×
27.02.2014
216.012.a5d1

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПОЛУЧЕНИЯ БЕНЗОЛА ИЗ МЕТАНА, КАТАЛИЗАТОР, ПРИГОТОВЛЕННЫЙ ПО ЭТОМУ СПОСОБУ, И СПОСОБ ПОЛУЧЕНИЯ БЕНЗОЛА ИЗ МЕТАНА С ИСПОЛЬЗОВАНИЕМ ПОЛУЧЕННОГО КАТАЛИЗАТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области катализа. Описан способ приготовления катализатора для получения бензола из метана путем его конверсии, включающий нанесение молибдена на носитель, представляющий собой цеолит HZSM-5, путем пропитки его водным раствором соли молибдена с последующей прокалкой на воздухе при температуре 500-600°С, причем цеолит HZSM-5 предварительно подвергают деалюминированию путем его термопаровой обработки в токе воздуха с парциальным давлением паров воды 10-100 кПа при температуре 450-550°С. Описан способ получения бензола из метана в присутствии катализатора, полученного указанным выше способом. Технический результат - увеличение активности катализатора. 3 н. и 1 з.п. ф-лы, 1 табл., 9 пр.

Изобретение относится к технологии переработки газообразного углеводородного сырья, например природного газа или попутных нефтяных газов для получения ароматических углеводородов, и касается, в частности, способа приготовления катализатора для получения бензола из метана, катализатора, приготовленного по этому способу и способа получения бензола с использованием полученного катализатора.

Одним из наиболее перспективных направлений конверсии метана в ценные продукты является дегидроароматизация метана - способ селективного превращения метана непосредственно в ароматические углеводороды без участия кислорода.

В открытой литературе описано использование катализаторов Cr/ZSM-5, Ga/ZSM-5, Zn/ZSM-5 и Pt-Cr/ZSM-5 для получения ароматических соединений из метана [Т.В. Васина, А.В. Преображенский, С.А. Исаев, О.В. Четина, О.В. Маслобойщикова, О.В. Брагин, Ароматизация метана на модифицированных пенгасилсодержащих катализаторах в импульсном режиме, Кинетика и катализ, 35, 106, (1994); О.В. Брагин, Т.В. Васина, А.В. Преображенский, Х.В. Миначев, Ароматизация метана на пентасилсодержащих катализаторах, Изв. АН СССР. Сер. хим., №3, 750, (1989)]. Однако удовлетворительные величины конверсии метана достигались только при проведении процесса в импульсном режиме при 740°С.

Известен Mo-содержащий катализатор на основе цеолита ZSM-5 для процесса селективного превращения метана непосредственно в ароматические углеводороды и способ его приготовления путем нанесения Мо из водных растворов его солей на цеолит ZSM-5 и последующей прокалкой при 500-700°С на воздухе. [D. Wang, J.H. Lunsford, М.Р. Rosynek, Characterization of a Mo/ZSM-5 Catalyst for the Conversion of Methane to Benzene, J. Catal., 169, 347, (1997); L. Wang, L. Tao, M. Xie, G. Xu, J. Huang, Y. Xu, Dehydrogenation and aromatization of methane under non-oxidizing conditions, Catal. Lett., 21, 35, (1993); F. Solymosi, A. Cserenyi, A. Szoke, T. Bansagi, A. Oszko, Aromatization of Methane over Supported and Unsupported Mo-Based Catalysts, J. Catal, 165, 150, (1997)]. Описанный катализатор позволяет достичь конверсии метана около 10% при температурах 750-800°С при селективности по бензолу около 90%. Недостатком этого катализатора является быстрая дезактивация вследствие образования углеродных отложений.

Структура цеолита оказывает существенное влияние на эффективность катализатора. Высокая селективность по бензолу наблюдается на катализаторах с диаметром пор близким к диаметру молекулы бензола и имеющих двумерную структуру пор. Описан катализатор для конверсии метана в бензол на основе цеолита Мо/МСМ-22. Катализатор готовят путем нанесения Мо из водных растворов его солей на цеолит МСМ-22 и последующей прокалкой при 500-700°С на воздухе. Максимальная конверсия метана на катализаторе 6%Мо/МСМ-22 наблюдается при 700°С и составляет 9.9% [D. Ma, Y. Shu, X. Han, X. Liu, Y. Xu, and X. Bao, Mo/HMCM-22 Catalysts for Methane Dehydroaromatization:

A Multinuclear MAS NMR Study, J. Phys. Chem. B, 105, 1786, (2001)]. Однако селективность по бензолу на этом катализаторе не превышает 80%.

