×
27.02.2014
216.012.a731

Результат интеллектуальной деятельности: ТЕПЛООБМЕННАЯ ТРУБА

Вид РИД

Изобретение

Аннотация: Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе, канал которой выполнен с выступами и канавками, согласно заявляемому изобретению, канал образован гладкими участками трубы и узкими канавками с геометрическими соотношениями: h/D=0.1, (t-l)/h=1, l/h<(3-5), где h - высота выступа, мм, D - внутренний диаметр теплообменной трубы, мм, t - длина типового участка канала с выступом и канавкой, мм, l - длина канавки, мм. Технический результат - использование предлагаемой теплообменной трубы позволит в 2,5-4 раза уменьшить расход энергии на прокачивание теплоносителей через теплообменный аппарат (ТА), по сравнению с гладкотрубным теплообменным аппаратом, за счет снижения гидросопротивления. 4 ил., 1 табл.
Основные результаты: Теплообменная труба, канал которой выполнен с выступами и канавками, отличающаяся тем, что канал образован гладкими участками трубы и узкими канавками с геометрическими соотношениями:h/D=0,1, (t-l)/h=1, l/h<(3-5),где h - высота выступа, мм,D - внутренний диаметр теплообменной трубы, мм,t - длина типового участка канала с выступом и канавкой, мм,l - длина канавки, мм.

Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники.

Известна теплообменная труба [Назмеев Ю.Г., Конахин A.M., Кумиров Б.А., Олимпиев В.В. Экспериментальное исследование теплообмена при ламинарном течении в трубах с использованием проволочных спиральных вставок. // Тезисы докл. юбилейной научной конф. Казанского филиала Моск. энерг. ин-та. Казань: КФ МЭИ, 1993. С.12-14], канал которой выполнен со спиральной проволочной вставкой (канал «1»). В канале «1» в качестве интенсификатора теплообмена (ИТ) служит проволочная вставка. Оптимальными для этого канала являются параметры h/D=0,171; t/D=4,3, где h - высота выступа, D - внутренний диаметр трубы, t - шаг выступов. Опыты проведены в ограниченном диапазоне характеристических параметров - h/D=0,0714-0,171; t/D=0,714-4,3; Re=400-1000, где Re - число Рейнольдса.

Наиболее близким аналогом к заявляемому изобретению является теплообменная труба [Назмеев Ю.Г., Конахин A.M., Кумиров Б.А., Олимпиев В.В. Теплообмен и гидравлическое сопротивление при ламинарном течении вязкой жидкости в трубах с искусственной шероховатостью. // Теплоэнергетика. 1993. №4. С.66-69], канал которой выполнен с выступами и канавками (канал «2»). В канале «2» в качестве интенсификатора теплообмена (ИТ) служат узкие кольцевые выступы на внутренней поверхности трубы (l<t, где l - длина канавки, t - длина типового участка канала с выступом и канавкой). Для канала «2» использовалась модель [Олимпиев В.В. Модель течения для расчета теплоотдачи и сопротивления каналов с выступами при Re<104 .// Изв. вузов. Авиационная техника. 2001. №2. С.48-52], краткое содержание которой следующее. В потоке после низкого выступа (h/D<0,1, где h - высота выступа, D - внутренний диаметр теплообменной трубы) образуется рециркуляционная зона (РЗ) РЗ1. От кромки выступа по поверхности РЗ1 и далее вдоль стенки развивается пристенный внутренний пограничный слой (ВПС) ВПС2 толщиной δ. Под РЗ1 возникает ВПС3. При низком выступе, соответствующем условиям рациональной интенсификации теплообмена (ИТО), происходит быстрая релаксация течения в ВПС2 и ВПС3 к «стандартному» ламинарному пограничному слою (ЛПС), характерному для пластины (по Блазиусу). Поэтому расчет α (коэффициент теплоотдачи) и τ (касательное напряжение трения) в ВПС2 и ВПС3 возможен по теории для пластины. Участок канала (и потока) длиной t - типовой (повторяющийся), следовательно, осредненные величины α и τ для отрезка t и всего канала одинаковы. Тепловое и динамическое (с учетом сопротивления выступа) взаимодействие потока со стенкой на участке t полностью определяется процессами переноса в ВПС2 и ВПС3. В потоке выше области ламинарно-турбулентного перехода (ЛТП) интенсификация теплообмена (ИТО) объясняется, в основном, малым термосопротивлением тонких ВПС2 и ВПС3. Опыты проведены только для наружной поверхности труб в межтрубном потоке теплообменного аппарата (ТА), в ограниченном диапазоне характеристических параметров - t/D<3.5; Re=400-1200, где Re - число Рейнольдса.

