×
20.02.2014
216.012.a3e4

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ РЕЗЕРВИРОВАНИЯ В СЛУЧАЕ НЕИСПРАВНОСТИ МНОГОФАЗНОГО ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ

Вид РИД

Изобретение

№ охранного документа
0002507671
Дата охранного документа
20.02.2014
Аннотация: Изобретение относится к управлению многофазным выпрямителем переменного тока. Технический результат заключается в усовершенствовании способа управления выпрямителем, чтобы при отказе в выходных цепях не проявлялись составляющие постоянного напряжения. В соответствии с изобретением, подсистемой (10) ветви (Т1,…, Т6) вентилей, соответствующей неисправной ветви (Т1,…, Т6) вентилей, неисправного фазного модуля (100) управляют таким образом, что ее клеммное напряжение (U) равно нулю, что, соответственно, одной подсистемой (10) соответствующей этой ветви (Т1,…, Т6) вентилей ветви (Т1,…, Т6) вентилей каждого исправного фазного модуля (100) управляют таким образом, что их клеммные напряжения (U) равны нулю. Тем самым получают способ управления для использования резервирования в случае неисправности многофазного выпрямителя переменного тока с распределенными накопителями (9) энергии, причем генерируемые выходные напряжения (U, U и U) больше не содержат составляющей постоянного напряжения. 12 ил.
Основные результаты: Способ управления выпрямителем переменного тока с, по меньшей мере, двумя фазными модулями (100), имеющими верхнюю и нижнюю ветвь (Т1,…, Т6) вентилей, содержащую соответственно по меньшей мере, три электрически последовательно включенные двухполюсные подсистемы (10), при отказе, по меньшей мере, одной подсистемы (10) ветви (Т1,…, Т6) вентилей, причем определяется ветвь (Т1,…, Т6) вентилей с неисправной подсистемой (10), и причем соответственно подсистема (10) ветви (Т1,…, Т6) вентилей, корреспондирующейся с неисправной ветвью (Т1,…, Т6) вентилей, каждого исправного фазного модуля (100) управляется таким образом, что ее клеммное напряжение (U) соответственно равно нулю, отличающийся тем, что подсистема (10) ветви (Т1,…, Т6) вентилей, корреспондирующейся с неисправной ветвью (Т1,…, Т6) вентилей, неисправного фазного модуля (100) управляется таким образом, что ее клеммное напряжение (U) равно нулю, и что соответственно подсистема (10) ветви (Т1,…, Т6) вентилей, корреспондирующейся с этой ветвью (Т1,…, Т6) вентилей, каждого исправного фазного модуля (100) управляется таким образом, что ее клеммное напряжение (U) равно нулю.

Изобретение относится к способу управления многофазным выпрямителем переменного тока с распределенными накопителями энергии согласно родовому понятию пункта 1 формулы изобретения.

Из DE 10103031 А1 известен выпрямитель переменного тока с распределенными накопителями энергии. Эквивалентная схема подобного выпрямителя переменного тока более подробно представлена на фиг.1. Согласно этой эквивалентной схеме, данный известный выпрямитель переменного тока имеет три фазных модуля, которые обозначены, соответственно, как 100. Эти фазные модули 100 на стороне постоянного напряжения электропроводно соединены, соответственно, с положительной и отрицательной сборной шиной P0 и N0 постоянного напряжения. Между этими обеими сборными шинами P0 и N0 постоянного напряжения в преобразователе переменного тока с промежуточным контуром напряжения было бы включено последовательное соединение двух конденсаторов С1 и С2, на которых имеет место падение постоянного напряжения Ud. Точка соединения этих обоих последовательно включенных конденсаторов С1 и С2 образует виртуальную среднюю точку (нейтраль) О. Каждый фазный модуль 100, который образует ветвь моста многофазного выпрямителя переменного тока, имеет верхнюю и нижнюю частичную ветвь моста, которая, так как частичные ветви моста представляют соответствующий выпрямительный вентиль многофазного выпрямителя переменного тока с распределенными накопителями энергии, далее называется ветвью Т1 или Т3, или Т5 и Т2, или Т4, или Т6 вентилей. Каждая из этих ветвей Т1-Т6 вентилей имеет некоторое число включенных электрически последовательно двухполюсных подсистем 10. В этой эквивалентной схеме показаны четыре таких подсистемы 10. Однако число подсистем 10 на ветвь Т1, …, Т6 вентилей не ограничено этим представленным числом. Каждая точка соединения двух ветвей Т1 и Т2, или Т3 и Т4, или Т5 и Т6 вентилей фазного модуля 100 образует вывод L1, или L2, или L3 стороны переменного напряжения фазного модуля 100. Так как в этом изображении выпрямитель переменного тока имеет три фазных модуля 100, то к их выводам L1, L2 или L3 стороны переменного напряжения, также называемым нагрузочными выводами, может подключаться трехфазная нагрузка, например двигатель трехфазного тока.