В качестве носителя молибденовых катализаторов для получения бензола путем дегидроароматизации метана использовали разновидность цеолита HZSM-5 с высоким модулем и содержанием оксидов фосфора и редкоземельных элементов (цеолит ZRP-1), химический состав которого можно представить формулой вида xRE2O3·yNa2O·Al2O3·zSiO2, где х=0.01-0.03, у=0.4-1.0 и z=20-60 [Y. Shu, D. Ma, X. Bao and Y. Xu, Methane dehydro-aromatization over a Mo/phosphoric rare earth-containing penta-sil type zeolite in the absence of oxygen, Catal. Lett. 66, 161, (2000)]. Максимальная конверсия метана наблюдается на 20%Mo/HZRP-1 и составляет около 11% при 700°С, однако через 6 ч конверсия снижается примерно до 5%.

Известен также катализатор MoO3/HZSM-11 для получения бензола из метана, на котором достигнута относительно высокая и стабильная селективность по бензолу [C. - L. Zhang, S. Li, Y. Yuan, W. - X. Z hang, T. - H Wu., L. - W. Lin, Aromatization of methane in the absence of oxygen over Mo-based catalysts supported on different types of zeolites, Catal. Lett., 56, 207, (1998)]. Максимальная конверсия метана для MoO3/HZSM-11 составляет 8,0% с селективностью по бензолу выше 90% при 700°С, но он также подвержен дезактивации.

В литературе описан Mo/HZSM-5 для получения бензола из метана, принятый нами за прототип. Катализатор готовят нанесением молибдена из раствора гептамолибдата аммония пропиткой воздушно-сухого цеолита HZSM-5 при комнатной температуре с последующей прокалкой при 600°С. Реакцию дегидроароматизации метана проводят при 700°С при подаче чистого метана в кварцевый реактор, заполненный цеолитом Mo/HZSM-5. Максимальные значения конверсии и селективности были получены на 6%Mo/HZSM-5. Средняя конверсия метана превышает 11% при 700°С и 16% при 750°С, и даже после 30 ч имеет значения более 6%, максимальная конверсия достигает 25% [В. Liu, Y. Yang., A. Sayari, Non-oxidative dehydroaromatization of methane over Ga-promoted Mo/HZSM-5-based catalysts, Appl. Catal. A., 214, 95, (2001)]. Однако селективность по бензолу составляет в среднем 55%, а по нафталину - 10%. Средний выход бензола не превышает 6-7%.

К недостаткам всех известных катализаторов для получения бензола из метана путем его дегидроароматизации следует отнести низкую активность, даже при температурах выше 700°С, низкую селективность по бензолу, не превышающую 80-85%, образование значительного количества нафталина, низкую стабильность катализатора вследствие интенсивного коксообразования.

Техническим результатом настоящего изобретения является создание эффективного катализатора для получения бензола из метана, позволяющего повысить селективность по бензолу при температурах 700-800°С, снизить сажеобразование и увеличить производительность катализатора.

Для достижения технического результата предложен способ приготовления катализатора для получения бензола из метана путем его конверсии, включающий нанесение молибдена на носитель, представляющий собой цеолит HZSM-5, путем пропитки его водным раствором соли молибдена с последующей прокалкой на воздухе при температуре 500-600°С, согласно изобретению, цеолит HZSM-5 предварительно подвергают деалюминированию путем его термопаровой обработки в токе воздуха с парциальным давлением паров воды 10-100 кПа при температуре 450-550°С.

Термопаровую обработку цеолита HZSM-5 проводят, преимущественно, при парциальном давлении паров воды 40 кПа и температуре 500°С.

В качестве водного раствора соли молибдена используют, например, водный раствор гептамолибдата аммония.

Время выдерживания цеолита в потоке воздуха с указанным парциальным давлением составляет от 10 до 60 минут, предпочтительно от 20 до 40 минут.

Катализатор, приготовленный по предлагаемому способу, содержит 3-6 мас.% молибдена на цеолите HZSM-5.

Предложен также способ получения бензола из метана путем его конверсии в присутствии полученного в настоящем изобретении катализатора - молибдена на цеолите HZSM-5. Процесс ведут в проточном реакторе при температуре 700-900°С и объемной скорости подачи метана 3000-10.000 ч-1.