Недостатками известных теплообменных труб являются высокое гидросопротивление и низкая эффективность.

Задачей, на решение которой направлено заявляемое изобретение, является повышение энергетической эффективности за счет снижения гидросопротивления.

Технический результат достигается тем, что в теплообменной трубе, канал которой выполнен с выступами и канавками, согласно заявляемому изобретению, канал образован гладкими участками трубы и узкими канавками с геометрическими соотношениями:

h/D=0.1, (t-l)/h=1, l/h<(3-5),

где h - высота выступа, мм,

D - внутренний диаметр теплообменной трубы, мм,

t - длина типового участка канала с выступом и канавкой, мм,

l - длина канавки, мм.

Сущность изобретения поясняется чертежами и таблицей, где на фиг.1 изображен канал предлагаемой теплообменной трубы (канал «3»), на фиг.2, 3, 4, табл.1 показаны результаты расчетов эффективности (интенсивность теплоотдачи, коэффициент гидравлического сопротивления, относительный энергетический коэффициент) каналов «1», «2» и «3».

Таким образом, для достижения технического результата предложена заявляемая конструкция теплообменной трубы, канал которой (канал «3») образован гладкими участками трубы (t-l)>h и узкими канавками l/h<(3-5), т.е. канал предлагаемой теплообменной трубы является дискретно-шероховатым каналом (ДШК).

Схема течения (и расчета) в канале «3», фиг.1, базируется на модели [Гортышов Ю.Ф., Олимпиев В.В., Абдрахманов А.Р. Расчет турбулентной теплоотдачи и сопротивления в каналах с поперечными кольцевыми канавками. // Изв. вузов. Авиационная техника. 1997. №3. С.56-63] для турбулентного потока. Теплогидравлический расчет канала «3» сводится к расчету α; τ на типовом участке t и в ламинарных ВПС1 и ВПС2.

Расчеты каналов проведены при условиях, одинаковых с [Гортышов Ю.Ф., Олимпиев В.В., Попов И.А. Эффективность промышленно перспективных интенсификаторв теплоотдачи. // Изв. РАН. Энергетика. 2002. №3. С.102-118.; Леонтьев А.И., Гортышов Ю.Ф., Олимпиев В.В., Попов И.А. Эффективные интенсификаторы теплоотдачи ламинарных (турбулентных) потоков в каналах энергоустановок.// Изв. РАН. Энергетика. 2005. №1. С.75-91]. Область расчетов соответствует номинально ламинарному режиму в гладком канале - Re≥50. Теплоноситель - воздух. Размер интенсификатора теплообмена . Выполнены многовариантные расчеты с различными сочетаниями геометрических параметров ИТ для каждого канала.

Критерием эффективности канала и оптимального варианта размеров ИТ, как и в работах [Гортышов Ю.Ф., Олимпиев В.В., Попов И.А. Эффективность промышленно перспективных интенсификаторв теплоотдачи. // Изв. РАН. Энергетика. 2002. №3. С.102-118; Леонтьев А.И., Гортышов Ю.Ф., Олимпиев В.В., Попов И.А. Эффективные интенсификаторы теплоотдачи ламинарных (турбулентных) потокаов в каналах энергоустановок. // Изв. РАН. Энергетика. 2005. №1. С.75-91], служил относительный энергетический коэффициент (Nu - число Нуссельта, ξ - коэффициент сопротивления, гл - индекс гладкого канала; отсутствие индекса - дискретно-шероховатый канал (ДШК). При сравнении вариантов одного канала (при каждом фиксированном Re) показателем наиболее высокой эффективности канала и оптимальных размеров ИТ являлся случай .

