×
27.02.2014
216.012.a5cb

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ОТДЕЛЕНИЯ ДИОКСИДА УГЛЕРОДА ОТ ОТХОДЯЩЕГО ГАЗА РАБОТАЮЩЕЙ НА ИСКОПАЕМОМ ТОПЛИВЕ ЭНЕРГОУСТАНОВКИ

Вид РИД

Изобретение

№ охранного документа
0002508158
Дата охранного документа
27.02.2014
Аннотация: Изобретение относится к способу отделения диоксида углерода от дымового газа работающей на ископаемом топливе энергоустановки. Сначала в процессе сжигания сжигается ископаемое топливо (2), причем образуется горячий, содержащий диоксид углерода отходящий газ (3). На следующем этапе в процессе абсорбции (4) содержащий диоксид углерода отходящий газ (3) приводится в контакт с абсорбентом (5), причем диоксид углерода поглощается абсорбентом (5) и образуется загрязненный абсорбент (6). На следующем этапе в процессе десорбции (7) из загрязненного абсорбента (6) термически удаляется газообразный диоксид углерода (8). При этом в процесс десорбции (7) подается пар (9), который впрыскивается в загрязненный абсорбент (6), причем высвобождающееся в результате конденсации пара (9) тепло конденсации переносится на загрязненный абсорбент (6) и в то же время понижается парциальное давление диоксида углерода в десорбционном блоке. Изобретение позволяет повысить эффективность по сравнению с традиционным устройством газоочистки работающей на ископаемом топливе энергоустановки. 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к способу эксплуатации работающей на ископаемом топливе энергоустановки и, в частности, к способу отделения диоксида углерода от отходящего газа работающей на ископаемом топливе энергоустановки. Кроме того, изобретение относится к работающей на ископаемом топливе энергоустановке с сепарирующим устройством для отделения диоксида углерода от отходящего газа.

У работающих на ископаемом топливе энергоустановок для вырабатывания электроэнергии в промышленном масштабе содержащий диоксид углерода отходящий газ возникает в большой степени за счет сжигания ископаемого топлива. Помимо диоксида углерода отходящий газ содержит другие компоненты, например газы азот, диоксид серы, оксиды азота, водяной пар, а также твердые частицы, пыли и сажу. В более современных или модернизированных энергоустановках уже находят применение сепарация твердых веществ, отделение оксидов серы и каталитическое удаление оксидов азота. Содержащийся в отходящем газе диоксид углерода до сих пор выпускался вместе с отходящим газом в атмосферу. Скапливающийся в атмосфере диоксид углерода препятствует излучению тепла от Земли и за счет так называемого парникового эффекта способствует повышению температуры ее поверхности. Для уменьшения выброса диоксида углерода в работающих на ископаемом топливе энергоустановках он может быть отделен от отходящего газа.

Для отделения диоксида углерода от газовой смеси, в частности в химической промышленности, известны различные способы. В частности, для отделения диоксида углерода от отходящего газа по окончании процесса сжигания (post-combustion CO2 separation) известен способ абсорбции-десорбции.

Отделение диоксида углерода способом абсорбции-десорбции осуществляется с помощью моющего средства. В классическом процессе абсорбции-десорбции отходящий газ в абсорбционной колонне приводится в контакт с избирательным растворителем в качестве моющего средства. При этом поглощение диоксида углерода происходит в результате химического или физического процесса. Очищенный отходящий газ покидает абсорбционную колонну для дальнейшей обработки или удаления. Загрязненный диоксидом углерода растворитель для своей регенерации и для отделения диоксида углерода направляется в десорбционную колонну. Отделение в десорбционной колонне может происходить термически. При этом из загрязненного растворителя удаляется газопаровая смесь из газообразного диоксида углерода и испарившегося растворителя. Затем испарившийся растворитель сепарируется от газообразного диоксида углерода. Диоксид углерода может быть в несколько этапов сжат, охлажден и сжижен. В жидком или замерзшем состоянии диоксид углерода может затем направляться на хранение или дальнейшую обработку. Регенерированный растворитель возвращается в абсорбционную колонну, где он снова может поглощать диоксид углерода из содержащего его отходящего газа.

Основной проблемой существующих способов отделения диоксида углерода от газовой смеси в промышленном масштабе являются, в частности, очень высокие энергозатраты, необходимые, в том числе, в виде энергии нагрева для десорбции.