Для приготовления Mo/HZSM-5 катализатора используют цеолит HZSM-5, который предварительно подвергают мягкому и кратковременному деалюминированию в разбавленных парах воды.

Одним из известных способов регулирования кислотных свойств Мо-цеолитных катализаторов ароматизации метана является предварительное деалюминирование исходного цеолита в различных условиях (обработка цеолита кислотами, термопаровая обработка в жестких условиях - в токе водяного пара при 500-600°С при высоком парциальном давлении паров воды) (Y. Lu, D. Ma, Z. Xu, Z. Tian, X. Bao, A high coking-resistance catalyst for methane aromatization, Chem. Com., №20, 2048, (2001)). Отмечено, однако, уменьшение активности Mo/ZSM-5 катализаторов после их предварительного деалюминирования известными способами.

Отличительной особенностью предлагаемого способа приготовления катализатора для процесса селективного получения бензола из метана путем его конверсии при температурах 700-900°С является проведение предварительной стадии частичного деалюминирования исходного цеолита HZSM-5 путем его мягкой обработки разбавленным паром (воздух, содержащий пары воды при их парциальном давлении не выше 100 кПа), предшествующей стадии нанесения молибдена.

Катализатор, полученный по предлагаемому способу, позволил проводить процесс селективного получения бензола из метана путем его конверсии при температуре 700-800°С, не сопровождающийся интенсивным сажеобразованием и характеризующийся повышенной селективностью по бензолу и увеличением на 40-60% производительности катализатора по сравнению с необработанным (недеалюминированным) катализатором.

Изобретение иллюстрируется следующими примерами:

Пример 1. (сравнительный). 1 г цеолита HZSM-5 прокаливают в проточном реакторе в токе сухого воздуха при 500°С в течение 20 мин. Далее на образец наносят 4 вес.% молибдена путем пропитки 1 М раствором гептамолибдата аммония, сушат на воздухе при 120°С и активируют в проточном реакторе в токе воздуха при 600°С в течение 2 ч.

Пример 2. 1 г цеолита HZSM-5 прокаливают в проточном реакторе в токе воздуха с парциальным давлением паров воды 40 кПа при 500°С в течение 20 мин. Далее на образец наносят 4 вес.% молибдена путем пропитки 1 М раствором гептамолибдата аммония, дополнительно прокаливают на воздухе при 600°С в течение 2 ч.

Пример 3. Катализатор готовили аналогично описанному в примере 2, с той разницей, что длительность обработки в токе воздуха с парциальным давлением паров воды 40 кПа при 500°С составляет 40 мин.

Пример 4. Катализатор готовили аналогично описанному в примере 2, с той разницей, что длительность обработки в токе воздуха с парциальным давлением паров воды 40 кПа при 500°С составляет 60 мин.

Пример 5. Катализатор готовили аналогично описанному в примере 2, с той разницей, что парциальное давление паров воды составляет 100 кПа.

Пример 6. Катализатор готовили аналогично описанному в примере 2, с той разницей, что парциальное давление паров воды составляет 10 кПа.

Пример 7. Катализатор готовили аналогично описанному в примере 2, с той разницей, что температура термопаровой обработки составляет 400°С.

Пример 8. Катализатор готовили аналогично описанному в примере 2, с той разницей, что температура термопаровой обработки составляет 400°С, а продолжительность обработки - 60 мин.

Пример 9. Катализатор готовили аналогично описанному в примере 2, с той разницей, что продолжительность обработки - 10 мин.

Катализаторы, полученные в примерах 1-9, испытывают в способе получения бензола из метана. Процесс проводили в проточном реакторе с катализатором при температуре 700-900°С и объемной скорости подачи метана 3000-10000 ч-1. Данные испытаний приведены в таблице, включая конверсию метана, селективность по бензолу, скорость дезактивации катализатора вследствие образования кокса.

Таблица
Активность катализатора, полученного по примерам 1-9 в способе получения бензола из метана (дегидроароматизации метана)
Пример Конверс метана, % Селективность по бензолу, % Скорость зактивации, % в час
1 8.2 85 35
2 13.4 92 12
3 12.7 92 15
4 8.5 93 25
5 8.9 93 22
6 8.3 86 32
7 8.3 87 29
8 9.6 89 21
9 11.8 90 17

Таким образом, сравнение конверсии и селективности на катализаторах, полученных по предлагаемому способу и на катализаторе сравнения (пример 1) свидетельствует о том, что в настоящем изобретении достигаются существенно более высокая конверсия метана - 13,4%, более высокая селективность по бензолу - 93%, меньшая скорость дезактивации, так как процесс не сопровождается интенсивным сажеобразованием, и, как следствие, более высокая производительность.