На фиг.2 более подробно показана эквивалентная схема известной формы выполнения двухполюсной подсистемы 10. Схемное устройство по фиг.3 представляет функционально полностью равноценный вариант. Обе формы выполнения двухполюсной подсистемы 10 известны из DE 10103031 А1. Эти известные двухполюсные подсистемы 10 имеют, соответственно, два отключаемых полупроводниковых переключателя 1 и 3, два диода 2 и 4 и униполярный накопительный конденсатор 9. Оба отключаемых полупроводниковых переключателя 1 и 3 соединены электрически последовательно, причем эта схема последовательного соединения включена электрически параллельно накопительному конденсатору 9. С каждым из отключаемых полупроводниковых переключателей 1 и 3 электрически параллельно подключен один из обоих диодов 2 и 4 таким образом, что они по отношению к соответствующим отключаемым полупроводниковым переключателям 1 и 3 включены антипараллельно. Униполярный накопительный конденсатор 9 подсистемы 10 состоит либо из конденсатора, либо из батареи конденсаторов, состоящей из нескольких таких конденсаторов, с результирующей емкостью С0. Точка соединения эмиттера отключаемого полупроводникового переключателя 1 и анода диода 2 образует соединительную клемму Х1 подсистемы 10. Точка соединения эмиттера обоих отключаемых полупроводниковых переключателей 1 и 3 и обоих диодов 2 и 4 образует вторую соединительную клемму Х2 подсистемы 10.

В форме выполнения двухполюсной подсистемы 10 согласно фиг.3 эта точка соединения образует первую соединительную клемму Х1. Точка соединения коллектора отключаемого полупроводникового переключателя 1 и катода диода 2 образует вторую соединительную клемму Х2 подсистемы 10.

В обоих представлениях двух форм выполнения двухполюсной подсистемы 10 в качестве отключаемых полупроводниковых переключателей 1 и 3, как представлено на фиг.2 и 3, применяются биполярные транзисторы с изолированным затвором (IGBT). Также могут применяться полевые транзисторы со структурой металл-оксид-полупроводник (МОП). Кроме того, могут применяться двухоперационные диодные тиристоры (GTO) или коммутируемые тиристоры с интегральным затвором (IGCT).

Согласно DE 10103031 А1, двухполюсные подсистемы 10 каждого фазного модуля 100 выпрямителя переменного тока по фиг.1 могут управляться для переключения в состояние переключения I, II и III. В состоянии переключения I отключаемый полупроводниковый переключатель 1 включен, а отключаемый полупроводниковый переключатель 3 выключен. Тем самым существующее на соединительных клеммах Х1 и Х2 клеммное напряжение Ux21 двухполюсной подсистемы 10 равно нулю. В состоянии переключения II отключаемый полупроводниковый переключатель 1 выключен, а отключаемый полупроводниковый переключатель 3 включен. В этом состоянии переключения II существующее клеммное напряжение Ux21 двухполюсной подсистемы 10 равно конденсаторному напряжению UC, существующему на накопительном конденсаторе 9. В состоянии переключения III оба отключаемых полупроводниковых переключателя 1 и 3 выключены, и существующее на накопительном конденсаторе 9 конденсаторное напряжение UC является постоянным.

Для того чтобы этот выпрямитель переменного тока с распределенными накопителями 9 энергии согласно фиг.1 мог работать с резервированием, должно гарантироваться, что неисправная подсистема 10 на своих клеммах Х1 и Х2 продолжительно короткозамкнута. Это означает, что клеммное напряжение Ux21 неисправной двухполюсной подсистемы 10 независимо от направления тока через клеммы Х1 и Х2 равно нулю.

Из-за отказа одного из имеющихся в подсистеме 10 отключаемых полупроводниковых переключателей 1 или 3 или относящейся к ним схемы управления корректное функционирование этой подсистемы 10 нарушается. Другими возможными причинами для сбоев функционирования, в числе прочего, являются неисправности в соответствующей схеме управления отключаемых полупроводниковых переключателей, их энергопитании связи и определении измеренных значений. Это означает, что двухполюсная подсистема 10 не может больше надлежащим образом управляться в одном из возможных состояний переключения I, II или III. За счет короткого замыкания подсистемы 10 на ее выводах Х1 и Х2 к этой подсистеме больше не подводится никакая энергия. За счет этого косвенные убытки, такие как перегрев и сгорание при дальнейшей эксплуатации преобразователя переменного тока, надежно исключаются.