Общим недостатком известных способов отделения диоксида углерода от отходящего газа, осуществляемых во время или после энергопроцесса, является, в частности, значительное, снижающее к.п.д. влияние процессов отделения на энергопроцесс. Снижение к.п.д. происходит потому, что энергию для осуществления отделения диоксида углерода приходится отбирать у энергопроцесса. Поэтому рентабельность работающей на ископаемом топливе энергоустановки заметно ниже, чем без устройства отделения диоксида углерода.

Задача изобретения состоит в создании способа отделения диоксида углерода от отходящего газа работающей на ископаемом топливе энергоустановки, благодаря которому обеспечивается высокая эффективность отделения при одновременно высоком общем к.п.д. энергопроцесса всей установки.

Другой задачей изобретения является создание работающей на ископаемом топливе энергоустановки с интегрированным сепарирующим устройством для диоксида углерода, которая обеспечивала бы высокую эффективность сепарации при ее одновременно высоком общем к.п.д.

Задача решается в части способа, согласно изобретению, посредством способа отделения диоксида углерода от отходящего газа работающей на ископаемом топливе энергоустановки, при котором в процессе сжигания сжигается ископаемое топливо, причем вырабатывается горячий, содержащий диоксид углерода отходящий газ, в процессе абсорбции содержащий диоксид углерода отходящий газ приводится в контакт с абсорбентом, причем диоксид углерода поглощается абсорбентом и образуется загрязненный диоксидом углерода абсорбент, в процессе десорбции из загрязненного абсорбента термически удаляется диоксид углерода и подается пар, который впрыскивается в загрязненный абсорбент, причем высвобождающееся в результате конденсации пара тепло конденсации передается на загрязненный абсорбент.

При этом изобретение исходит из того факта, что введенное непосредственно в загрязненный абсорбент тепло конденсации существенно способствует термическому удалению диоксида углерода. При этом, согласно изобретению, в процесс десорбции вводится пар. За счет поддержки процесса десорбции теплом конденсации пара разгружается используемое в процессе десорбции нагревательное устройство. Пар конденсируется внутри колонны, в результате чего тепло конденсации передается на загрязненный абсорбент. Поэтому можно использовать пар с низкой температурой, поскольку не возникает потерь за счет теплопередачи, как, например, при косвенной теплопередаче в теплообменном процессе.

Поскольку для непосредственного впрыска используется пар более низкого уровня давления и температуры, можно сэкономить более высококачественный пар. Он отбирается, как правило, из перепускного трубопровода турбины низкого давления. Сэкономленный более высококачественный пар имеется, тем самым, в распоряжении для процесса расширения пара на ступени низкого давления паровой турбины для вырабатывания электроэнергии. За счет этого достигается повышение общего к.п.д. работающей на ископаемом топливе энергоустановки.

Помимо разгрузки нагревательного устройства за счет тепла конденсации процессу десорбции способствует то, что благодаря вводимому пару снижается парциальное давление уже выделенного диоксида углерода. Это означает снижение концентрации диоксида углерода в газовой фазе, что способствует удалению связанного в загрязненном абсорбенте диоксида углерода. За счет этого приходится испарять меньше абсорбента, так что в процесс десорбции приходится вводить посредством нагревательного устройства меньше тепла. Поскольку нагревательное устройство также эксплуатируется на пару, в результате уменьшается расход пара. Поэтому сэкономленный пар имеется в распоряжении для энергопроцесса и может способствовать повышению общего к.п.д.

Согласно изобретению для термического удаления диоксида углерода из загрязненного абсорбента вводится лишь часть необходимой тепловой энергии. Другая часть необходимой тепловой энергии вводится в процесс десорбции посредством нагревательного устройства, преимущественно косвенно за счет теплообменного процесса. Таким образом, можно значительно уменьшить энергию, необходимую для удаления диоксида углерода из загрязненного абсорбента. Следовательно, сэкономленная энергия имеется в распоряжении для энергопроцесса, благодаря чему заметно повышается к.п.д. энергоустановки.

Предложенный способ обеспечивает, тем самым, существенно более эффективную эксплуатацию энергоустановки за счет повышения ее общего к.п.д. Это достигается тем, что экономится энергия для осуществления процесса десорбции. Кроме того, изобретение обеспечивает последующий монтаж устройства для отделения диоксида углерода при соблюдении экономических условий.

