационной и космической техники, в частности к получению защитных высокотемпературных антиокислительных покрытий на основе керамических суспензий органоиттрийоксаналюмоксансилоксанов для создания состава YO-AlO-SiO на керамоматричных...
Тип: Изобретение
Номер охранного документа: 0002529685
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.faee

Способ получения графеновых структур

Изобретение относится к нанотехнологии. Графеновые структуры в виде плоских углеродных частиц с поверхностью до 5 мм получают путем сжигания в атмосфере воздуха или инертного газа композитного пресс-материала, полученного из микро- и нанодисперсных порошков активных металлов, таких как...
Тип: Изобретение
Номер охранного документа: 0002530084
Дата охранного документа: 10.10.2014
Showing 21-30 of 163 items.
27.06.2014
№216.012.da06

Способ региоселективного синтеза моногалогенпроизводных 1,2-, 1,7-, 1,12-дикарба-клозо-додекаборанов(12)

Изобретение относится к технологии получения борорганических соединений, в частности к способу региоселективного синтеза моногалогенпроизводных 1,2-, 1,7-, 1,12-дикарба-клозо-додекаборанов(12). Способ включает взаимодействие о(м,п)-карборанов с галогенирующими агентами в среде кислотного...
Тип: Изобретение
Номер охранного документа: 0002521592
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.ddb8

Магнитный эластомер

Изобретение относится к композиционным магнитным материалам. Предложен композиционный магнитный эластомер, состоящий из матрицы высокоэластичного полимера и наполнителя из магнитных частиц, причем в качестве наполнителя используются частицы электропроводящего магнитного наполнителя в...
Тип: Изобретение
Номер охранного документа: 0002522546
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.ddfc

Способ улучшения адгезии к металлам силиконовых композиционных материалов, получаемых по реакции полиприсоединения

Изобретение относится к силиконовым композиционным материалам. Способ улучшения адгезии к металлам силиконовых композиционных материалов включает получение по реакции полиприсоединения композиционного материал, содержащего полидиметилсилоксан с концевыми винильными группами общей формулы...
Тип: Изобретение
Номер охранного документа: 0002522614
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de2c

Способ нерпрерываемого производства пучка ионов карборана с постоянной самоочисткой ионного источника и компонент системы экстракции ионного имплантатора

Изобретение относится к области очистки поверхностей газонаполненных разрядных приборов в процессе покрытия материалов ионами, вводимыми в разрядное пространство. Технический результат - увеличение производительности установки. В ионизационную камеру подают рабочее вещество на основе карборана...
Тип: Изобретение
Номер охранного документа: 0002522662
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e4b8

Способ получения поли(органо)(алкокси)(гидрокси)силоксанов с заданной степенью поликонденсации

Изобретение относится к химии и технологии получения поли(органо)(алкокси)(гидрокси)силоксанов с заданными степенями поликонденсации (n1). Предложен способ получения поли(органо)(алкокси)(гидрокси)силоксанов с заданными степенями поликонденсации (n1) ацидогидролитической поликонденсацией...
Тип: Изобретение
Номер охранного документа: 0002524342
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e613

Способ получения гетероаннулярных 1,1'-бис-(диметилалкоксисилил)ферроценов

Изобретение относится к способам получения симметричных дизамещенных 1,1′-бис-(триорганосилил)ферроценов. Предложен способ получения гетероаннулярных 1,1′-бис-(диметилалкоксисилил)-ферроценов взаимодействием безводного хлористого железа и диметилалкоксисилилциклопентадиенов в среде...
Тип: Изобретение
Номер охранного документа: 0002524692
Дата охранного документа: 10.08.2014
27.09.2014
№216.012.f968

Керамическая суспензия для создания защитных высокотемпературных антиокислительных покрытий на углеродных материалах

Изобретение относится к области химической промышленности, авиационной и космической техники, в частности к получению защитных высокотемпературных антиокислительных покрытий на основе керамических суспензий органоиттрийоксаналюмоксансилоксанов для создания состава YO-AlO-SiO на керамоматричных...
Тип: Изобретение
Номер охранного документа: 0002529685
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.faee

Способ получения графеновых структур

Изобретение относится к нанотехнологии. Графеновые структуры в виде плоских углеродных частиц с поверхностью до 5 мм получают путем сжигания в атмосфере воздуха или инертного газа композитного пресс-материала, полученного из микро- и нанодисперсных порошков активных металлов, таких как...
Тип: Изобретение
Номер охранного документа: 0002530084
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.02da

Способ получения о-люминолятов щелочных металлов

Изобретение относится к способу получения О-люминолятов щелочных металлов. Способ включает взаимодействие 3-нитрофталевой кислоты с гидразингидратом с образованием 5-нитро-2,3-дигидро-1,4-фталазиндиона, последующее восстановление нитрогруппы и получение солей щелочных металлов. При этом реакцию...
Тип: Изобретение
Номер охранного документа: 0002532128
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.082a

Способ получения хемосорбента для очистки инертных газов и газов-восстановителей от примесей

Изобретение относится к способу получения сорбентов для очистки газов. Инертную неорганическую подложку пропитывают раствором литий алюминий гидрида в диэтиловом эфире. Удаляют эфир вакуумированием и осуществляют пиролиз литий алюминий гидрида, нанесенного на подложку, при температуре 100-500°C...
Тип: Изобретение
Номер охранного документа: 0002533491
Дата охранного документа: 20.11.2014
+ добавить свой РИД