Подобное проводящее соединение типа короткого замыкания между соединительными клеммами Х1 и Х2 неисправной двухполюсной подсистемы 10 должно надежным образом и без перегрева отводить по меньшей мере рабочий ток ветви Т1, …, Т6 вентилей фазного модуля 100, в котором находится неисправная двухполюсная подсистема 10. В DE 102005040543 А1 указано, каким образом неисправная двухполюсная подсистема 10 может надежным образом становиться короткозамкнутой. Тем самым, этот известный выпрямитель переменного тока с распределенными накопителями энергии может далее эксплуатироваться с резервированием.

Для последующего пояснения предположим, что накопительные конденсаторы 9 всех двухполюсных подсистем 10 имеют соответствующее одинаковое напряжение UC. Способ для начального установления этого состояния и его поддержания при работе также известен из DE 10103031 А1. На фиг.4 на диаграмме по времени t представлена характеристика изменения разности потенциалов UPL на клемме Р фазного модуля 100 по отношению к сетевому выводу L. На фиг.5 на диаграмме по времени t представлена характеристика разности потенциалов ULN на клемме L фазного модуля 100 по отношению к потенциалу на клемме N. Согласно этим характеристикам потенциалов UPL и ULN, в моменты времени t1, t2, t3, t4, t5, t6, t7 или t8 из восьми двухполюсных подсистем 10 ветви Т1 и Т2 вентилей, соответственно, одна подсистема включена или выключена. При этом включение соответствует переходу из состояния переключения I в состояние переключения II. Выключение соответствует переходу из состояния переключения II в состояние переключения I. На этих обеих диаграммах представлен, соответственно, период ТР основного колебания характеристики потенциала ULO (фиг.6) нагрузочного вывода L по отношению к виртуальной средней точке О фазного модуля 100 выпрямителя переменного тока с распределенными накопителями 9 энергии характеристик потенциалов UPL и ULN.

На фиг.6 показана характеристика, представляющая разности характеристик потенциалов UPL и ULN согласно фиг.4 и 5 на диаграмме по времени t. Эта получающаяся характеристика потенциалов ULO приложена между выводом L1, или L2, или L3 стороны переменного напряжения фазного модуля 100 выпрямителя переменного тока с распределенными накопителями 9 энергии по фиг.1 и произвольно выбранным потенциалом виртуальной средней точки О промежуточного контура напряжения с двумя конденсаторами С1 и С2. Соответствующие составляющие верхних гармоник или компонентов постоянного напряжения в выходных напряжениях ULO фазных модулей 100 многофазного выпрямителя переменного тока с распределенными накопителями 9 энергии по фиг.1 действуют в случае симметричной системы трехфазного напряжения в разностных напряжениях соответствующих двух сдвинутых по фазе выходных напряжений UL10, UL20 или UL30. Из этих обеих характеристик потенциалов UPL и ULN можно также видеть, что сумма потенциалов в каждый момент времени равна 4·UC. Это означает, что значение постоянного напряжения Ud между сборными шинами P0 и N0 постоянного напряжения всегда соответствует постоянному числу подсистем 10 в состоянии переключения II, умноженному на значение конденсаторного напряжения UC, существующего на конденсаторе С. В приведенном для примера случае это число соответствует количеству имеющихся в ветвях Т1, …, Т6 вентилей двухполюсных подсистем 10 выпрямителя переменного тока по фиг.1.

Из DE 102005045091 А1 известен способ управления выпрямителем переменного тока с распределенными накопителями энергии согласно фиг.1, с помощью которого в случае неисправности по меньшей мере одной подсистемы фазного модуля этого выпрямителя переменного тока поддерживаются условия симметрии. Согласно этому известному способу, сначала определяется ветвь вентилей одной из трех фаз, в которой одна или более двухполюсных подсистем неисправны. Каждая неисправная подсистема управляется таким образом, что амплитуда клеммного напряжения соответственно равна нулю. В каждой другой ветви вентилей неисправного фазного модуля, соответственно количеству определенных двухполюсных подсистем, соответствующее количество подсистем управляется таким образом, что амплитуда клеммного напряжения соответственно равна конденсаторному напряжению. Это управление подсистемами в неисправном фазном модуле также выполняется для подсистем ветвей вентилей исправных фазных модулей.