Предпочтительным образом за счет впрыскиваемого количества пара приблизительно компенсируется количество абсорбента, отбираемого из абсорбентного контура за счет процесса абсорбции-десорбции. Это возможно потому, что в результате конденсации пара в процессе десорбции вводится вода. Поскольку используемые абсорбенты, как правило, являются водорастворимыми, а в результате процесса возникают потери абсорбента из-за испарения, введенная вода позволяет компенсировать потери абсорбента в контуре абсорбер-десорбер. В традиционных способах для компенсации потерь абсорбента имеется поток подпиточной воды. Благодаря предложенному способу от него можно отказаться.

В одном предпочтительном варианте способа подаваемый пар вводится в процесс десорбции в нескольких местах. Этим достигается равномерное распределение в процессе десорбции.

Пар для впрыска в загрязненный абсорбент отбирается преимущественно из пароконденсатного контура энергопроцесса, предшествующего процессу сепарации. Это возможно потому, что для впрыска в загрязненный абсорбент можно использовать пар с более низкой температурой. Такой пар является горячим паром при температуре 100-120°C. Однако для процесса нагрева требуется, как правило, пар с более высокой температурой, поскольку из-за косвенной теплопередачи с теплообменником теряется тепло. Этот пар с более высокой энергией, напротив, отбирается, как правило, например, из перепускного трубопровода к ступени низкого давления паровой турбины. Этот пар имеет температуру 120-160°C.

В зависимости от режима энергопроцесса или с учетом других его параметров пар отбирается предпочтительно из процесса его вырабатывания, который не связан с процессом вырабатывания электроэнергии. За счет этого энергопроцесс разгружен, благодаря чему повышается к.п.д. энергоустановки. Этим источником пара может быть процесс его вырабатывания, который, например, предназначен специально для процесса сепарации, или другой источник пара, обычно предусмотренный, например, для вырабатывания технологического или теплофикационного пара.

Преимущественно в загрязненный абсорбент впрыскивается только часть подаваемого пара. Другая часть подаваемого пара направляется в теплообмене с загрязненным абсорбентом. За счет этого выработанный для процесса десорбции пар разделяется на два параллельных потока. Разделение на потоки регулируется посредством регулирования.

В одном предпочтительном варианте способа подаваемый пар направляется сначала в теплообмене с загрязненным абсорбентом, а затем часть пара впрыскивается в загрязненный абсорбент. Это предпочтительно, если для осуществления процесса сепарации в распоряжении имеется пар с высокой температурой. За счет теплообмена с загрязненным абсорбентом энтальпия пара уменьшается, а затем, по меньшей мере, часть пара вводится в процесс десорбции.

Задача в части работающей на ископаемом топливе энергоустановки решается, согласно изобретению, посредством подключенного к устройству для сжигания сепарирующего устройства для отделения диоксида углерода от содержащего его отходящего газа, причем сепарирующее устройство содержит абсорбционный блок для поглощения газообразного диоксида углерода и десорбционный блок для отдачи газообразного диоксида углерода, причем десорбционный блок содержит устройство впрыска пара, присоединенное к паропроводу, так что при работе сепарирующего устройства пар впрыскивается в десорбционный блок.

При этом изобретение исходит из того факта, что за счет устройства впрыска пар впрыскивается в десорбционный блок непосредственно, причем пар в десорбционном блоке конденсируется и высвобождает тепло конденсации, так что за счет введенного тепла конденсации диоксид углерода термически удаляется из загрязненного им абсорбента.

Устройство впрыска содержит паропровод, проходящий через десорбционный блок и выполненный преимущественно кольцеобразным. Также возможно располагать внутри десорбционного блока несколько кольцеобразных паропроводов на разной высоте.

В одном предпочтительном варианте энергоустановки устройство впрыска расположено в нижней части десорбционного блока. При этом последний содержит ориентированную по вертикальной оси колонну. Она имеет в верхней части впуск, а в нижней части - выпуск. При работе загрязненный абсорбент вводится в верхней части, а в нижней части выводится регенерированный абсорбент, что вызывает протекание загрязненного абсорбента через десорбционный блок. При этом удаление диоксида углерода из абсорбента происходит преимущественно термически, поскольку за счет этого можно использовать вырабатываемую в энергоустановке тепловую энергию. Десорбционный блок может содержать также несколько колонн. Такие колонны известны в химической промышленности и служат для разделения смесей веществ термическими способами. Это происходит с использованием равновесных состояний между различными фазами.