Для сохранения существа гидродинамической картины обтекания ИТ при расчетах каналов соблюдались очевидно необходимые условия: для канала «2» - (t-l)>L, где L - длина РЗ1.

Некоторые результаты расчетов теплогидравлических каналов «1», «2» и «3» на основе моделей и опытных данных приведены на фиг.2-4 и в таблице 1. Результаты даны для наиболее эффективных вариантов каждого канала. Оптимальные размеры ИТ указаны в табл.1. Предлагаемая теплообменная труба (канал «3») имеет наивысшую теплоотдачу, достигающую при Re=1200, что вероятно связано с пиком теплообмена на вершине узкого выступа (t-l)/h=1 (начальный участок пластины), фиг.2, табл.1. Теплоотдача канала «2» минимальна. Предлагаемая теплообменная труба (канал «3») обладает лучшим показателем по сопротивлению, которое является низшим ( при Re=1200) по сравнению с другими теплообменными трубами (каналы «1», «2»). Увеличение сопротивления канала «3» (из-за наличия ИТ) значительно отстает от нарастания теплоотдачи (фиг.2; фиг.3, табл.1), что обеспечивает высокую эффективность канала «3», при Re=400, фиг.4, табл.1.

Каналы «1», «2», обладающие повышенным сопротивлением и пониженной теплоотдачей, значительно уступают каналу «3» по эффективности. На большей части диапазона Re, фиг.4, канал «2» менее эффективен, чем гладкая труба.

Таким образом, в процессе анализа эффективности теплообменных труб с каналами «1»; «2»; «3» найдены ранее неизвестные оптимальные геометрические соотношения предлагаемой теплообменной трубы (канал «3»), обеспечивающие кратное уменьшение массогабаритных характеристик теплообменного аппарата (ТА).

Необходимо обсудить фактический режим течения в каналах «1»; «2»; «3» в исследованном интервале чисел Re=400-1200, при изученных размерах ИТ. В обзоре [Олимпиев В.В. ЛТП в каналах теплообменников с выступами-интенсификаторами теплообмена. // Теплоэнергетика. 2001. №7. С.52-56] показано, что область ламинарно-турбулентного перехода (ЛТП) в ДШК может охватывать диапазон Re=200-4000. Обширные эксперименты по визуализации течения дымом и PIV-методом для выступа высотой установили, что началу ЛТП соответствует Re=1300 [Душина О.А. Отрыв потока за выступами в канале при низких числах Рейнольдса. // Автореф. дисс. канд. техн. наук. Казань: КНЦ РАН, 2012. 16 с.]. Поэтому можно обоснованно полагать - изученный интервал чисел Re и размеров ИТ находится в области ламинарного течения ДШК.

Эффективность и оптимальные размеры каналов

Таблица 1
Канал 1 (h/D=0,171, t/D=4,3)
Re 400 700 1000
Nu/Nuгл 2,63 3,23 3,68
ξ/ξгл 2,48 3,52 4,41
1,07 0,916 0,83
Канал 2 (l1=100h; l2/D=3,5)
Re 400 800 1000 1200
Nu/Nuгл 1,501 1,626 1,664 1,694
ξ/ξгл 1,286 1,985 2,28 2,514
1,168 0,819 0,73 0,674
Канал 3 ((t-l)/h=1)
Re 400 800 1000 1200
Nu/Nuгл 3,34 3,75 3,9 4,02
ξ/ξгл 0,84 1,2 1,33 1,46
3,97 3,15 2,93 2,76

Использование предлагаемой теплообменной трубы позволит в 2,5-4 раза уменьшить расход энергии на прокачивание теплоносителей через теплообменный аппарат (ТА), по сравнению с гладкотрубным теплообменным аппаратом, за счет снижения гидросопротивления.

Следовательно, открывается возможность реализации высокоэффективного варианта теплообменного аппарата (ТА) и значительной экономии электроэнергии и конструкционных материалов.