На фиг.7 показана диаграмма по времени t характеристики разности потенциалов UPL клеммы Р фазного модуля 100 относительно нагрузочного вывода L фазного модуля 100, причем в нижней ветви Т2, или Т4, или Т6 вентилей фазного модуля 100 одна двухполюсная подсистема 10 неисправна. На фиг.8 показана диаграмма по времени t характеристики разности потенциалов ULN клеммы L относительно потенциала клеммы N. Из характеристики разности потенциалов UPL согласно фиг.7 можно видеть, что подсистема 10 каждой верхней ветви Т1, или Т3, или Т5 вентилей каждого фазного модуля 100 управляется таким образом, что ее клеммное напряжение UX21 всегда равно конденсаторному напряжению UC, имеющемуся на накопительном конденсаторе 9. За счет этого из показанных для примера четырех подсистем 10 каждой верхней ветви Т1, или Т3, или Т5 вентилей остаются только три подсистемы 10, которые подключаются или отключаются. Из временной характеристики разности потенциалов ULN каждой нижней ветви Т2, или Т4, или Т6 вентилей каждого фазного модуля 100 можно видеть, что каждая из показанных для примера четырех подсистем 10 управляется таким образом, что ее клеммное напряжение UX21 всегда равно нулю. Согласно фиг.1 из этих нижних ветвей Т2, или Т4, или Т6 вентилей трех фазных модулей 100 ветвь Т2 вентилей имеет неисправную двухполюсную подсистему 10, обозначенную штриховкой. За счет этого значение амплитуд напряжения ULN каждой ветви Т2, Т4 и Т6 вентилей может быть максимально равно только 3·UC. Посредством этого известного способа количество применяемых подсистем 10 в случае неисправности устанавливается равным количеству применяемых подсистем 10 в случае отсутствия неисправности. Характеристика амплитуды суммы разностей потенциалов UPL и ULN показана на диаграмме фиг.8 прерывистой линией. По отношению к случаю отсутствия неисправности напряжения UL10, UL20 и UL30 в случае неисправности имеют, соответственно, меньшую максимальную амплитуду. В показанном примере эти напряжения UL10, UL20 и UL30 в случае отсутствия неисправности имеют максимальную амплитуду размаха 1/2·Ud, в то время как в случае неисправности максимальная амплитуда составляет только 3/8·Ud. То есть, посредством известного способа в случае неисправности получают симметричную трехфазную систему напряжения с меньшей максимальной амплитудой.

На фиг.9 показана характеристика разностей потенциалов UPL и ULN согласно фиг.7 и 8 по времени t. Из этой временной характеристики потенциала нагрузочного вывода L1, или L2, или L3 по отношению к виртуальной средней точке О можно видеть, что она отклоняется от нулевого положения уже несимметрично. Это нулевое положение сдвинуто на 1/8·Ud. Это означает, что эта характеристика потенциалов имеет постоянную составляющую.

В основе изобретения лежит задача усовершенствовать известный способ управления таким образом, чтобы в выходных напряжениях выпрямителя переменного тока с распределенными накопителями энергии в случае неисправности не проявлялись составляющие постоянного напряжения.

Эта задача решается в соответствии с изобретением отличительными признаками во взаимосвязи с признаками ограничительной части пункта 1 формулы изобретения.

За счет того, что в ветви вентилей, соответствующей неисправной ветви вентилей, неисправного фазного модуля некоторое число двухполюсных подсистем, причем это число соответствует числу неисправных подсистем, управляется таким образом, что амплитуды их клеммных напряжений равны нулю, выходное напряжение неисправного фазного модуля больше не содержит постоянной составляющей. Ввиду условия симметрии, соответствующие подсистемы в ветвях вентилей исправных фазных модулей управляются соответствующим образом. Тем самым получают свободную от постоянного напряжения трехфазную симметричную систему напряжения.

Для дальнейшего пояснения изобретения далее даются ссылки на чертежи, на которых схематично представлена форма выполнения соответствующего изобретению способа управления многофазным выпрямителем переменного тока с распределенными накопителями энергии.

Фиг.1 показывает эквивалентную схему известного выпрямителя переменного тока с распределенными накопителями энергии;

фиг.2 показывает эквивалентную схему первой формы выполнения известной двухполюсной подсистемы выпрямителя переменного тока по фиг.1;

фиг.3 показывает эквивалентную схему второй формы выполнения известной двухполюсной подсистемы выпрямителя переменного тока по фиг.1;

фиг.4-6 представляют характеристики потенциала фазного модуля выпрямителя переменного тока по фиг.1 в случае отсутствия неисправности, соответственно, на диаграмме по времени t;

фиг.7-9 представляют характеристики потенциала фазного модуля выпрямителя переменного тока по фиг.1 в случае неисправности, соответственно, на диаграмме по времени t;

фиг.10-12 - представляют характеристики потенциала фазного модуля выпрямителя переменного тока по фиг.1 в случае неисправности, соответственно, на диаграмме по времени t, которые генерируются посредством соответствующего изобретению способа.