В нижней части десорбционного блока загрязненный диоксидом углерода абсорбент находится в жидкой фазе. Посредством расположенного также в нижней части десорбционного блока нагревательного устройства загрязненный абсорбент нагревается. Нижняя часть десорбционного блока называется также отстойником. Расположение соплового устройства как можно ближе к отстойнику предпочтительно сказывается при впрыске пара на парциальном давлении уже отделенного диоксида углерода. Достигаемое уменьшение парциального давления означает снижение концентрации диоксида углерода в газовой фазе, что способствует удалению связанного в загрязненном абсорбенте диоксида углерода. Благодаря этому для нагрева нагревательного устройства требуется меньше энергии. Если используется нагреваемое паром нагревательное устройство, то в энергоустановке для вырабатывания электроэнергии в распоряжении имеется сэкономленное количество пара, в результате чего возрастает ее общий к.п.д.

В одном предпочтительном варианте энергоустановки устройство впрыска содержит сопловое устройство, которое, в свою очередь, содержит несколько сопловых головок. Преимущественно эти сопловые головки распределены по сопловому устройству так, что впрыскиваемый через сопла пар равномерно подается в десорбционный блок. При этом сопловые головки ориентированы преимущественно в направлении течения загрязненного абсорбента. Это предотвращает нежелательные течения и обеспечивает целенаправленный впрыск пара в десорбционный блок, происходящий преимущественно равномерно.

Целесообразно устройство впрыска соединено посредством паропровода с местом отбора перепускного трубопровода или пароконденсатопровода паротурбинной установки. Выбор места отбора пара, с которым посредством паропровода соединено устройство впрыска, осуществляется в зависимости от требуемых и имеющихся параметров пара. При этом определенный для впрыска в десорбционный блок пар должен иметь параметры (давление и температура), лежащие выше точки конденсации. Преимущественно пар отбирается из пароконденсатопровода, который соединяет ступень низкого давления паровой турбины с конденсатором. Направляемый по пароконденсатопроводу пар имеет температуру 100-120°C.

В одном особенном варианте энергоустановки десорбционный блок содержит обогреваемое паром нагревательное устройство, которое посредством паропровода соединено с устройством впрыска, так что пар направляется из нагревательного устройства к устройству впрыска и впрыскивается в десорбционный блок. Это расположение требует использования пара более высокой температуры, который отбирается преимущественно из перепускного трубопровода между ступенями среднего и низкого давлений паровой турбины. Этот пар приводит в действие сначала нагревательное устройство за счет того, что он направляется в теплообмене с загрязненным абсорбентом. Это уменьшает температуру пара. По паропроводу, соединяющему нагревательное устройство с устройством впрыска, этот пар с более низкой температурой подается к устройству впрыска и впрыскивается им в десорбционный блок.

Другие преимущества работающей на ископаемом топливе энергоустановки следуют аналогичным образом из соответствующих вариантов описанного выше способа.

Ниже примеры осуществления изобретения более подробно поясняются с помощью схематичных чертежей, на которых изображают:

фиг.1: пример выполнения способа отделения диоксида углерода;

фиг.2: пример выполнения работающей на ископаемом топливе энергоустановки с паротурбинной установкой и устройством отделения диоксида углерода;

фиг.3: пример выполнения работающей на ископаемом топливе энергоустановки с газо- и паротурбинной установками и устройством отделения диоксида углерода.

На фиг.1 изображены пример выполнения способа отделения диоксида углерода и, в частности, ввод пара 9 в процесс десорбции 7. Способ включает в себя, в основном, процесс сжигания 1, процесс абсорбции 4 и процесс десорбции 7.

В процесс сжигания 1 вырабатывается содержащий диоксид углерода отходящий газ 3, который должен быть освобожден от него предложенным способом. Для этого отходящий газ 3 подается в процесс абсорбции 4. Кроме того, в процесс абсорбции 4 подается также абсорбент 5. В процессе абсорбции 4 содержащий диоксид углерода отходящий газ 3 вступает в контакт с абсорбентом 5, в результате чего диоксид углерода поглощается абсорбентом 5 и образуются загрязненный диоксидом углерода абсорбент 6 и освобожденный от диоксида углерода отходящий газ.