Теплообменная труба, канал которой выполнен с выступами и канавками, отличающаяся тем, что канал образован гладкими участками трубы и узкими канавками с геометрическими соотношениями:h/D=0,1, (t-l)/h=1, l/h<(3-5),где h - высота выступа, мм,D - внутренний диаметр теплообменной трубы, мм,t - длина типового участка канала с выступом и канавкой, мм,l - длина канавки, мм.
ТЕПЛООБМЕННАЯ ТРУБА
ТЕПЛООБМЕННАЯ ТРУБА
ТЕПЛООБМЕННАЯ ТРУБА
ТЕПЛООБМЕННАЯ ТРУБА
Источник поступления информации: Роспатент

Showing 101-110 of 164 items.
10.09.2015
№216.013.79a0

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Способ включает использование конденсационной установки, имеющей конденсатор паровой турбины с производственным отбором пара, и дополнительное осуществление утилизации высокопотенциальной теплоты пара производственного отбора. При этом утилизацию низкопотенциальной теплоты пара отопительных...
Тип: Изобретение
Номер охранного документа: 0002562725
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79a2

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Способ относится к паровой турбине с маслоохладителем и системой маслоснабжения подшипников. При этом используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара...
Тип: Изобретение
Номер охранного документа: 0002562727
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79a3

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Способ включает утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара. При этом указанные утилизации осуществляют при помощи теплового двигателя с замкнутым...
Тип: Изобретение
Номер охранного документа: 0002562728
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79a5

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины, высокопотенциальной...
Тип: Изобретение
Номер охранного документа: 0002562730
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79a6

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Способ заключается в том, что отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а пар...
Тип: Изобретение
Номер охранного документа: 0002562731
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79a8

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии. При работе ТЭС пар отопительных параметров из...
Тип: Изобретение
Номер охранного документа: 0002562733
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79aa

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии. При работе ТЭС пар отопительных параметров из...
Тип: Изобретение
Номер охранного документа: 0002562735
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79ab

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Способ включает поступление пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от потребителей по обратному трубопроводу сетевой воды в нижний и верхний сетевые подогреватели и далее в подающий...
Тип: Изобретение
Номер охранного документа: 0002562736
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79ac

Способ утилизации тепловой энергии, варабатываемой тепловой электрической станцией

Способ включает использование конденсационной установки, имеющей конденсатор паровой турбины с производственным отбором пара и систему маслоснабжения ее подшипников с маслоохладителем, и дополнительное осуществление утилизации высокопотенциальной теплоты пара производственного отбора,...
Тип: Изобретение
Номер охранного документа: 0002562737
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79ad

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и системы...
Тип: Изобретение
Номер охранного документа: 0002562738
Дата охранного документа: 10.09.2015
Showing 101-110 of 179 items.
20.08.2015
№216.013.716c

Способ утилизации теплоты тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано для утилизации теплоты тепловой электрической станции (ТЭС). Осуществляют подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от...
Тип: Изобретение
Номер охранного документа: 0002560606
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.716d

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. В теплообменнике-охладителе сетевой воды осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой...
Тип: Изобретение
Номер охранного документа: 0002560607
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.716e

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Проводят утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи охлаждающей жидкости посредством...
Тип: Изобретение
Номер охранного документа: 0002560608
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7171

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии. Способ утилизации теплоты тепловой электрической станции...
Тип: Изобретение
Номер охранного документа: 0002560611
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7172

Способ работы тепловой электрической станции

Изобретение относится к области энергетики к утилизации теплоты тепловой электрической станции (ТЭС). Осуществляют подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от потребителей по обратному...
Тип: Изобретение
Номер охранного документа: 0002560612
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7173

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано для утилизации теплоты тепловой электрической станции (ТЭС). Осуществляют подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от...
Тип: Изобретение
Номер охранного документа: 0002560613
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7174

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано для утилизации теплоты тепловой электрической станции (ТЭС). Осуществляют подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от...
Тип: Изобретение
Номер охранного документа: 0002560614
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7175

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки...
Тип: Изобретение
Номер охранного документа: 0002560615
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7177

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Проводят утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и системы маслоснабжения подшипников...
Тип: Изобретение
Номер охранного документа: 0002560617
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.717b

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и системы маслоснабжения подшипников...
Тип: Изобретение
Номер охранного документа: 0002560621
Дата охранного документа: 20.08.2015
+ добавить свой РИД