Предположим, что двухполюсная подсистема 10 ветви Т2 вентилей фазного модуля 100 выпрямителя переменного тока с распределенными накопителями 9 энергии согласно фиг.1 из-за некоторой неисправности является надежно короткозамкнутой. Эта неисправная двухполюсная подсистема 10 наглядно представлена на эквивалентной схеме согласно фиг.1 посредством штриховки.

Согласно соответствующему изобретению способу, сначала эта неисправная двухполюсная подсистема 10 должна определяться. После того как эта неисправная двухполюсная подсистема 10 определена, эта подсистема 10 управляется таким образом, что амплитуда соответствующего клеммного напряжения UX21 равна нулю. Этот фазный модуль 100, в котором ветвь Т2 вентилей имеет неисправную подсистему 10, далее называется неисправным фазным модулем 100. Этот неисправный фазный модуль 100 имеет, кроме того, ветвь Т1 вентилей, в которой никакая подсистема 10 не является неисправной. Согласно способу, соответствующему изобретению, соответственно числу неисправных двухполюсных подсистем 10 в неисправной ветви Т2 вентилей, соответствующее число двухполюсных подсистем 10 исправной ветви Т1 вентилей этого неисправного фазного модуля 100 управляется таким образом, что, соответственно, амплитуда клеммного напряжения UX21 равна нулю. Так как в этом примере только одна двухполюсная подсистема 10 ветви Т2 вентилей неисправна, в соответствующей ветви Т1 вентилей только одна двухполюсная подсистема 10 управляется таким образом, что амплитуда ее клеммного напряжения UX21 равна нулю.

На фиг.10 на диаграмме по времени t показана временная характеристика разности потенциалов UPL клеммы Р относительно нагрузочного вывода L1. На фиг.11 на диаграмме по времени t показана временная характеристика разности потенциала ULN клеммы L относительно потенциала клеммы N. Из обеих характеристик потенциалов UPL и ULN можно видеть, что из четырех двухполюсных подсистем 10 ветвей Т1 и Т2 вентилей для управления в распоряжение предоставлены только три подсистемы 10. Сумма этих обеих характеристик потенциалов UPL и ULN дает вновь постоянное напряжение Ud, которое существует между сборными шинами P0 и N0 постоянного напряжения этого выпрямителя переменного тока с распределенными накопителями 9 энергии согласно фиг.1. Это означает, что постоянное напряжение Ud в случае отсутствия неисправности и в случае неисправности одинаково. На основании симметрии двухполюсные подсистемы 10 ветвей Т4, Т3 и Т6, Т5 вентилей обоих исправных фазных модулей 100 выпрямителя переменного тока с распределенными накопителями 9 энергии согласно фиг.1 управляются соответствующим образом. Это означает, что в соответствующих неисправной ветви Т2 вентилей неисправного фазного модуля 100 исправных ветвях Т4 и Т6 вентилей исправных фазных модулей 100 выпрямителя переменного тока по фиг.1 некоторое число подсистем 10, соответствующее числу неисправных подсистем 10, управляется таким образом, что амплитуды их клеммных напряжений UX21 соответственно равны нулю. Так как в неисправной ветви Т2 вентилей неисправного фазного модуля 100 неисправна только одна подсистема 10, то в соответствующих ветви Т2 вентилей ветвях Т4 и Т6 вентилей исправных фазных модулей 100 выпрямителя переменного тока с распределенными накопителями 9 энергии по фиг.1, соответственно, только одна двухполюсная подсистема 10 управляется таким образом, что амплитуды соответствующих клеммных напряжений UX21 равны нулю. В неисправном фазном модуле 100 в исправной ветви Т1 вентилей также одна подсистема 10 управляется таким образом, что амплитуда соответствующего клеммного напряжения UX21 равна нулю. Это означает, что в исправных фазных модулях 100 выпрямителя переменного тока с распределенными накопителями 9 энергии по фиг.1, в соответствующих исправной ветви Т1 вентилей неисправного фазного модуля 100 ветвях Т3 и Т5 вентилей исправных фазных модулей 100 соответствующие подсистемы 10 в количестве неисправных подсистем 10 неисправной ветви Т2 вентилей управляются таким образом, что амплитуды их клеммных напряжений UX21 также равны нулю.