Загрязненный абсорбент 6 подается в процесс десорбции 7, где он регенерируется. Для регенерации в процесс десорбции 7 вводится пар 9. Этот пар конденсируется в воду, высвобождая при этом тепло конденсации. Это тепло конденсации поддерживает процесс регенерации. В результате регенерации образуются регенерированный абсорбент 11 и газопаровая смесь из газообразного диоксида углерода 8 и парообразного абсорбента. Газопаровая смесь разделяется в процессе разделения на конденсированный абсорбент и газообразный диоксид углерода 8. Не показан возврат конденсированного абсорбента в контур абсорбента 5. Газообразный диоксид углерода 8 может быть теперь направлен на процесс сжатия, во время которого он сжижается для дальнейшей обработки или транспортировки.

На фиг.2 изображен пример выполнения работающей на ископаемом топливе энергоустановки 14, содержащей паротурбинную установку 25 и сепарирующее устройство 16 для диоксида углерода.

Перед паротурбинной установкой 25 расположено устройство 15 сжигания. Оно включает в себя отапливаемый котел 27, к которому по подводящему топливопроводу 46 подается ископаемое топливо. В котле 27 происходит сжигание подаваемого топлива, причем вырабатываются содержащий диоксид углерода отходящий газ 3 и пар. Котел 27 посредством паропровода 40 соединен с паровой турбиной 29 паротурбинной установки 25. Паровая турбина 29 приводится в действие подаваемым паром. В свою очередь, паровая турбина 29 приводит в действие через вал генератор 30 для вырабатывания электроэнергии. Покидающий паровую турбину 29 пар подается по трубопроводу к конденсатору 37. Для возврата конденсированного пара конденсатор 37, в свою очередь, посредством пароконденсатопровода 24 соединен с котлом 27. Для подачи конденсата в пароконденсатопровод 24 встроен конденсатный насос 28.

Содержащий диоксид углерода отходящий газ 3 покидает котел 27 и по трубопроводу 39 для дымового газа подается к содержащему сепарирующее устройство 16 абсорбционному блоку 17. В трубопровод 39 для дымового газа встроены система очистки 31 дымового газа, охладитель 32 дымового газа и вентилятор 33. Система очистки 31 может включать в себя, например, обессеривающую установку или другие системы очистки дымового газа. Посредством охладителя 32 дымового газа от содержащего диоксид углерода отходящего газа 3 отбирается тепло. Необходимость охлаждения дымового газа зависит при этом от требуемого температурного уровня в абсорбционном блоке 17. Система 31, охладитель 32 и вентилятор 33 являются опциональными и могут располагаться также в другом порядке.

Сепарирующее устройство 16 содержит, в основном, абсорбционный 17 и десорбционный 18 блоки. Абсорбционный блок 17 может состоять из нескольких колонн, снабженных, в свою очередь, встроенными элементами, так называемыми насадками. Насадки служат для увеличения поверхности, что является предпочтительным для абсорбции диоксида углерода. Помимо содержащего диоксид углерода отходящего газа 3 в абсорбционный блок 17 по трубопроводу 48 подается регенерированный абсорбент 11. За счет подачи отходящего газа 3 и абсорбента достигается очистка отходящего газа, так что по трубопроводу 39 для дымового газа отводится в значительной степени освобожденный от диоксида углерода отходящий газ. Возникающий в абсорбционном блоке 17 в результате очистки загрязненный абсорбент 6 подается по трубопроводу 47 к десорбционному блоку 18.

В трубопровод 47 для загрязненного абсорбента 6 встроены насос 34 и перекрестноточный теплообменник 35. Насос 34 служит для подачи загрязненного абсорбента 6. В теплообменнике 35 загрязненный абсорбент 6 течет в направлении, встречном направлению горячего регенерированного абсорбента 11. Этим достигается подогрев загрязненного абсорбента 6.

Десорбционный блок 18 может состоять из нескольких колонн, снабженных, в свою очередь, встроенными элементами, так называемыми насадками. Насадки служат для увеличения поверхности, что является предпочтительным для десорбции загрязненного абсорбента 6. Десорбционный блок 18 содержит также устройство впрыска 19, расположенное в его нижней части. Устройство 19 впрыска состоит из трубопровода, по которому подается пар, и соплового устройства 20, имеющего несколько сопловых головок 21, посредством которых направляемый через устройство 19 впрыска пар впрыскивается в десорбционный блок 18. Впрыск происходит преимущественно в направлении течения абсорбента, т.е. сверху вниз. Устройство 19 впрыска посредством паропровода 22 соединено с местом отбора перепускного трубопровода 23 паровой турбины 29. Здесь не показан альтернативный паропровод, соединяющий устройство 19 впрыска с пароконденсатопроводом 24. Отбор пара для подачи в устройство 19 впрыска также возможен из другого паропровода.