Источник поступления информации: Роспатент

Showing 111-112 of 112 items.
17.06.2023
№223.018.7f25

Тримерные четвертичные соли пиридиния, обладающие биоцидным действием

Изобретение относится к новым тримерным четвертичным солям пиридиния общей формулы (I), которые обладают биоцидным действием. В формуле (I) R является алкильной группой, содержащей от 5 до 12 атомов углерода; n является целым числом в интервале от 2 до 8; m является 0 или целым числом в...
Тип: Изобретение
Номер охранного документа: 0002773080
Дата охранного документа: 30.05.2022
19.06.2023
№223.018.8211

Способ очистки воздуха от диэтиламина

Изобретение относится к области химической технологии, а именно к способу очистки воздуха от летучих органических соединений (ЛОС), в частности аминов, конкретно к способу очистки воздуха от диэтиламина. Способ очистки воздуха от диэтиламина путем его адсорбции и полного окисления включает...
Тип: Изобретение
Номер охранного документа: 0002797201
Дата охранного документа: 31.05.2023
Showing 101-106 of 106 items.
27.04.2019
№219.017.3c3b

Установка плазмохимического синтеза наноразмерных порошков и используемый в ней циклон

Изобретение относится к оборудованию плазмохимического синтеза ультрадисперсных порошков, неорганических соединений и композиций, в частности к установке плазмохимического синтеза наноразмерных порошков и шнековому циклону, используемому в ней. Установка содержит реактор, корпус которого...
Тип: Изобретение
Номер охранного документа: 0002686150
Дата охранного документа: 24.04.2019
29.05.2019
№219.017.6a0e

Реагент для очистки воды и почвы от хлорорганических соединений и способ его получения

Группа изобретений относится к области химической обработки воды, а также почвы от органических соединений, содержащих галогены. Получают реагент для очистки воды и почвы от хлорорганических соединений. Силикагель пропитывают раствором, содержащим триоксалатоферрат аммония и соединение...
Тип: Изобретение
Номер охранного документа: 0002466939
Дата охранного документа: 20.11.2012
13.06.2019
№219.017.8130

Катализатор для гидрогенизационной конверсии глицерина в простые спирты, способ его приготовления и способ гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора

Изобретение относится к технологии переработки и касается катализатора для гидрогенизационной конверсии глицерина в простые спирты, способа его приготовления и способа гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора. Предложенный катализатор содержит...
Тип: Изобретение
Номер охранного документа: 0002691068
Дата охранного документа: 10.06.2019
08.08.2020
№220.018.3dfd

Катализатор для удаления оксидов серы из дымовых газов электростанций

Изобретение относится к катализатору для удаления оксидов серы из дымовых газов электростанций, содержащему цеолит типа фожазит и катионы переходных металлов, при этом в качестве цеолита он содержит низкокремнистый фожазит (LSX), а в качестве катионов переходных металлов - бинарные...
Тип: Изобретение
Номер охранного документа: 0002729422
Дата охранного документа: 06.08.2020
24.04.2023
№223.018.5294

Способ получения монооксида углерода из лигнина гидролизного под действием co

Изобретение относится к способу получения монооксида углерода из гидролизного лигнина, включающему контактирование при температуре 500-800°С лигнина с диоксидом углерода, при объемной скорости подачи СО в реактор 900 ч, в присутствии железного или кобальтового катализатора, представляющего...
Тип: Изобретение
Номер охранного документа: 0002741006
Дата охранного документа: 22.01.2021
19.06.2023
№223.018.8211

Способ очистки воздуха от диэтиламина

Изобретение относится к области химической технологии, а именно к способу очистки воздуха от летучих органических соединений (ЛОС), в частности аминов, конкретно к способу очистки воздуха от диэтиламина. Способ очистки воздуха от диэтиламина путем его адсорбции и полного окисления включает...
Тип: Изобретение
Номер охранного документа: 0002797201
Дата охранного документа: 31.05.2023
+ добавить свой РИД