За счет подобного управления двухполюсными подсистемами 10 выпрямителя переменного тока с распределенными накопителями 9 энергии получают выходные напряжения UL10, UL20 и UL30, которые, соответственно, приложены между выводом L1, L2 и L3 стороны переменного напряжения и виртуальной средней точкой О. Эти выходные напряжения UL10, UL20 и UL30 имеют характеристику потенциала ULO, которая представлена на диаграмме по времени t на фиг.12. Эта характеристика больше не имеет постоянной составляющей. Амплитуды этих выходных напряжений UL10, UL20 и UL30, соответственно, меньше амплитуд выходных напряжений, которые генерировались посредством известного способа управления. Согласно примеру с четырьмя подсистемами 10 на ветвь Т1, …, Т6 вентилей выходные напряжения UL10, UL20 имеют, соответственно, амплитуду 1/4·Ud по сравнению с амплитудой 3/8·Ud (известный способ управления). Однако эта симметричная трехфазная система напряжения с меньшей амплитудой свободна от постоянного напряжения.

Постоянная составляющая, которая в известном способе проявляется в выходных напряжениях UL10, UL20 и UL30 выпрямителя переменного тока с распределенными накопителями 9 энергии по фиг.1, обуславливает в подключенной машине с вращающимся магнитным полем сдвиг нейтрали, который может привести к токам в опорах. Кроме того, названная постоянная составляющая, при применении преобразователя переменного тока как активного, прямого сетевого питания, вызывает сдвиг потенциала преобразователя переменного тока по отношению к потенциалу земли, если нейтраль сетевой стоны заземлена. Это требует, при обстоятельствах, больше затрат на изоляцию преобразователя переменного тока. С помощью способа, соответствующего изобретению, этот недостаток устраняется, но при этом следует принимать во внимание меньшую амплитуду выходных напряжений UL10, UL20 и UL30 выпрямителя переменного тока по фиг.1. Чем больше двухполюсных подсистем 10 применяется в ветвях Т1, …, Т6 вентилей, тем с большим числом ступеней будут выходные напряжения UL10, UL20 и UL30 выпрямителя переменного тока с распределенными накопителями 9 энергии по фиг.1. Тем самым можно аппроксимировать синусоидальную характеристику даже при неисправных двухполюсных подсистемах 10.

Способ управления выпрямителем переменного тока с, по меньшей мере, двумя фазными модулями (100), имеющими верхнюю и нижнюю ветвь (Т1,…, Т6) вентилей, содержащую соответственно по меньшей мере, три электрически последовательно включенные двухполюсные подсистемы (10), при отказе, по меньшей мере, одной подсистемы (10) ветви (Т1,…, Т6) вентилей, причем определяется ветвь (Т1,…, Т6) вентилей с неисправной подсистемой (10), и причем соответственно подсистема (10) ветви (Т1,…, Т6) вентилей, корреспондирующейся с неисправной ветвью (Т1,…, Т6) вентилей, каждого исправного фазного модуля (100) управляется таким образом, что ее клеммное напряжение (U) соответственно равно нулю, отличающийся тем, что подсистема (10) ветви (Т1,…, Т6) вентилей, корреспондирующейся с неисправной ветвью (Т1,…, Т6) вентилей, неисправного фазного модуля (100) управляется таким образом, что ее клеммное напряжение (U) равно нулю, и что соответственно подсистема (10) ветви (Т1,…, Т6) вентилей, корреспондирующейся с этой ветвью (Т1,…, Т6) вентилей, каждого исправного фазного модуля (100) управляется таким образом, что ее клеммное напряжение (U) равно нулю.
СПОСОБ УПРАВЛЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ РЕЗЕРВИРОВАНИЯ В СЛУЧАЕ НЕИСПРАВНОСТИ МНОГОФАЗНОГО ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ УПРАВЛЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ РЕЗЕРВИРОВАНИЯ В СЛУЧАЕ НЕИСПРАВНОСТИ МНОГОФАЗНОГО ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ УПРАВЛЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ РЕЗЕРВИРОВАНИЯ В СЛУЧАЕ НЕИСПРАВНОСТИ МНОГОФАЗНОГО ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ УПРАВЛЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ РЕЗЕРВИРОВАНИЯ В СЛУЧАЕ НЕИСПРАВНОСТИ МНОГОФАЗНОГО ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ УПРАВЛЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ РЕЗЕРВИРОВАНИЯ В СЛУЧАЕ НЕИСПРАВНОСТИ МНОГОФАЗНОГО ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ УПРАВЛЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ РЕЗЕРВИРОВАНИЯ В СЛУЧАЕ НЕИСПРАВНОСТИ МНОГОФАЗНОГО ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ УПРАВЛЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ РЕЗЕРВИРОВАНИЯ В СЛУЧАЕ НЕИСПРАВНОСТИ МНОГОФАЗНОГО ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ УПРАВЛЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ РЕЗЕРВИРОВАНИЯ В СЛУЧАЕ НЕИСПРАВНОСТИ МНОГОФАЗНОГО ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ УПРАВЛЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ РЕЗЕРВИРОВАНИЯ В СЛУЧАЕ НЕИСПРАВНОСТИ МНОГОФАЗНОГО ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ УПРАВЛЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ РЕЗЕРВИРОВАНИЯ В СЛУЧАЕ НЕИСПРАВНОСТИ МНОГОФАЗНОГО ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ УПРАВЛЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ РЕЗЕРВИРОВАНИЯ В СЛУЧАЕ НЕИСПРАВНОСТИ МНОГОФАЗНОГО ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ УПРАВЛЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ РЕЗЕРВИРОВАНИЯ В СЛУЧАЕ НЕИСПРАВНОСТИ МНОГОФАЗНОГО ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
Источник поступления информации: Роспатент