В десорбционном блоке 18 происходит дальнейшее отделение диоксида углерода от загрязненного абсорбента 6, в результате чего образуются газообразный диоксид углерода 8 и регенерированный абсорбент 11. Одна часть покидающего Десорбционный блок 18 регенерированного абсорбента 11 нагревается посредством нагревательного устройства 26 и снова подается в Десорбционный блок 18. В качестве нагревательного устройства здесь используется ребойлер. Другая часть покидающего десорбционный блок 18 регенерированного абсорбента 11 подается по трубопроводу 48 в абсорбционный блок 17. В трубопровод 48 встроен насос 34' для абсорбента, перекрестноточный теплообменник 35 и охладитель 36 абсорбента. За счет теплообменника 35 и охладителя 36 от регенерированного абсорбента отбирается тепло. Использование охладителя 36 является опциональным.

Кроме того, десорбционный блок 18 соединен посредством газопровода 49 с устройством разделения 38. В устройстве разделения, так называемом стрипперном конденсаторе, происходит разделение парообразного абсорбента и газообразного диоксида углерода за счет конденсации абсорбента. Конденсированный абсорбент возвращается по конденсатопроводу 50 в Десорбционный блок 18. Газообразный диоксид углерода используется для дальнейшей обработки, например сжижения.

Изображенная на фиг.3 работающая на ископаемом топливе энергоустановка 14 содержит газопаротурбинную энергоустановку 51 с сепарирующим устройством 16 для диоксида углерода. Сепарирующее устройство 16 расположено перед энергоустановкой 51. Последняя содержит газо- и паротурбинный блоки. Газотурбинный блок состоит, в основном, из газовой турбины 43, которая посредством вала соединена с воздушным компрессором 41 и генератором 30. Воздушный компрессор 41 соединен с камерой 42 сгорания. Также с камерой 42 сгорания соединен подводящий топливопровод 46. Образующийся в результате сжигания, содержащий диоксид углерода отходящий газ подается по трубопроводу для дымового газа к газовой турбине 43. Покидающий ее содержащий диоксид углерода отходящий газ подается по трубопроводу для дымового газа к паротурбинному блоку. Последний состоит из парогенератора-утилизатора 45, паровой турбины 29, генератора 30 и конденсатора 37. Трубопровод для дымового газа соединен с парогенератором-утилизатором 45 паротурбинного блока. Парогенератор-утилизатор 45 предназначен для вырабатывания пара и снабжает паровую турбину 29 по паропроводу паром. Паровая турбина 29 соединена посредством вала с генератором 30 для вырабатывания электроэнергии. Подключенное сепарирующее устройство 16 выполнено, в основном, аналогично такому же устройству, представленному на фиг.2.

Благодаря изобретению с высокой эффективностью возможна эксплуатация электростанции с уменьшенным выбросом диоксида углерода. За счет непосредственного впрыска пара в десорбционный блок разгружается испаритель и экономится высококачественный пар за счет подачи низкокачественного пара. Благодаря этому экономится энергия для процесса десорбции. Устройство для отделения диоксида углерода от содержащего его отходящего газа является составной частью работающей на ископаемом топливе энергоустановки. За счет схемотехнического усовершенствования достигается существенное повышение эффективности по сравнению с традиционным устройством газоочистки работающей на ископаемом топливе энергоустановки.


СПОСОБ И УСТРОЙСТВО ДЛЯ ОТДЕЛЕНИЯ ДИОКСИДА УГЛЕРОДА ОТ ОТХОДЯЩЕГО ГАЗА РАБОТАЮЩЕЙ НА ИСКОПАЕМОМ ТОПЛИВЕ ЭНЕРГОУСТАНОВКИ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОТДЕЛЕНИЯ ДИОКСИДА УГЛЕРОДА ОТ ОТХОДЯЩЕГО ГАЗА РАБОТАЮЩЕЙ НА ИСКОПАЕМОМ ТОПЛИВЕ ЭНЕРГОУСТАНОВКИ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОТДЕЛЕНИЯ ДИОКСИДА УГЛЕРОДА ОТ ОТХОДЯЩЕГО ГАЗА РАБОТАЮЩЕЙ НА ИСКОПАЕМОМ ТОПЛИВЕ ЭНЕРГОУСТАНОВКИ
Источник поступления информации: Роспатент