Showing 291-300 of 1,428 items.
20.11.2014
№216.013.06f6

Щелевая труба и способ изготовления такой трубы

Изобретение относится к щелевой трубе (39) и способу изготовления такой трубы. Гидравлическая машина и приводной мотор могут быть помещены в корпус, если в электромоторе между ротором и статором осуществляется разделение посредством трубчатой конструктивной части - так называемой щелевой трубы...
Тип: Изобретение
Номер охранного документа: 0002533183
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.08a0

Стабилизация пламени горелки

Горелка газовой турбины содержит реакционную камеру (5) и множество выходящих в реакционную камеру (5) реактивных сопел (6). Реактивными соплами (6) с помощью струи (2) флюида через выпускное отверстие (22) флюид подается в реакционную камеру (5). Реакционная камера (5) предназначена для...
Тип: Изобретение
Номер охранного документа: 0002533609
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.08dc

Способ реализуемого компьютером управления электрическим потреблением энергии множества потребителей энергии в электрической энергосети

Использование: в области электротехники. Технический результат - обеспечение децентрализованного управления энергопотреблением. Согласно способу сетевые узлы (Р1, Р2,…, Р8) оценивают на основе обмена информацией с по меньшей мере одним другим сетевым узлом (Р1, Р2,…, Р8) общее потребление (ТЕ,...
Тип: Изобретение
Номер охранного документа: 0002533669
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0935

Устройство и способ для измерения многофазного потока флюида

Изобретение относится к области измерительной техники и может найти применение в системах измерения скорости потока многофазной смеси флюида. Технический результат - повышение точности. Для этого устройство (1) содержит средство (2) излучения, средство (3) детектирования и средство (4) анализа....
Тип: Изобретение
Номер охранного документа: 0002533758
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0a3b

Устройство для преобразования электрического параметра, имеющее реактор с нулевой точкой

Изобретение относится к преобразовательной технике. Для того чтобы предоставить устройство (1) для преобразования электрического параметра в области передачи и распределения электроэнергии с преобразователем (2), переключаемым между сетью (11) переменного напряжения и контуром (7) постоянного...
Тип: Изобретение
Номер охранного документа: 0002534027
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0a40

Разрядник защиты от перенапряжений с изолирующей формованной оболочкой

Изобретение относится к импедансному устройству с первым (1) и вторым (2) арматурными телами, которые соединены между собой через импедансное тело, зажатое между арматурными телами (1, 2) посредством предохранительного элемента (4). Предохранительный элемент (4) имеет на конце радиально...
Тип: Изобретение
Номер охранного документа: 0002534032
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0a4a

Способ разрядки промежуточного конденсатора двухзвенного вентильного преобразователя напряжения

Изобретение относится в способу разрядки промежуточного конденсатора (C) двухзвенного вентильного преобразователя (2) напряжения, в котором расположенный на стороне сети преобразователь (4) электроэнергии имеет выключаемые силовые полупроводниковые приборы (А1, …, А6) и предназначен для...
Тип: Изобретение
Номер охранного документа: 0002534042
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0a9c

Способ и устройство для очистки загрязненного щелочного раствора соли аминокислоты

Изобретение относится к способу очистки загрязненного щелочного раствора соли аминокислоты. Сначала в раствор соли аминокислоты вводят диоксид углерода, в результате чего выпадает в осадок карбонат или его соли, которые отфильтровывают. Затем оставшийся фильтрат охлаждают, причем аминокислота...
Тип: Изобретение
Номер охранного документа: 0002534124
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0ad4

Сеть управления для рельсового транспортного средства

Изобретение относится к области управления транспортных средств. Сеть управления (1) для рельсового транспортного средства содержит устройства управления рельсового транспортного средства, которые кольцеобразно соединены друг с другом, по меньшей мере, двумя каналами связи. Первое устройство...
Тип: Изобретение
Номер охранного документа: 0002534180
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0ade

Компрессорная рабочая лопатка для осевого компрессора

Изобретение относится к компрессорной рабочей лопатке (10) для компрессоров с осевым потоком предпочтительно стационарных газовых турбин. Предусмотрено, что для уменьшения потерь в радиальном зазоре средняя линия (32) расположенных на стороне вершины лопатки профилей (30) пера (12)...
Тип: Изобретение
Номер охранного документа: 0002534190
Дата охранного документа: 27.11.2014
Showing 291-300 of 944 items.
27.09.2014
№216.012.f93f

Система и способ для определения состояния подшипника

Изобретение относится к измерительной технике, в частности для определения состояния подшипника электрической машины. Способ заключается в том, что посредством сенсорного блока (20) определяют измеренное значение (21). Измеренное значение передают на блок (22) моделирования. Посредством блока...
Тип: Изобретение
Номер охранного документа: 0002529644
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f9ba

Способ для генерации пара с высоким кпд

Изобретение относится к генерации пара из рабочего тела парогенератора, который предпочтительно выполнен как парогенератор на отходящем тепле. Предлагается способ преобразования в пар рабочего тела парогенератора, при котором в теплообменнике для преобразования в пар рабочего тела тепловая...
Тип: Изобретение
Номер охранного документа: 0002529767
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f9c0

Быстродействующая дистанционная защита для сетей энергоснабжения

Изобретение относится к способу для распознавания короткого замыкания (16) в линии (10) многофазной электрической сети энергоснабжения с заземленной нейтралью. Сущность: принимаются значения выборок тока и напряжения и формируется сигнал неисправности, если выполненная электрическим устройством...
Тип: Изобретение
Номер охранного документа: 0002529773
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fa7c

Топливная трубка для горелки

Топливная трубка для горелки, в частности для горелки газовой турбины, содержит конец, который имеет поверхность под форсунки, а также, по меньшей мере, две топливные форсунки. Поверхность под форсунки снабжена шлицами между топливными форсунками и выполнена в виде конической кольцевой...
Тип: Изобретение
Номер охранного документа: 0002529970
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd46

Подставка для горелки камеры сгорания газовой турбины и газовая турбина

Изобретение относится к энергетике. Камера сгорания газовой турбины, у которой предусмотрены вставка для горелки, которая имеет стенку с холодной и горячей сторонами и край, ограничивающий стенку вставки для горелки. Край имеет, по меньшей мере, частично охватывающее, выступающее над холодной...
Тип: Изобретение
Номер охранного документа: 0002530684
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe6c

Электрический контактный элемент с главной осью

Изобретение относится к электрическому контактному элементу. Электрический контактный элемент имеет главную ось (2). Главная ось (2) пересекает многоугольную базовую поверхность (1) контактного элемента. Вокруг главной оси (2) расположена контактная втулка (3). Входное отверстие контактной...
Тип: Изобретение
Номер охранного документа: 0002530988
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fed6

Переходный канал газотурбинного двигателя и способ его изготовления, а также газотурбинный двигатель

Переходный канал для соединения камеры сгорания и турбинной части газотурбинного двигателя содержит оболочку, включающую первую и вторую поверхности. Первая и вторая поверхности оболочки соединены пробиванием, а оболочка переходного канала выполнена по меньшей мере из одного листа,...
Тип: Изобретение
Номер охранного документа: 0002531094
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.00ed

Каскадный ускоритель

Заявленное изобретение относится к ускорительной технике. В заявленном каскадном ускорителе предусмотрено два набора конденсаторов, соответственно соединенных последовательно и включенных через диоды. Каскадный ускоритель содержит образованный посредством отверстий в электродах конденсаторов...
Тип: Изобретение
Номер охранного документа: 0002531635
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.011e

Устройство сепарации намагничиваемых частиц из суспензии

Изобретение относится к сепарации намагничиваемых частиц. Устройство сепарации намагничиваемых частиц из суспензии, представляющей собой поток веществ, содержащий металлические и неметаллические компоненты и обладающий заданным массовым потоком включает, в себя цилиндрически симметричный...
Тип: Изобретение
Номер охранного документа: 0002531684
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.013c

Система горелки для установки для сжигания топлива в виде текучей среды и способ работы такой системы горелки

Изобретение относится к области энергетики. Система горелки для сжигания топлива в виде текучей среды имеет ступицу, по меньшей мере один подводящий воздух канал и для каждого вида топлива по меньшей мере один подводящий топливо канал (9, 12, 13, 16), при этом по меньшей мере один подводящий...
Тип: Изобретение
Номер охранного документа: 0002531714
Дата охранного документа: 27.10.2014
+ добавить свой РИД