Showing 721-730 of 1,427 items.
25.08.2017
№217.015.af66

Топливная форсунка для двух видов топлива

Изобретение относится к энергетике. Топливная форсунка 2 для двух видов топлива с внутренней трубой 5 с радиально ориентированными выходными отверстиями для первого вида топлива и с окружающей внутреннюю трубу внешней трубой 6 с ориентированными по оси выходными отверстиями 10 для второго вида...
Тип: Изобретение
Номер охранного документа: 0002610979
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.af8f

Предотвращение перегрузки линий передач в сети энергоснабжения

Использование: в области электротехники. Технический результат – предотвращение перегрузки сети энергоснабжения. Согласно способу предотвращения перегрузки по меньшей мере одного участка линии, который выполнен с возможностью передачи электрической мощности в сети энергоснабжения для по...
Тип: Изобретение
Номер охранного документа: 0002611065
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.afbb

Электрическая машина

Изобретение относится к электротехнике, а именно к электрической машине с ротором из сверхпроводящего материала и способу управления. Электрическая машина (101), содержит статор (103), установленный с возможностью вращения ротор (105) с охлаждаемым, намагничиваемым роторным участком (107) из...
Тип: Изобретение
Номер охранного документа: 0002611067
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.afe1

Система изоляции с улучшенной стойкостью к частичному разряду, способ для ее изготовления

Изобретение относится к области изоляции проводников от частичного разряда, в частности к способу изготовления системы изоляции с улучшенной стойкостью к частичному разряду. Способ изготовления системы изоляции с улучшенной стойкостью к частичному разряду включает в себя этапы обеспечения...
Тип: Изобретение
Номер охранного документа: 0002611050
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.aff3

Источник рентгеновского излучения и его применение и способ генерации рентгеновского излучения

Изобретение относится к источнику рентгеновского излучения, в котором, в частности, может генерироваться монохроматическое рентгеновское излучение. Кроме того, изобретение относится к способу генерации рентгеновского излучения, а также к применению источника рентгеновского излучения для...
Тип: Изобретение
Номер охранного документа: 0002611051
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b108

Устройство защитного отключения коммутационного прибора

Защитное отключающее устройство предназначено для коммутационного прибора (1), имеющего подвижные друг относительно друга контактные элементы (2, 3). С помощью передаточного механизма обеспечивается относительное движение между этими контактными элементами (2, 3). Передаточный механизм имеет...
Тип: Изобретение
Номер охранного документа: 0002613329
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b70e

Возбуждение дополнительного лазера для устойчивости горения

Изобретение относится к энергетике. Система сжигания содержит камеру (100) сгорания, имеющую концевую секцию (101) и предсекцию (102) сгорания, продолжающуюся от концевой секции (101) вдоль центральной оси (103) камеры (100) сгорания, турбулизирующее устройство (110), необязательное запальное...
Тип: Изобретение
Номер охранного документа: 0002614754
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.b83b

Эксплуатация и диагностика клапанов

Группа изобретений относится к способу и устройству проверки клапанного узла. Способ диагностики клапанного узла с клапанными элементами, последовательно расположенными вдоль проточного канала клапанного узла, включает в себя этапы открытия всех последовательно расположенных клапанных элементов...
Тип: Изобретение
Номер охранного документа: 0002615307
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b8b6

Способ и устройство для оценки величин дефектов посредством saft (способа фокусировки синтезированной апертуры)

Использование: для оценки величин дефектов в тестируемом объекте при ультразвуковом тестировании. Сущность изобретения заключается в том, что выполняют оценку величин дефектов в тестируемом объекте, реализуя следующие этапы: определение (S1) набора данных измерений тестируемого объекта;...
Тип: Изобретение
Номер охранного документа: 0002615208
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b98f

Направляющая лопатка турбины, снабженная дроссельным элементом

Направляющая лопатка турбины имеет аэродинамически изогнутую рабочую часть лопатки, которая имеет снабженную дроссельным элементом канальную систему из канальных участков для направления охлаждающего средства. Дроссельный элемент выполнен для отбора охлаждающего средства. При этом дроссельный...
Тип: Изобретение
Номер охранного документа: 0002615091
Дата охранного документа: 03.04.2017
Showing 721-730 of 943 items.
25.08.2017
№217.015.9f83

Вч резонатор и ускоритель частиц с вч резонатором

ВЧ резонатор имеет цилиндрическую полость из диэлектрического материала. Полость включает в себя первый цилиндрический участок, второй цилиндрический участок и диэлектрическое кольцо, соединяющее первый участок и второй участок. Внутренняя сторона первого цилиндрического участка имеет первое...
Тип: Изобретение
Номер охранного документа: 0002606187
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9fb0

Изготовление ротора электрической асинхронной машины

Изобретение касается способа изготовления ротора электрической асинхронной машины. Технический результат – упрощение изготовления короткозамкнутых роторов. Способ изготовления ротора электрической асинхронной машины включает изготовление опорного вала (1), снабженного пазами (4) вала. На...
Тип: Изобретение
Номер охранного документа: 0002606193
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9fc4

Высокочастотный резонатор и ускоритель частиц, снабженный высокочастотным резонатором

Высокочастотный резонатор включает в себя цилиндрическую полость из диэлектрического материала. Внутренняя сторона полости имеет электрически проводящее покрытие, которое разделено кольцеобразно проходящим по периметру боковой поверхности полости электрически изолирующим зазором на первое...
Тип: Изобретение
Номер охранного документа: 0002606188
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a011

Покрытие с высокой короностойкостью, а также способ его получения

Изобретение относится к покрытию для полимерного изоляционного материала и способу его получения. Такие покрытия могут быть нанесены как на трехмерные детали, так и на листовые материалы, такие как пленки и тканые материалы. Покрытие включает от 1 до 10 слоев и является силикатным, причем...
Тип: Изобретение
Номер охранного документа: 0002606447
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a027

Узел опорной стойки газотурбинного двигателя

Группа изобретений относится к узлу опорной стойки для опоры корпуса функционального блока газовой турбины, к газовой турбине и к способу опоры корпуса функционального блока газовой турбины. Узел (100) опорной стойки содержит тело (101) стойки для опоры блока на основании, шаровой поворотный...
Тип: Изобретение
Номер охранного документа: 0002606462
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a085

Способ уменьшения фликера в электродуговых печах и устройство для его осуществления

Изобретение относится к области металлургии и может быть использовано при изготовлении стали в электродуговых печах с регулированием показателей фликера. В способе создают посредством запоминающего устройства банк данных по фликеру, в котором сохраняются временные динамики моментального...
Тип: Изобретение
Номер охранного документа: 0002606672
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a0a1

Шликер для литья под давлением и изготавливаемая из него огнеупорная керамика для газотурбинных установок

Изобретение касается шликера для литья под давлением для изготовления огнеупорной керамики для применения в качестве теплозащитного экрана в контуре высокотемпературного газа газотурбинных установок. Шликер содержит смесь зерен по меньшей мере из двух материалов с различными коэффициентами...
Тип: Изобретение
Номер охранного документа: 0002606739
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a1de

Система крепления и фиксации электронного модуля

Изобретение относится к электронному модулю и, в частности, к электронному модулю для использования с системой шин для взаимного соединения. Технический результат – предотвращение небольших относительных перемещений между электронным модулем и монтажной конструкцией при динамических...
Тип: Изобретение
Номер охранного документа: 0002606772
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a2d3

Способ эксплуатации турбины для снижения проскока аммиака

Изобретение относится к энергетике. Способ работы газотурбинного двигателя для снижения проскока аммиака включает в себя работу двигателя в диапазоне выходных уровней мощности; регулирование массового потока оксидов азота (NOx), производимого в отработавшем газе двигателя, чтобы быть в пределах...
Тип: Изобретение
Номер охранного документа: 0002607139
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a2d7

Способ загрузки программного обеспечения вычислительного блока подкомпонента устройства, состоящего из нескольких компонентов с различными подкомпонентами

Изобретение относится к способу загрузки программного обеспечения вычислительного блока подкомпонента устройства, состоящего из нескольких компонентов с различными подкомпонентами с центральным вычислителем. Техническим результатом является автоматическая загрузка программного обеспечения....
Тип: Изобретение
Номер охранного документа: 0002607277
Дата охранного документа: 10.01.2017
+ добавить свой РИД